Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Cell Signal ; : 111423, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39304097

RESUMEN

BACKGROUND: Our prior research determined that USP7 exacerbates myocardial injury. Additionally, existing studies indicate a strong connection between USP7 and ferroptosis. However, the influence of USP7 on ferroptosis-mediated myocardial infarction (MI) remains unclear. Given these findings, we are particularly interested in USP7's regulatory role in ferroptosis-mediated MI and its underlying mechanisms. METHODS: In this study, we established MI models and lentivirus-transfected groups to inhibit USP7 expression both in vivo and in vitro. Cardiac function was detected with Echocardiography. TTC and HE staining were employed to assess myocardial alterations. The expression of ferroptosis markers (PTGS2, ACSL4, GPX4) were analyzed by RT-qPCR and Western blotting. Flow cytometry and ELISA were used for measuring Fe2+, lipid ROS, GSH, and GSSG levels. TEM and Prussian blue staining were used to observe mitochondrial alterations and iron deposition. RT-qPCR, Western blotting, and immunofluorescence were conducted to analyze Keap1, Nrf2, and nuclear Nrf2 expression in vitro and in vivo. RESULTS: In the MI model group, USP7 expression significantly increased, worsening ferroptosis-mediated MI. Conversely, in the USP7-inhibited group, activation of the Keap1-Nrf2 signaling pathway improved ferroptosis-mediated MI outcomes. In vitro, the MI model exhibited a marked decline in cardiomyocyte viability and notable mitochondrial damage. However, these issues improved in the USP7-inhibited groups. In vivo, USP7 intensified MI and iron deposition within the MI model group, with decreased values of LVEF, LVFS, SV, LVAWd, and LVPWs, all of which showed improvement in the USP7-inhibited group, except for LVPWd and LVPWs, which showed no significant variation. Importantly, both the in vitro and in vivo experiments revealed analogous results: a reduction in Keap1 expression and an increase in both Nrf2 and nuclear Nrf2 post USP7 inhibition. Additionally, GPX4 expression decreased while PTGS2 and ACSL4 expressions increased. Notably, concentrations of Fe2+, lipid ROS, GSH, and GSSG significantly decreased. CONCLUSION: In vitro and in vivo studies have found that inhibition of USP7 attenuates iron deposition and suppresses oxidative stress, resulting in amelioration of ferroptosis-induced MI.

2.
Phytomedicine ; 135: 156040, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39299092

RESUMEN

BACKGROUND: Marine diterpenes represent a promising reservoir for identifying potential anti-rheumatoid arthritis (RA) candidates. Praelolide is a gorgonian-derived briarane-type diterpenoid with antioxidative and anti-osteoclastogenetic properties. OBJECTIVE: This study aims to evaluate the therapeutic efficacy of praelolide against RA and investigate its underlying mechanisms both in vivo and in vitro. METHOD: Collagen-induced arthritis (CIA) mice and human RA fibroblast-like synoviocyte MH7A cells were employed for bioassays. The VisuGait system was utilized to assess gait dysfunction resulting from joint pain. Histopathological changes in ankle and synovial tissues were evaluated using micro-computed tomography, hematoxylin and eosin staining, Safranin-O/Fast Green staining, tartrate resistant acid phosphatase staining, and immunohistochemistry. Fluorescence spectroscopy, circular dichroism, and surface plasmon resonance were employed to investigate interactions between praelolide and catalase. The production of inflammatory cytokines and expression levels of proteins were assessed using ELISA and Western blotting, respectively. RESULT: Praelolide significantly reduced paw swelling and arthritis scores, improved gait deficits, and restored synovial histopathological alterations and bone erosion in CIA mice. In vivo and in vitro, praelolide effectively decreased the expression and production of inflammatory cytokines such as interleukin (IL)-1ß and IL-6. Additionally, praelolide inhibited osteoclastogenesis on bone surface of the ankle joints and in a tumor necrosis factor-α (TNF-α)-induced MH7A/bone marrow-derived macrophages (BMMs) co-culture system, and it strongly suppressed reactive oxygen species (ROS) production. Mechanistically, praelolide modulated catalase through non-covalent interactions, inducing conformational alterations that enhanced catalase activity and stability against time- and temperature-induced degradation. Further investigation revealed that praelolide significantly upregulated the expression of Nrf2, subsequently activating downstream antioxidant enzymes. CONCLUSION: Praelolide markedly alleviated synovial inflammation and bone destruction in CIA mice by enhancing catalase activity and activating the Nrf2 pathway to reduce disease-related ROS accumulation, highlighting praelolide as a promising candidate for multitarget treatment of RA.

3.
J Inflamm (Lond) ; 21(1): 37, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289683

RESUMEN

BACKGROUND: The kidney is exceptionally vulnerable during sepsis, often resulting in sepsis-associated acute kidney injury (SA-AKI), a condition that not only escalates morbidity but also significantly raises sepsis-related mortality rates. Circular RNA circ_001653 has been previously reported to be upregulated in the serum of SA-AKI patients, while the role and underlying mechanism of circ_001653 in SA-AKI remains unknown. In this study, we aimed to explore the functional role and the molecular mechanism of circ_001653 in the pathogenesis of SA-AKI. METHODS: LPS-stimulated HK-2 cells and ligation and perforation of cecum (CLP)-induced rats were used as in vitro and in vivo models of SA-AKI. The target gene expression levels were measured using qRT-PCR and western blot. Renal function (BUN, sCr, uNGAL, and uKIM-1), and renal pathological changes were detected in septic mice. TUNEL and EdU assays were conducted to measure apoptosis and proliferation rates in vitro. DCFH-DA staining was used to detect ROS levels in vitro and in vivo. Oxidative stress markers (SOD, GSH-Px, MDA, and SOD), and inflammation markers (IL-1ß, IL-6, and TNF-α) were determined using commercial kits both in vitro and in vivo. Additionally, gain-and-loss-of-function assays and mechanistic experiments were conducted to explore the regulatory role of circ_001653 in SA-AKI pathogenesis. RESULTS: Data showed that circ_001653 expression was high in LPS-stimulated HK-2 cells and CLP-induced rat renal tissue and was mainly localized in the cytoplasm. Notably, circ_001653 silencing alleviated SA-AKI by reducing apoptosis and alleviating oxidative stress and inflammation in HK-2 cells and renal tissue of rats. Mechanistically, it was found that circ_001653 alleviated SA-AKI by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. CONCLUSIONS: To summarize, our study is the first to reveal elevated expression of circ_001653 in sepsis-associated AKI, and its downregulation effectively attenuates AKI by reducing apoptosis, inflammation, and oxidative stress. Mechanistically, circ_001653 exerts its effects by recruiting BUD13 to activate the KEAP1/Nrf2/HO-1 signaling pathway. These findings suggest circ_001653 as a potential therapeutic target for the drug development of sepsis-associated AKI.

4.
Environ Toxicol ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248137

RESUMEN

Microplastics are a growing concern as pollutants that impact both public health and the environment. However, the toxic effects of polypropylene microplastics (PP-MPs) are not well understood. This study aimed to investigate the effects of PP-MPs on cardiotoxicity and its underlying mechanisms. The cardiotoxicity of exposure to different amounts of PP-MPs were investigated in both ICR mice and H9C2 cells. Our results demonstrated that sub-chronic exposure to 5 and 50 mg/L PP-MPs led to myocardial structural damage, apoptosis, and fibrosis in mice cardiomyocytes. Flow cytometry analysis revealed that PP-MPs could decrease mitochondrial membrane potential and induce apoptosis in H9C2 cells. Western blotting revealed decreased expression of Bcl-2, poly(ADP-ribose) polymerase (PARP) and caspase 3 and increased expression of Bax, cleaved-PARP, and cleaved-caspase 3 in PP-MPs-treated cardiac tissue and H9C2 cells. These results confirmed the apoptotic effects induced by PP-MPs. Moreover, PP-MPs treatment triggered oxidative stress, as evidenced by the increased levels of malondialdehyde; reduction in glutathione peroxidase, superoxide dismutase, and catalase activities in mice cardiac tissues; and increased reactive oxygen species levels in H9C2 cells. Finally, western blotting demonstrated that exposure to PP-MPs significantly reduced the expression levels of Nrf2 and p-ERK proteins associated with MAPK-Nrf2 pathway in both cardiac tissue and H9C2 cells. Overall, our findings indicate that PP-MPs can induce cardiomyocyte apoptosis through MAPK-Nrf2 signaling pathway, which is triggered by oxidative stress. This study provides a foundation for determining the effects of PP-MPs on cardiotoxicity and their underlying mechanisms.

5.
Int J Biol Sci ; 20(11): 4258-4276, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247828

RESUMEN

Oxidative stress is a major pathogenic factor in many intestinal diseases, such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). The Nrf2 signaling pathway and mitophagy can reduce reactive oxygen species (ROS) and alleviate oxidative stress, but their relationship is unclear. Hydroxytyrosol (HT), a polyphenolic compound abundant in olive oil, has strong antioxidant activity and may help treat these diseases. We used pigs as a model to investigate HT's effect on intestinal oxidative damage and its mechanisms. Diquat (DQ) induced oxidative stress and impaired intestinal barrier function, which HT mitigated. Mechanistic studies in IPEC-J2 cells showed that HT protected against oxidative damage by activating the PI3K/Akt-Nrf2 signaling pathway and promoting mitophagy. Our study highlighted the synergistic relationship between Nrf2 and mitophagy in mediating HT's antioxidant effects. Inhibition studies confirmed that disrupting either pathway compromised HT's protective effects. Maintaining redox balance through Nrf2 and mitophagy is important for eliminating excess ROS. Nrf2 increases antioxidant enzymes to clear existing ROS, while mitophagy removes damaged mitochondria and reduces ROS generation. This study demonstrates that these pathways collaboratively modulate the antioxidant effects of HT, with neither being dispensable. Targeting Nrf2 and mitophagy could be a promising strategy for treating oxidative stress-related intestinal diseases, with HT as a potential treatment.


Asunto(s)
Mitofagia , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Alcohol Feniletílico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Transducción de Señal , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Mitofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Porcinos , Antioxidantes/farmacología , Intestinos/efectos de los fármacos , Línea Celular
6.
Ecotoxicol Environ Saf ; 285: 117029, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277998

RESUMEN

The increase of oxidative stress level is one of the vital mechanisms of liver toxicity induced by arsenic (As). Ellagic acid (EA) is widely known due to its excellent antioxidation. Nevertheless, whether EA could alleviate As-induced oxidative stress and the underlying mechanisms remain unknown. Herein, As (2 and 4 µM) and EA (25 and 50 µM) were selected for alone and combined exposure of HepG2 cells to investigate the effects of EA on As-induced oxidative stress. Results indicated that EA could alleviate the oxidative stress caused by As via decreasing intracellular ROS level and MDA content, as well as improving SOD, CAT and GSH-PX activities. qRT-PCR showed that EA might enhance the expression levels of antioxidant enzymes NQO1, CAT and GPX1 by activating MAPK (JNK, p38 and ERK)/keap1-Nrf2 signaling pathway. EA was found to promote dissociation from keap1 and nuclear translocation of Nrf2 by competing with Nrf2 at ARG-380 and ARG-415 sites on keap1 to exert antioxidation using molecular docking. Moreover, metabolomics revealed that EA might maintain the redox balance of HepG2 cells by modulating or reversing disorders of carbon, amino acid, lipid and other metabolisms caused by As. This study provides diversified new insights for the removal of liver toxicity of As and the application of EA.

7.
Chem Biol Drug Des ; 104(3): e14621, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39251393

RESUMEN

Fucoxanthin (Fx), a xanthophyll carotenoid abundant in brown algae, possesses several biological functions, such as antioxidant, anti-inflammatory, and cardiac-protective activities. However, the role of Fx in myocardial ischemia/reperfusion (MI/R) is still unclear. Thus, the aim of this study was to investigate the effect of Fx on MI/R-induced injury and explore the underlying mechanisms. Our results showed that in vitro, Fx treatment significantly suppressed inflammatory response, oxidative stress, and apoptosis in rat cardiomyocytes exposed to hypoxia/reoxygenation (H/R). In addition, Fx led to increased phosphorylation of AMPK, AKT, and GSK-3ß, and enhanced activation of Nrf2 in cardiomyocytes under H/R conditions. Notably, pretreatment with Compound C (AMPK inhibitor), partially reduced the beneficial effects of Fx in cardiomyocytes exposed to H/R. In vivo, Fx ameliorated myocardial damage, inhibited inflammatory response, oxidative stress, and apoptosis, and activated the AMPK/GSK-3ß/Nrf2 signaling in myocardial tissues in MI/R rat model. Taken together, these findings indicated that Fx attenuates MI/R-induced injury by inhibiting oxidative stress, inflammatory response, and apoptosis. The AMPK/GSK-3ß/Nrf2 pathway is involved in the cardioprotective effect of Fx in MI/R injury. Thus, Fx may be a promising drug for the treatment of MI/R.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Apoptosis , Glucógeno Sintasa Quinasa 3 beta , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Transducción de Señal , Xantófilas , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Xantófilas/farmacología , Xantófilas/química
8.
J Nanobiotechnology ; 22(1): 493, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160590

RESUMEN

This study investigated the mechanism of the extracellular matrix-mimicking hydrogel-mediated TGFB1/Nrf2 signaling pathway in osteoarthritis using bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exos). A GMOCS-Exos hydrogel was synthesized and evaluated for its impact on chondrocyte viability and neutrophil extracellular traps (NETs) formation. In an OA rat model, GMOCS-Exos promoted cartilage regeneration and inhibited NETs formation. Transcriptome sequencing identified TGFB1 as a key gene, with GMOCS-Exos activating Nrf2 signaling through TGFB1. Depletion of TGFB1 hindered the cartilage-protective effect of GMOCS-Exos. This study sheds light on a promising therapeutic strategy for osteoarthritis through GMOCS-Exos-mediated TGFB1/Nrf2 pathway modulation.


Asunto(s)
Condrocitos , Exosomas , Hidrogeles , Células Madre Mesenquimatosas , Osteoartritis , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1 , Animales , Osteoartritis/terapia , Células Madre Mesenquimatosas/metabolismo , Ratas , Hidrogeles/química , Factor de Crecimiento Transformador beta1/metabolismo , Condrocitos/metabolismo , Exosomas/metabolismo , Masculino , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Trampas Extracelulares/metabolismo , Modelos Animales de Enfermedad , Humanos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas
9.
Cytotechnology ; 76(5): 519-531, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39188649

RESUMEN

Nephrolithiasis is a common urological disease accompanied by high morbidity worldwide. Evidences indicate that high-level CaOx crystals in the body can lead to renal tubular epithelial cell (RTEC) injury and RTEC injury is a critical precipitating factor for the formation of kidney stones. FGF21 has recently been revealed as the considerable marker in various kidney dysfunction and exerts the nephroprotective effects in various kidney diseases. This current study was formulated to fully elucidate the biological role of FGF21 in nephrolithiasis and probe into the intrinsic mechanisms underlying the protective effects of FGF21 against RTEC injury. In this work, HK-2 cells were incubated with 100 mg/ml COM for 24 h to establish in vitro RTEC injury model. COM-treated HK-2 cells were transfected with Oe-FGF21 to perform gain-of-function experiments. For rescue experiments, HK-2 cells were pretreated with 10 µM Nrf2 inhibitor ML385 for 24 h to thoroughly discuss the role of Nrf2 signaling in FGF21-mediating nephroprotective effects. It was verified that overexpression of FGF21 relieved COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs. ML385 treatment partially abolished the protective effects of FGF21 against COM injury in RTECs. In conclusion, up-regulation of FGF21 can relieve COM-induced proliferation inhibition, cell injury, apoptosis, oxidative damage and ferroptosis of RTECs through activating Nrf2 signaling pathway.

10.
J Sci Food Agric ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189446

RESUMEN

BACKGROUND: Deer oil (DO), a byproduct of deer meat processing, possesses high nutritional value. This study aims to evaluate the protective effects of DO on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to explore its potential mechanisms of action. RESULTS: DO was found to inhibit weight loss and colon shortening in colitis mice, significantly reduce disease activity index scores, and notably enhance the levels of tight junction proteins in colon tissues, thus improving intestinal barrier function. ELISA results indicated that DO markedly alleviated the mice's oxidative stress and inflammatory responses. Western blot analysis further demonstrated that DO significantly inhibited the phosphorylation of NF-κB while up-regulating the expression levels of Nrf2 and HO-1 proteins. Additionally, DO increased the abundance of beneficial bacteria such as Odoribacter, Blautia, and Muribaculum, reduced the abundance of harmful bacteria such as Bacteroides, Helicobacter, and Escherichia-Shigella, and promoted the production of short-chain fatty acids. CONCLUSION: Our study provides the first evidence that DO can effectively improve DSS-induced UC in mice. The underlying mechanisms may involve maintaining intestinal barrier function, inhibiting inflammation, alleviating oxidative stress, and modulation of gut microbiota. These findings offer valuable insights for developing DO as an adjunct treatment for UC and as a functional food. © 2024 Society of Chemical Industry.

11.
Genes (Basel) ; 15(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39202453

RESUMEN

Nuclear lamins, a type V intermediate filament, are crucial components of the nuclear envelope's inner layer, maintaining nuclear integrity and mediating interactions between the nucleus and cytoplasm. Research on human iPSC-derived cells and animal models has demonstrated the importance of lamins in cardiac and skeletal muscle development and function. Mutations in lamins result in laminopathies, a group of diseases including muscular dystrophies, Hutchison-Gilford progeria syndrome, and cardiomyopathies with conduction defects. These conditions have been linked to disrupted autophagy, mTOR, Nrf2-Keap, and proteostasis signaling pathways, indicating complex interactions between the nucleus and cytoplasm. Despite progress in understanding these pathways, many questions remain about the mechanisms driving lamin-induced pathologies, leading to limited therapeutic options. This review examines the current literature on dysregulated pathways in cardiac and skeletal muscle laminopathies and explores potential therapeutic strategies for these conditions.


Asunto(s)
Laminopatías , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Laminopatías/genética , Laminopatías/patología , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Mutación , Transducción de Señal/genética , Laminas/genética , Laminas/metabolismo
12.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39204185

RESUMEN

Histone deacetylase inhibitors (HDACi) show high antineoplastic potential in preclinical studies in various solid tumors, including gastric carcinoma; however, their use in clinical studies has not yet yielded convincing efficacies. Thus, further studies on cellular/molecular effects of HDACi are needed, for improving clinical efficacy and identifying suitable combination partners. Here, we investigated the role of oxidative stress in gastric cancer cells upon treatment with HDACi. A particular focus was laid on the role of the Nrf2 pathway, which can mediate resistance to cell-inhibitory effects of reactive oxidative species (ROS). Using fluorescence-based ROS sensors, oxidative stress was measured in human gastric cancer cell lines. Activation of the Nrf2 pathway was monitored in luciferase reporter assays as well as by mRNA and proteomic expression analyses of Nrf2 regulators and Nrf2-induced genes. Furthermore, the effects of ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2-knockdown on HDACi-dependent antiproliferative effects were investigated in colorimetric formazan-based and clonogenic survival assays. HDACi treatment led to increased oxidative stress levels and consequently, treatment with NAC reduced cytotoxicity of HDACi. In addition, vorinostat treatment stimulated expression of a luciferase reporter under the control of an antioxidative response element, indicating activation of the Nrf2 system. This Nrf2 activation was only partially reversible by treatment with NAC, suggesting ROS independent pathways to contribute to HDACi-promoted Nrf2 activation. In line with its cytoprotective role, Nrf2 knockdown led to a sensitization against HDACi. Accordingly, the expression of antioxidant and detoxifying Nrf2 target genes was upregulated upon HDACi treatment. In conclusion, oxidative stress induction upon HDAC inhibition contributes to the antitumor effects of HDAC inhibitors, and activation of Nrf2 represents a potentially important adaptive response of gastric cancer cells in this context.

13.
Int J Biol Macromol ; 279(Pt 3): 134815, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39154690

RESUMEN

Oxidative stress plays an important role in various diseases. miR-221 has been reported to regulate oxidative stress. However, the mechanism of miR-221 in regulating oxidative stress induced by sCPPS5 remains unclear. This study aimed to investigate the protective effects and mechanisms of miR-221 on oxidative stress induced by sCPPS5. The expression of SOD, CAT, MDA, LDH, MMP, caspase-3 activity and apoptosis were measured. In addition, the key signaling factors in the Keap1-Nrf2-ARE signaling pathway were determined by real-time PCR and Western blot. Mice were employed to evaluate the effects of sCPPS5 and the possible mechanism in vivo. sCPPS5 promoted the expression of SOD and CAT and activated Keap1-Nrf2-ARE signaling pathway inhibit the MDA content, MMP, caspase-3 activity, apoptosis and LDH release rate after transfection with miR-221 mimics and inhibitors. Consistently, sCPPS5 has the potential to enhance the expression of antioxidant enzymes as well as upregulate mRNA expression of crucial signal proteins in vivo. miR-221 on oxidative stress protection induced by sCPPS5 possibly through regulating the Keap1-Nrf2-ARE signaling pathway in macrophages.

14.
Anim Biosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39210798

RESUMEN

Objective: This study aims to verify the protective effect of the Kelch-like ECH-associated protein1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways by studying the effect of plasmids containing Nrf2-small hairpin RNA (shRNA) interference down-regulation of Nrf2 on zearalenone (ZEA) -induced intestinal porcine epithelial cells (IPEC-J2) oxidative stress. Methods: We constructed an IPEC-J2 model that interferes with Nrf2 expression, set blank (Control), negative control group (Sh-control), positive control group (Sh-Nrf2), and added 10, 20, and 40 µmol/L ZEA experimental group (Sh-Nrf2+ZEA10, Sh-Nrf2+ZEA20, and Sh-Nrf2+ZEA40). Results: The study results showed that, compared with the Sh-Nrf2 group, ZEA significantly increased the apoptosis rate of IPEC-J2 in a time- and dose-dependent manner. Compared with the Sh-Nrf2 group, the activities of T-SOD and GSH-PX and relative expressions of Keap1 at mRNA and protein level in the Sh-Nrf2+ZEA20 and Sh-Nrf2+ZEA40 groups were significantly reduced, the MDA level, and the fluorescence intensity around and within the nucleus of ROS and Nrf2, and the relative expressions of Nrf2, Nqo1, and Ho1 at mRNA and protein level significantly increased. Conclusion: These results further prove that interfering with the expression of Nrf2 in IPEC-J2 cells affected the activation of the Keap1-Nrf2 signaling pathway and reduced the ability of cells to resist ZEA-induced oxidative stress. Therefore, the Keap1-Nrf2 signaling pathway had an important protective effect in ZEA-induced intestinal oxidative stress.

15.
Redox Biol ; 75: 103290, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39088892

RESUMEN

Cobalt (Co) and Nickel (Ni) are used nowadays in various industrial applications like lithium-ion batteries, raising concerns about their environmental release and public health threats. Both metals are potentially carcinogenic and may cause neurological and cardiovascular dysfunctions, though underlying toxicity mechanisms have to be further elucidated. This study employs untargeted transcriptomics to analyze downstream cellular effects of individual and combined Co and Ni toxicity in human liver carcinoma cells (HepG2). The results reveal a synergistic effect of Co and Ni, leading to significantly higher number of differentially expressed genes (DEGs) compared to individual exposure. There was a clear enrichment of Nrf2 regulated genes linked to pathways such as glycolysis, iron and glutathione metabolism, and sphingolipid metabolism, confirmed by targeted analysis. Co and Ni exposure alone and combined caused nuclear Nrf2 translocation, while only combined exposure significantly affects iron and glutathione metabolism, evidenced by upregulation of HMOX-1 and iron storage protein FTL. Both metals impact sphingolipid metabolism, increasing dihydroceramide levels and decreasing ceramides, sphingosine and lactosylceramides, along with diacylglycerol accumulation. By combining transcriptomics and analytical methods, this study provides valuable insights into molecular mechanisms of Co and Ni toxicity, paving the way for further understanding of metal stress.


Asunto(s)
Cobalto , Neoplasias Hepáticas , Factor 2 Relacionado con NF-E2 , Níquel , Transcriptoma , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Níquel/toxicidad , Cobalto/toxicidad , Transcriptoma/efectos de los fármacos , Células Hep G2 , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Perfilación de la Expresión Génica , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
16.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106861

RESUMEN

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Asunto(s)
Diferenciación Celular , Mitocondrias , Células Madre Embrionarias de Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Vía de Señalización Wnt , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Histonas/metabolismo , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo
17.
FASEB J ; 38(13): e23794, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38967258

RESUMEN

Obesity is often associated with low-grade inflammation. The incidence of obesity has increased annually worldwide, which seriously affects human health. A previous study indicated that long noncoding RNA SNHG12 was downregulated in obesity. Nevertheless, the role of SNHG12 in obesity remains to be elucidated. In this study, qRT-PCR, western blot, and ELISA were utilized to examine the gene and protein expression. Flow cytometry was employed to investigate the M2 macrophage markers. RNA pull-down assay and RIP were utilized to confirm the interactions of SNHG12, hnRNPA1, and HDAC9. Eventually, a high-fat diet-fed mouse model was established for in vivo studies. SNHG12 overexpression suppressed adipocyte inflammation and insulin resistance and promoted M2 polarization of macrophages that was caused by TNF-α treatment. SNHG12 interacted with hnRNPA1 to downregulate HDAC9 expression, which activated the Nrf2 signaling pathway. HDAC9 overexpression reversed the effect of SNHG12 overexpression on inflammatory response, insulin resistance, and M2 phenotype polarization. Overexpression of SNHG12 improved high-fat diet-fed mouse tissue inflammation. This study revealed the protective effect of SNHG12 against adipocyte inflammation and insulin resistance. This result further provides a new therapeutic target for preventing inflammation and insulin resistance in obesity.


Asunto(s)
Adipocitos , Dieta Alta en Grasa , Histona Desacetilasas , Inflamación , Resistencia a la Insulina , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Obesidad , ARN Largo no Codificante , Proteínas Represoras , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Inflamación/metabolismo , Inflamación/genética , Adipocitos/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Dieta Alta en Grasa/efectos adversos , Masculino , Obesidad/metabolismo , Obesidad/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Macrófagos/metabolismo
18.
Mol Biol Rep ; 51(1): 809, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001962

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) functions as a central regulator in modulating the activities of diverse antioxidant enzymes, maintaining cellular redox balance, and responding to oxidative stress (OS). Kelch-like ECH-associated protein 1 (Keap1) serves as a principal negative modulator in controlling the expression of detoxification and antioxidant genes. It is widely accepted that OS plays a pivotal role in the pathogenesis of various diseases. When OS occurs, leading to inflammatory infiltration of neutrophils, increased secretion of proteases, and the generation of large quantities of reactive oxygen radicals (ROS). These ROS can oxidize or disrupt DNA, lipids, and proteins either directly or indirectly. They also cause gene mutations, lipid peroxidation, and protein denaturation, all of which can result in disease. The Keap1-Nrf2 signaling pathway regulates the balance between oxidants and antioxidants in vivo, maintains the stability of the intracellular environment, and promotes cell growth and repair. However, the antioxidant properties of the Keap1-Nrf2 signaling pathway are reduced in disease. This review overviews the mechanisms of OS generation, the biological properties of Keap1-Nrf2, and the regulatory role of its pathway in health and disease, to explore therapeutic strategies for the Keap1-Nrf2 signaling pathway in different diseases.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Especies Reactivas de Oxígeno , Transducción de Señal , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción
19.
Funct Integr Genomics ; 24(4): 126, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012393

RESUMEN

Colorectal cancer (CRC) is a prevalent malignancy affecting the human digestive tract. Triptonide has been shown to have some anticancer activity, but its effect in CRC is vague. Herein, we examined the effect of triptonide on CRC. In this study, the results of bioinformatics analysis displayed that triptonide may regulate ferroptosis in CRC by modulating GPX4 and SLC7A11. In HCT116 and LoVo cells, the expression levels of GPX4 and SLC7A11 were significantly reduced after triptonide management versus the control group. Triptonide inhibited proliferation, but promoted ferroptosis in CRC cells. SLC7A11 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide inhibited activation of the PI3K/AKT/Nrf2 signaling in CRC cells. Activation of the PI3K/AKT signaling or Nrf2 upregulation overturned the effects of triptonide on proliferation and ferroptosis in CRC cells. Triptonide suppressed CRC cell growth in vivo by modulating SLC7A11 and GPX4. In conclusion, Triptonide repressed proliferation and facilitated ferroptosis of CRC cells by repressing the SLC7A11/GPX4 axis through inactivation of the PI3K/AKT/Nrf2 signaling.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Proliferación Celular , Neoplasias Colorrectales , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Transducción de Señal , Ferroptosis/efectos de los fármacos , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Línea Celular Tumoral , Células HCT116 , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
20.
Biomed Pharmacother ; 177: 117094, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996707

RESUMEN

The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.


Asunto(s)
Proliferación Celular , Ferroptosis , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Desnudos , Factor 2 Relacionado con NF-E2 , Osteosarcoma , Penfluridol , Transducción de Señal , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Osteosarcoma/metabolismo , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Línea Celular Tumoral , Penfluridol/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Neoplasias Óseas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Especies Reactivas de Oxígeno/metabolismo , Ratones , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA