Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
World J Gastroenterol ; 30(28): 3447-3451, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39091712

RESUMEN

The population with metabolic dysfunction-associated fatty liver disease (MAFLD) is increasingly common worldwide. Identification of people at risk of progression to advanced stages is necessary to timely offer interventions and appropriate care. Liver biopsy is currently considered the gold standard for the diagnosis and staging of MAFLD, but it has associated risks and limitations. This has spurred the exploration of non-invasive diagnostics for MAFLD, especially for steatohepatitis and fibrosis. These non-invasive approaches mostly include biomarkers and algorithms derived from anthropometric measurements, serum tests, imaging or stool metagenome profiling. However, they still need rigorous and widespread clinical validation for the diagnostic performance.


Asunto(s)
Biomarcadores , Hígado , Enfermedad del Hígado Graso no Alcohólico , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Biomarcadores/metabolismo , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/patología , Hígado/metabolismo , Biopsia , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Progresión de la Enfermedad , Heces/química , Algoritmos , Microbioma Gastrointestinal , Metagenoma
3.
BMC Prim Care ; 25(1): 265, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033284

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly referred to as nonalcoholic fatty liver disease, impacts 30% of the global population. This educational pilot focused on the role primary care providers may play in the delivery of guidelines-based metabolic dysfunction-associated steatohepatitis (MASH) care. OBJECTIVE: Accelerate the application of guidelines-based MASH care pathways to clinical workflows. METHODS: A panel of six hepatologists was convened in 2021 to develop the care pathway and the subsequent pilot occurred between 2022 - 2023. The pilot was conducted across three U.S. health systems: Boston Medical Center (Boston), Methodist Health System (Dallas), and Weill Cornell Medicine (New York). Clinicians were educated on the care pathway and completed baseline/follow-up assessments. 19 primary care clinicians participated in the educational pilot baseline assessment, nine primary care clinicians completed the two-month assessment, and 15 primary care clinicians completed the four-month assessment. The primary endpoint was to assess clinician-reported adherence to and satisfaction with the care pathway. The pilot was deemed exempt by the Western Consensus Group Institutional Review Board. RESULTS: At baseline, 38.10% (n = 8) of respondents felt they had received sufficient training on when to refer a patient suspected of metabolic dysfunction-associated liver disease to hepatology, and 42.86% (n = 9) had not referred any patients suspected of metabolic dysfunction-associated liver disease to hepatology within a month. At four months post-intervention, 79% (n = 15) of respondents agreed or strongly agreed they received sufficient training on when to refer a patient suspected of metabolic dysfunction-associated liver disease to hepatology, and there was a 25.7% increase in self-reported adherence to the institution's referral guidelines. Barriers to care pathway adherence included burden of manually calculating fibrosis-4 scores and difficulty ordering non-invasive diagnostics. CONCLUSIONS: With therapeutics anticipated to enter the market this year, health systems leadership must consider opportunities to streamline the identification, referral, and management of patients with metabolic dysfunction-associated steatohepatitis. Electronic integration of metabolic dysfunction-associated steatohepatitis care pathways may address implementation challenges.


Asunto(s)
Vías Clínicas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Proyectos Piloto , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Atención Primaria de Salud , Adhesión a Directriz , Consenso , Masculino , Femenino , Guías de Práctica Clínica como Asunto
4.
Diagn Microbiol Infect Dis ; 110(1): 116404, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896889

RESUMEN

BACKGROUND: Common biologic samples used to diagnose COVID-19 include nasopharyngeal, nasal, or oropharyngeal swabs, and salivary samples. The performance characteristics of a sucked "lollipop" swab to detect SARS-CoV-2 virus is assessed in four small sub-studies. METHODS: In each sub-study, a flocked swab was sucked for 20 s and submitted for PCR detection of SARS-CoV-2 virus. RESULTS: Across all studies, 52 of 69 (75.4%) COVID-19 positive participants had positive "lollipop" swabs. Twelve of the 17 COVID-19 positive participants with negative "lollipop" swabs had known corresponding cycle threshold values of >37 from their nasal/nasopharyngeal swabs, an indication of low viral load at time of sampling. In a paired samples sub-study, the sensitivity and specificity of the "lollipop" swabs were 100% and 98%. CONCLUSIONS: "Lollipop" swabs performed satisfactorily especially in individuals with acute infection of COVID-19. "Lollipop" swabs are a simple method of sample collection for detecting SARS-CoV-2 virus and warrants additional consideration.


Asunto(s)
COVID-19 , Nasofaringe , SARS-CoV-2 , Sensibilidad y Especificidad , Manejo de Especímenes , Humanos , COVID-19/diagnóstico , COVID-19/virología , Manejo de Especímenes/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Nasofaringe/virología , Carga Viral/métodos , Masculino , Persona de Mediana Edad , Femenino , Adulto , Prueba de COVID-19/métodos , Orofaringe/virología , Anciano , Prueba de Ácido Nucleico para COVID-19/métodos
5.
Biomedicines ; 12(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38790968

RESUMEN

Although blood still remains the most commonly utilized medium to detect increased levels of oxidative damage induced by exercise, saliva diagnostics have gained increasing popularity due to their non-invasive nature and athlete-friendly collection process. Given that the contribution of various phases of the menstrual cycle to the levels of oxidative damage may differ, the aim of this study was to evaluate an agreement between salivary and plasmatic levels of lipid peroxidation products in female swimmers in both the follicular (F) and luteal (L) phases of the menstrual cycle at rest and following exercise. Twelve well-trained female swimmers aged 19.6 ± 1.1 years old were examined. We measured diene conjugates (DCs), triene conjugates (TCs), and Schiff bases (SBs) in lipids immediately after their extraction from both saliva and blood plasma. All female swimmers were studied two times each, in the two different phases of one menstrual cycle, before and after high-intensity interval exercise (HIIE). Salivary and plasmatic levels of DCs, TCs, and SBs significantly increased post-exercise compared to pre-exercise, in both the F and L phases. A high positive correlation was observed between the concentrations of DCs, TCs, and SBs in the saliva and blood plasma of participants in the F and L phases, both at rest and following HIIE. Ordinary least products regression analysis indicates that there was no proportional and differential bias in the data. The Bland-Altman method also declares that there was no differential bias, since the line of equality was within the 95% confidence interval of the mean difference between salivary and plasmatic levels of DCs, TCs, and SBs in female swimmers, in both the F and L phases, before and after HIIE. There was also no proportional bias in the Bland-Altman plots. Thus, this is the first study to report a high agreement between the quantifications of DCs, TCs, and SBs in the saliva and blood plasma of female swimmers in both the F and L phases, at rest and following HIIE.

6.
Sensors (Basel) ; 24(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794014

RESUMEN

Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.


Asunto(s)
Diagnóstico Precoz , Heces , Recien Nacido Prematuro , Sepsis , Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Heces/microbiología , Heces/química , Sepsis/diagnóstico , Sepsis/microbiología , Recién Nacido , Microbioma Gastrointestinal/fisiología
7.
J Clin Med ; 13(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731014

RESUMEN

This review aims to explore advancements in perioperative ischemic stroke risk estimation for asymptomatic patients with significant carotid artery stenosis, focusing on Circle of Willis (CoW) morphology based on the CTA or MR diagnostic imaging in the current preoperative diagnostic algorithm. Functional transcranial Doppler (fTCD), near-infrared spectroscopy (NIRS), and optical coherence tomography angiography (OCTA) are discussed in the context of evaluating cerebrovascular reserve capacity and collateral vascular systems, particularly the CoW. These non-invasive diagnostic tools provide additional valuable insights into the cerebral perfusion status. They support biomedical modeling as the gold standard for the prediction of the potential impact of carotid artery stenosis on the hemodynamic changes of cerebral perfusion. Intraoperative risk assessment strategies, including selective shunting, are explored with a focus on CoW variations and their implications for perioperative ischemic stroke and cognitive function decline. By synthesizing these insights, this review underscores the potential of non-invasive diagnostic methods to support clinical decision making and improve asymptomatic patient outcomes by reducing the risk of perioperative ischemic neurological events and preventing further cognitive decline.

8.
Exp Eye Res ; 243: 109913, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679225

RESUMEN

In recent times, tear fluid analysis has garnered considerable attention in the field of biomarker-based diagnostics due to its noninvasive sample collection method. Tears encompass a reservoir of biomarkers that assist in diagnosing not only ocular disorders but also a diverse list of systemic diseases. This highlights the necessity for sensitive and dependable screening methods to employ tear fluid as a potential noninvasive diagnostic specimen in clinical environments. Considerable research has been conducted to investigate the potential of Raman spectroscopy-based investigations for tear analysis in various diagnostic applications. Raman Spectroscopy (RS) is a highly sensitive and label free spectroscopic technique which aids in investigating the molecular structure of samples by evaluating the vibrational frequencies of molecular bonds. Due to the distinct chemical compositions of different samples, it is possible to obtain a sample-specific spectral fingerprint. The distinctive spectral fingerprints obtained from Raman spectroscopy enable researchers to identify specific compounds or functional groups present in a sample, aiding in diverse biomedical applications. Its sensitivity to changes in molecular structure or environment provides invaluable insights into subtle alterations associated with various diseases. Thus, Raman Spectroscopy has the potential to assist in diagnosis and treatment as well as prognostic evaluation. Raman spectroscopy possesses several advantages, such as the non-destructive examination of samples, remarkable sensitivity to structural variations, minimal prerequisites for sample preparation, negligible interference from water, and the aptness for real-time investigation of tear samples. The purpose of this review is to highlight the potential of Raman spectroscopic technique in facilitating the clinical diagnosis of various ophthalmic and systemic disorders through non-invasive tear analysis. Additionally, the review delves into the advancements made in Raman spectroscopy with regards to paper-based sensing substrates and tear analysis methods integrated into contact lenses. Furthermore, the review also addresses the obstacles and future possibilities associated with implementing Raman spectroscopy as a routine diagnostic tool based on tear analysis in clinical settings.


Asunto(s)
Espectrometría Raman , Lágrimas , Espectrometría Raman/métodos , Lágrimas/química , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Oftalmopatías/diagnóstico , Técnicas de Diagnóstico Oftalmológico
9.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672514

RESUMEN

Circulating cell-free DNA (cfDNA) refers to small fragments of DNA molecules released after programmed cell death and necrosis in several body fluids such as blood, saliva, urine, and cerebrospinal fluid. The discovery of cfDNA has revolutionized the field of non-invasive diagnostics in the oncologic field, in prenatal testing, and in organ transplantation. Despite the potential of cfDNA and the solid results published in the recent literature, several challenges remain, represented by a low abundance, a need for highly sensitive assays, and analytical issues. In this review, the main technical advances in cfDNA analysis are presented and discussed, with a comprehensive examination of the current available methodologies applied in each field. Considering the potential advantages of cfDNA, this biomarker is increasing its consensus among clinicians, as it allows us to monitor patients' conditions in an easy and non-invasive way, offering a more personalized care. Nevertheless, cfDNA analysis is still considered a diagnostic marker to be further validated, and very few centers are implementing its analysis in routine diagnostics. As technical improvements are enhancing the performances of cfDNA analysis, its application will transversally improve patients' quality of life.


Asunto(s)
Ácidos Nucleicos Libres de Células , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/sangre , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo
10.
Biosens Bioelectron ; 254: 116218, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518559

RESUMEN

Biodetection for non-invasive diagnostics of fluids, especially urine, remains a challenge to scientists due to low target concentrations. And biological complexes of the detection target may contain contaminants that also interfere with any assay. Dengue non-structural 1 protein (Dengue NS1) is an important biomarker for dengue hemorrhagic fever and dengue shock syndrome. Here, we developed an Au-decorated nanowire platform and applied it with a sandwich fluorophore-linked immunosorbent well plate assay (FLISA) to detect Dengue NS1 in urine. For the platform, we fabricated zinc oxide (ZnO) nanowires to provide a high surface area and then coated them with gold nanoparticles (ZnO/Au nanowires) to simply modify the Dengue NS1 antibody and enhance the fluorescence intensity. Our platform employs a sandwich FLISA that exhibits high sensitivity, specifically detecting Dengue NS1 with a limit of detection (LOD) of 1.35 pg/mL. This LOD was 4500-fold lower than the LOD of a commercially available kit for Dengue NS1 enzyme-linked immunosorbent assay. We believe that our ZnO/Au nanowire platform has the potential to revolutionize the field of non-invasive diagnostics for dengue.


Asunto(s)
Técnicas Biosensibles , Virus del Dengue , Dengue , Nanopartículas del Metal , Nanocables , Óxido de Zinc , Humanos , Dengue/diagnóstico , Oro , Sensibilidad y Especificidad , Proteínas no Estructurales Virales , Antígenos Virales , Ensayo de Inmunoadsorción Enzimática , Inmunoadsorbentes , Anticuerpos Antivirales
11.
Mol Cancer ; 23(1): 28, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308296

RESUMEN

BACKGROUND: Current diagnostics for the detection of pancreato-biliary cancers (PBCs) need to be optimized. We therefore propose that methylated cell-free DNA (cfDNA) derived from non-invasive liquid biopsies serves as a novel biomarker with the ability to discriminate pancreato-biliary cancers from non-cancer pancreatitis patients. METHODS: Differentially methylated regions (DMRs) from plasma cfDNA between PBCs, pancreatitis and clinical control samples conditions were identified by next-generation sequencing after enrichment using methyl-binding domains and database searches to generate a discriminatory panel for a hybridization and capture assay with subsequent targeted high throughput sequencing. RESULTS: The hybridization and capture panel, covering around 74 kb in total, was applied to sequence a cohort of 25 PBCs, 25 pancreatitis patients, 25 clinical controls, and seven cases of Intraductal Papillary Mucinous Neoplasia (IPMN). An unbiased machine learning approach identified the 50 most discriminatory methylation markers for the discrimination of PBC from pancreatitis and controls resulting in an AUROC of 0.85 and 0.88 for a training (n = 45) and a validation (n = 37) data set, respectively. The panel was also able to distinguish high grade from low grade IPMN samples. CONCLUSIONS: We present a proof of concept for a methylation biomarker panel with better performance and improved discriminatory power than the current clinical marker CA19-9 for the discrimination of pancreato-biliary cancers from non-cancerous pancreatitis patients and clinical controls. This workflow might be used in future diagnostics for the detection of precancerous lesions, e.g. the identification of high grade IPMNs vs. low grade IPMNs.


Asunto(s)
Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Intraductales Pancreáticas , Neoplasias Pancreáticas , Pancreatitis , Humanos , Biomarcadores de Tumor/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis/diagnóstico , Pancreatitis/genética , Biopsia Líquida , Carcinoma Ductal Pancreático/patología
12.
J Dtsch Dermatol Ges ; 22(3): 367-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279541

RESUMEN

BACKGROUND AND OBJECTIVES: Onychomycosis is common and important to distinguish from other nail diseases. Rapid and accurate diagnosis is necessary for optimal patient treatment and outcome. Non-invasive diagnostic tools have increasing potential for nail diseases including onychomycosis. This study evaluated line-field confocal optical coherence tomography (LC-OCT) as a rapid non-invasive tool for diagnosing onychomycosis as compared to confocal laser scanning microscopy (CLSM), optical coherence tomography (OCT), and conventional methods. PATIENTS AND METHODS: In this prospective study 86 patients with clinically suspected onychomycosis and 14 controls were examined using LC-OCT, OCT, and CLSM. KOH-preparation, fungal culture, PCR, and histopathology were used as comparative conventional methods. RESULTS: LC-OCT had the highest sensitivity and negative predictive value of all methods used, closely followed by PCR and OCT. Specificity and positive predictive value of LC-OCT were as high as with CLSM, while OCT scored much lower. The gold standard technique, fungal culture, showed the lowest sensitivity and negative predictive value. Only PCR and culture allowed species differentiation. CONCLUSIONS: LC-OCT enables quick and non-invasive detection of onychomycosis, with advantages over CLSM and OCT, and similar diagnostic accuracy to PCR but lacking species differentiation. For accurate nail examination, LC-OCT requires well-trained and experienced operators.


Asunto(s)
Enfermedades de la Uña , Onicomicosis , Humanos , Onicomicosis/diagnóstico , Tomografía de Coherencia Óptica/métodos , Estudios Prospectivos , Uñas/diagnóstico por imagen , Uñas/patología , Microscopía Confocal
13.
J. appl. oral sci ; 32: e20240031, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1569297

RESUMEN

Abstract This study aimed to assess the influence of smoking on the subgingival metatranscriptomic profile of young patients affected by stage III/IV and generalized periodontal disease. Methodology In total, six young patients, both smokers and non-smokers (n=3/group), who were affected by periodontitis were chosen. The STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for case-control reporting were followed. Periodontal clinical measurements and subgingival biofilm samples were collected. RNA was extracted from the biofilm and sequenced via Illumina HiSeq. Differential expression analysis used Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and differentially expressed genes were identified using the Sleuth package in R, with a statistical cutoff of ≤0.05. Results This study found 3351 KEGGs in the subgingival biofilm of both groups. Smoking habits altered the functional behavior of subgingival biofilm, resulting in 304 differentially expressed KEGGs between groups. Moreover, seven pathways were modulated: glycan degradation, galactose metabolism, glycosaminoglycan degradation, oxidative phosphorylation, peptidoglycan biosynthesis, butanoate metabolism, and glycosphingolipid biosynthesis. Smoking also altered antibiotic resistance gene levels in subgingival biofilm by significantly overexpressing genes related to beta-lactamase, permeability, antibiotic efflux pumps, and antibiotic-resistant synthetases. Conclusion Due to the limitations of a small sample size, our data suggest that smoking may influence the functional behavior of subgingival biofilm, modifying pathways that negatively impact the behavior of subgingival biofilm, which may lead to a more virulent community.

14.
Front Pediatr ; 11: 1151000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38078332

RESUMEN

Introduction: Early diagnosis of infections and sepsis is essential as adequate therapy improves the outcome. Unfortunately, current diagnostics are invasive and time-consuming, making diagnosis difficult, especially in neonatology. Novel non-invasive analytical methods might be suitable to detect an infection at an early stage and might even allow identification of the pathogen. Our aim is to identify specific profiles of volatile organic compounds (VOCs) of bacterial species. Methods: Using multicapillary column-coupled ion mobility spectrometry (MCC/IMS), we performed headspace measurements of bacterial cultures from skin and anal swabs of premature infants obtained during weekly screening for bacterial colonization according to KRINKO. We analyzed 25 Klebsiella pneumoniae (KP) cultures on MacConkey (MC) agar plates, 25 Klebsiella oxytoca (KO) cultures on MC agar and 25 bare MC agar plates as a control group. Results: Using MCC/IMS, we identified a total of 159 VOC peaks. 85 peaks allowed discriminating KP and bare MC agar plates, and 51 peaks comparing KO and bare MC agar plates and 6 peaks between KP and KO (significance level of p < 0.05 after Bonferroni post hoc analysis), respectively. Peaks P51 (n-Decane) and P158 (Phenylethyl Alcohol), showed the best sensitivity/specificity/ positive predictive value/negative predictive value of 99.9% each (p < 0.001) for KP. P158 showed the best sensitivity/specificity/positive predictive value/negative predictive value of 99.9% each (p < 0.001) for KO. Comparing KP and KO, best differentiation was enabled using peaks P72, P97 and P16 with sensitivity/specificity/positive predictive value/negative predictive value of 76.0%, 84.0%, 82.6%, 77.8%, respectively (p < 0.05). Discussion: We developed a method for the analysis of VOC profiles of bacteria. Using MCC/IMS, we demonstrated that VOCs derived from bacteria are clearly distinguishable from a bare agar plate. Characteristic peaks obtained by MCC/IMS are particularly suitable for the species-specific identification and differentiation of KP and KO. Thus, MCC/IMS might be a useful tool for in vitro diagnostics. Future studies must clarify whether similar patterns of VOCs can be detected in vivo in patients that are colonized or infected with KP or KO to enable rapid and accurate diagnosis of bacterial colonization.

16.
Cureus ; 15(10): e46946, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38021670

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) has emerged as a global epidemic intricately linked to the rising tide of obesity and metabolic syndrome. This comprehensive review delves into the complex web of relationships between NAFLD, liver fibrosis, and subclinical atherosclerosis, shedding light on their interplay, shared risk factors, and clinical implications. NAFLD encompasses a spectrum of liver conditions, from the benign non-alcoholic fatty liver (NAFL) to the more severe non-alcoholic steatohepatitis (NASH), characterized by inflammation and hepatocellular injury. Central to the discussion is the insidious development of liver fibrosis, the ominous harbinger of progressive liver damage, cirrhosis, and hepatocellular carcinoma. The increasing prevalence of NAFLD, now affecting a quarter of the global population, poses a significant public health challenge. Its association with obesity, insulin resistance, and metabolic syndrome highlights the multifactorial nature of this disease. However, NAFLD's repercussions extend beyond the liver. This review unveils a potent connection between NAFLD and subclinical atherosclerosis, the early precursor to cardiovascular disease. Individuals with NAFLD face an elevated risk of atherosclerosis, even without traditional cardiovascular risk factors. The intricate link between these two conditions is illuminated through shared pathophysiological pathways, including systemic inflammation, insulin resistance, and dyslipidemia. Understanding the interplay between liver fibrosis and subclinical atherosclerosis has profound clinical implications. Patients with advanced fibrosis or cirrhosis are not only at risk of liver-related complications but also of cardiovascular events. This necessitates a holistic approach to patient care, with lifestyle modifications and pharmacological interventions simultaneously managing both conditions. Physicians must prioritize early detection and collaborate across disciplines to provide comprehensive care. Looking ahead, the future holds promising avenues of research. Emerging areas include genetics and precision medicine, microbiome research, and epigenetics, which may unveil new therapeutic targets. Innovations in diagnostics and therapeutics, such as non-invasive biomarkers and combination therapies, offer hope for more effective management. Long-term outcomes and survivorship research will provide insights into the lasting impact of interventions. In conclusion, this review underscores the imperative of addressing liver fibrosis and atherosclerosis in the context of NAFLD. It is a call to action for healthcare professionals, researchers, and policymakers to work collaboratively, promote early detection, and advance our understanding of these interconnected conditions. By doing so, we can enhance patient outcomes and chart a course toward a healthier future for those grappling with NAFLD and its intricate web of consequences.

17.
Life (Basel) ; 13(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37895425

RESUMEN

Coronary heart disease (CHD) and atrial fibrillation (AF) pose significant health risks and require accurate diagnostic tools to assess the severity and progression of the diseases. Traditional diagnostic methods have limitations in providing detailed information about blood flow characteristics, particularly in the microcirculation. This study's objective was to examine and compare the microcirculation in both healthy volunteers and patient groups with CHD and AF. Furthermore, this study aimed to identify a relationship between blood microcirculation parameters and endothelial function. Digital capillaroscopy was employed to assess the microcirculation parameters, for example, such as capillary blood flow velocity, the size of red blood cell aggregates, and the number of aggregates per min and per running mm. The results indicate significant alterations in blood flow characteristics among patients with CHD and AF compared to healthy volunteers. For example, capillary blood flow velocity is statistically significantly decreased in the case of CHD and AF compared to the healthy volunteers (p < 0.001). Additionally, the correlation between the measured parameters is different for the studied groups of patients and healthy volunteers. These findings highlight the potential of digital capillaroscopy as a non-invasive tool for evaluating blood flow abnormalities (red blood cell aggregates and decreased capillary blood flow velocity) in cardiovascular diseases, aiding in early diagnosis and disease management.

18.
J Dtsch Dermatol Ges ; 21(11): 1359-1366, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37707430

RESUMEN

BACKGROUND AND OBJECTIVES: The histological PRO score (I-III) helps to assess the malignant potential of actinic keratoses (AK) by grading the dermal-epidermal junction (DEJ) undulation. Line-field confocal optical coherence tomography (LC-OCT) provides non-invasive real-time PRO score quantification. From LC-OCT imaging data, training of an artificial intelligence (AI), using Convolutional Neural Networks (CNNs) for automated PRO score quantification of AK in vivo may be achieved. PATIENTS AND METHODS: CNNs were trained to segment LC-OCT images of healthy skin and AK. PRO score models were developed in accordance with the histopathological gold standard and trained on a subset of 237 LC-OCT AK images and tested on 76 images, comparing AI-computed PRO score to the imaging experts' visual consensus. RESULTS: Significant agreement was found in 57/76 (75%) cases. AI-automated grading correlated best with the visual score for PRO II (84.8%) vs. PRO III (69.2%) vs. PRO I (66.6%). Misinterpretation occurred in 25% of the cases mostly due to shadowing of the DEJ and disruptive features such as hair follicles. CONCLUSIONS: The findings suggest that CNNs are helpful for automated PRO score quantification in LC-OCT images. This may provide the clinician with a feasible tool for PRO score assessment in the follow-up of AK.


Asunto(s)
Queratosis Actínica , Humanos , Queratosis Actínica/diagnóstico por imagen , Queratosis Actínica/patología , Inteligencia Artificial , Tomografía de Coherencia Óptica/métodos , Piel/patología , Redes Neurales de la Computación
20.
Noncoding RNA ; 9(5)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37736899

RESUMEN

Obesity is an important risk factor for cardiovascular disease and type 2 diabetes mellitus. Even a modest weight loss of 5-15% improves metabolic health, but circulating markers to indicate weight loss efficiency are lacking. MicroRNAs, small non-coding post-transcriptional regulators of gene expression, are secreted from tissues into the circulation and may be potential biomarkers for metabolic health. However, it is not known which specific microRNA species are reproducibly changed in levels by weight loss. In this study, we performed a systematic review and meta-analysis to investigate the microRNAs associated with weight loss by comparing baseline to follow-up levels following intervention-driven weight loss. This systematic review was performed according to the PRISMA guidelines with searches in PubMed and SCOPUS. The primary search resulted in a total of 697 articles, which were screened according to the prior established inclusion and exclusion criteria. Following the screening of articles, the review was based on the inclusion of 27 full-text articles, which were evaluated for quality and the risk of bias. We performed systematic data extraction, whereafter the relative values for miRNAs were calculated. A meta-analysis was performed for the miRNA species investigated in three or more studies: miR-26a, miR-126, and miR-223 were overall significantly increased following weight loss, while miR-142 was significantly decreased after weight loss. miR-221, miR-140, miR-122, and miR-146 were not significantly changed by intervention-driven weight loss. These results indicate that few miRNAs are significantly changed during weight loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA