Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 24(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205598

RESUMEN

With the rapid development of UAV technology, the research of optimal UAV formation tracking has been extensively studied. However, the high maneuverability and dynamic network topology of UAVs make formation tracking control much more difficult. In this paper, considering the highly dynamic features of uncertain time-varying leader velocity and network-induced delays, the optimal formation control algorithms for both near-equilibrium and general dynamic control cases are developed. First, the discrete-time error dynamics of UAV leader-follower models are analyzed. Next, a linear quadratic optimization problem is formulated with the objective of minimizing the errors between the desired and actual states consisting of velocity and position information of the follower. The optimal formation tracking problem of near-equilibrium cases is addressed by using a backward recursion method, and then the results are further extended to the general dynamic case where the leader moves at an uncertain time-varying velocity. Additionally, angle deviations are investigated, and it is proved that the similar state dynamics to the general case can be derived and the principle of control strategy design can be maintained. By using actual real-world data, numerical experiments verify the effectiveness of the proposed optimal UAV formation-tracking algorithm in both near-equilibrium and dynamic control cases in the presence of network-induced delays.

2.
Neural Netw ; 143: 413-424, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34246866

RESUMEN

This paper investigates the robust synchronization problem for a class of master-slave neural networks (MSNNs) subject to network-induced delays, unknown time-varying uncertainty, and exogenous disturbances. An equivalent-input-disturbance (EID) estimation technique is applied to compensate for the effects of unknown uncertainty and disturbances in the system output. In addition, to reduce the burden of the communication channel in the addressed MSNNs and improve the utilization of bandwidth an event-triggered control protocol is developed to obtain the synchronization of MSNNs. In particular, event-triggering conditions are verified periodically at every sampling instant in both sensors and actuators to avoid the Zeno behavior in the networks. By designing an appropriate low-pass filter in the EID estimator block, the accuracy of disturbance estimation performance is improved. Moreover, by concatenating the synchronization error, observer, and filter states as a single state vector, an augmented system is formulated. Then the tangible delay-dependent stability condition for that augmented system is established by employing the Lyapunov stability theory and reciprocally convex approach. Based on the feasible solutions of the derived stability conditions, the event-triggering parameters, controller, and observer gains are co-designed. Finally, two toy examples are given to illustrate the established theoretical findings.


Asunto(s)
Comunicación , Redes Neurales de la Computación , Factores de Tiempo , Incertidumbre
3.
ISA Trans ; 76: 57-66, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29576373

RESUMEN

This paper proposes an event-triggered control framework, called dual-stage periodic event-triggered control (DSPETC), which unifies periodic event-triggered control (PETC) and switching event-triggered control (SETC). Specifically, two period parameters h1 and h2 are introduced to characterize the new event-triggering rule, where h1 denotes the sampling period, while h2 denotes the monitoring period. By choosing some specified values of h2, the proposed control scheme can reduce to PETC or SETC scheme. In the DSPETC framework, the controlled system is represented as a switched system model and its stability is analyzed via a switching-time-dependent Lyapunov functional. Both the cases with/without network-induced delays are investigated. Simulation and experimental results show that the DSPETC scheme is superior to the PETC scheme and the SETC scheme.

4.
ISA Trans ; 55: 135-44, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25538025

RESUMEN

This paper investigates the off-line synthesis approach of model predictive control (MPC) for a class of networked control systems (NCSs) with network-induced delays. A new augmented model which can be readily applied to time-varying control law, is proposed to describe the NCS where bounded deterministic network-induced delays may occur in both sensor to controller (S-A) and controller to actuator (C-A) links. Based on this augmented model, a sufficient condition of the closed-loop stability is derived by applying the Lyapunov method. The off-line synthesis approach of model predictive control is addressed using the stability results of the system, which explicitly considers the satisfaction of input and state constraints. Numerical example is given to illustrate the effectiveness of the proposed method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA