Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1342180, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567075

RESUMEN

Introduction: Lactic acid bacteria (LAB) communities shape the sensorial and functional properties of artisanal hard-cooked and long-ripened cheeses made with raw bovine milk like Parmigiano Reggiano (PR) cheese. While patterns of microbial evolution have been well studied in PR cheese, there is a lack of information about how this microbial diversity affects the metabolic and functional properties of PR cheese. Methods: To fill this information gap, we characterized the cultivable fraction of natural whey starter (NWS) and PR cheeses at different ripening times, both at the species and strain level, and investigated the possible correlation between microbial composition and the evolution of peptide profiles over cheese ripening. Results and discussion: The results showed that NWS was a complex community of several biotypes belonging to a few species, namely, Streptococcus thermophilus, Lactobacillus helveticus, and Lactobacillus delbrueckii subsp. lactis. A new species-specific PCR assay was successful in discriminating the cheese-associated species Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, and Lacticaseibacillus zeae. Based on the resolved patterns of species and biotype distribution, Lcb. paracasei and Lcb. zeae were most frequently isolated after 24 and 30 months of ripening, while the number of biotypes was inversely related to the ripening time. Peptidomics analysis revealed more than 520 peptides in cheese samples. To the best of our knowledge, this is the most comprehensive survey of peptides in PR cheese. Most of them were from ß-caseins, which represent the best substrate for LAB cell-envelope proteases. The abundance of peptides from ß-casein 38-88 region continuously increased during ripening. Remarkably, this region contains precursors for the anti-hypertensive lactotripeptides VPP and IPP, as well as for ß-casomorphins. We found that the ripening time strongly affects bioactive peptide profiles and that the occurrence of Lcb. zeae species is positively linked to the incidence of eight anti-hypertensive peptides. This result highlighted how the presence of specific LAB species is likely a pivotal factor in determining PR functional properties.

2.
J Dairy Sci ; 107(9): 6541-6557, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38642657

RESUMEN

The microbiota of a cheese play a critical role in influencing its sensory and physicochemical properties. In this study, traditional Apulian Caciocavallo cheeses coming from 4 different dairies in the same area and produced following standardized procedures were examined, as well as the different bulk milks and natural whey starter (NWS) cultures used. Moreover, considering the cheese wheels as the blocks of Caciocavallo cheeses as whole, these were characterized at different layers (i.e., core, under-rind, and rind) of the block using a multi-omics approach. In addition to physical-chemical characterization, culturomics, quantitative PCR, metagenomics, and metabolomics analysis were carried out after salting and throughout the ripening time (2 mo) to investigate major shifts in the succession of the microbiota and flavor development. Culture-dependent and 16S rRNA metataxonomics results clearly clustered samples based on microbiota biodiversity related to the production dairy plant as a result of the use of different NWS or the intrinsic conditions of each production site. At the beginning of the ripening, cheeses were dominated by Lactobacillus, and in 2 dairies (Art and SdC), Streptococcus genera were associated with the NWS. The analysis allowed us to show that although the diversity of identified genera did not change significantly between the rind, under-rind, and core fractions of the same samples, there was an evolution in the relative abundance and absolute quantification, modifying and differentiating profiles during ripening. The real-time PCR, also known as quantitative or qPCR, mainly differentiated the temporal adaptation of those species originating from bulk milks and those provided by NWS. The primary starters detected in NWS and cheeses contributed to the high relative concentration of 1-butanol, 2-butanol, 2-heptanol, 2-butanone, acetoin, delta-dodecalactone, hexanoic acid ethyl ester, octanoic acid ethyl ester, and volatile free fatty acids during ripening, whereas cheeses displaying low abundances of Streptococcus and Lactococcus (dairy Del) had a lower total concentration of acetoin compared with Art and SdC. However, the subdominant strains and nonstarter lactic acid bacteria present in cheeses are responsible for the production of secondary metabolites belonging to the chemical classes of ketones, alcohols, and organic acids, reaffirming the importance and relevance of autochthonous strains of each dairy plant although only considering a delimited production area.


Asunto(s)
Queso , Queso/microbiología , Animales , Leche/microbiología , Leche/química , Microbiología de Alimentos
3.
Heliyon ; 9(8): e19146, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636441

RESUMEN

Natural whey starter cultures are undefined microbial communities mainly consisting of thermophilic lactic acid bacteria (LAB). The technological pressure that shapes the natural whey starter community before and during the back-slopping procedure can impact the amount and viability of the different thermophilic LAB. Traditional culture-dependent analytical methods are useful for evaluating natural whey cultures based on plate enumeration with various culture media and are commonly used as self-control procedures in dairy items. These methods have high variability and require days to obtain results. As the dairy industry has been searching for a solution to this problem for a long time, researchers must explore alternative methods for the technological evaluation of natural whey and assessment of the health status of the thermophilic acidifying bacteria community in the cheesemaking process. The flow cytometry approach has been considered an alternative to classical methods in this work sector. This study compared bacterial enumeration by plate counting and flow cytometry on natural whey samples. Flow cytometry results showed positive agreement with a tendency to overestimate, linearity, and correlation with plate counting. Other parameters have also been introduced for evaluating a natural whey starter, measuring the physiological state of the cells. Specifically, cell-wall damage and metabolic activity were also evaluated, allowing us to quantify the number of cells even in sub-optimal physiological conditions.

4.
Front Microbiol ; 14: 1196879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649628

RESUMEN

Introduction: Mozzarella di Bufala Campana PDO cheese (MBC) is a globally esteemed Italian cheese. The traditional cheesemaking process of MBC relies on natural whey starter culture, water buffalo's milk, and the local agroecosystem. Methods: In this study, the microbial ecology of intermediate samples of MBC production, coming from two dairies with slightly different cheesemaking technology (dairy M large producer, and dairy C medium-small), was investigated using 16S rRNA amplicon sequencing. This research aimed to provide insights into the dynamics of microbial consortia involved in various cheesemaking steps. Results and discussion: All samples, except for raw buffalo milk, exhibited a core microbiome predominantly composed of Streptococcus spp. and Lactobacillus spp., albeit with different ratios between the two genera across the two MBC producers. Notably, the microbiota of the brine from both dairies, analyzed using 16S amplicon sequencing for the first time, was dominated by the Lactobacillus and Streptococcus genera, while only dairy C showed the presence of minor genera such as Pediococcus and Lentilactobacillus. Intriguingly, the final mozzarella samples from both producers displayed an inversion in the dominance of Lactobacillus spp. over Streptococcus spp. in the microbiota compared to curd samples, possibly attributable to the alleviation of thermal stress following the curd stretching step. In conclusion, the different samples from the two production facilities did not exhibit significant differences in terms of the species involved in MBC cheesemaking. This finding confirms that the key role in the MBC cheesemaking process lies with a small-sized microbiome primarily composed of Streptococcus and Lactobacillus spp.

5.
Foods ; 11(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159575

RESUMEN

This study aimed to highlight the distinctive features of four Traditional Agri-food Products (TAP), namely, Caprino, Pecorino, Vaccino, and Cacioricotta cheeses produced at the same dairy plant to reveal any possible relationships between their microbiological and biochemical characteristics. Two distinct natural whey starter (NWS) cultures were used during Caprino and Vaccino cheesemaking, whereas no starter was used for the other cheeses. Cacioricotta retained the highest concentrations of salt and residual carbohydrates. Lactic acid bacteria dominated the microbiota of the cheeses. Furthermore, staphylococci represented an additional dominant microbial population in Cacioricotta. Although culture-dependent analysis showed that the use of NWS cultures only slightly affected the microbial community of cheeses, 16S metagenetic analysis showed that Lactobacillus helveticus dominated both the NWS cultures and the corresponding Caprino and Vaccino cheeses. This analysis indicated that Staphylococcus equorum and Streptococcus thermophilus dominated Cacioricotta and Pecorino cheeses, respectively. The highest peptidase activities were found in either Caprino or Vaccino. Enzymes involved in the catabolism of free amino acids and esterase showed the highest activity in Pecorino cheese. Each cheese showed a distinct profile of volatile organic compounds, with Pecorino being the richest cheese in carboxylic acids, ketones, and esters, related to lipolysis. The results of this study contribute to valorizing and safeguarding these TAP cheeses, sustaining local farming.

6.
Foods ; 11(2)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35053966

RESUMEN

In southern Italy, some artisanal farms produce mozzarella and caciocavallo cheeses by using natural whey starter (NWS), whose microbial diversity is responsible for the characteristic flavor and texture of the final product. We studied the microbial community of NWS cultures of cow's milk (NWSc) for the production of caciocavallo and buffalo's milk (NWSb) for the production of mozzarella, both from artisanal farms. Bacterial identification at species and strain level was based on an integrative strategy, combining culture-dependent (sequencing of the 16S rDNA, species/subspecies-specific Polymerase Chain Reaction (PCR) and clustering by Random Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) and culture-independent (next-generation sequencing analysis, NGS) approaches. Results obtained with both approaches showed the occurrence of five species of lactic acid bacteria in NWSb (Lactococcus lactis subsp. lactis, Lactobacillus fermentum, Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus) and five species in NWSc (Lc. lactis subsp. lactis, Enterococcus faecium, and S. thermophilus, Lb. helveticus, and Lb. delbrueckii), with the last two found only by the NGS analysis. Moreover, RAPD profiles, performed on Lc. lactis subsp. lactis different isolates from both NWSs, showed nine strains in NWSb and seven strains in NWSc, showing a microbial diversity also at strain level. Characterization of the microbiota of natural whey starters aims to collect new starter bacteria to use for tracing microbial community during the production of artisanal cheeses, in order to preserve their quality and authenticity, and to select new Lactic Acid Bacteria (LAB) strains for the production of functional foods.

7.
Microorganisms ; 9(11)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34835414

RESUMEN

Whey is the main byproduct of the dairy industry and contains sugars (lactose) and proteins (especially serum proteins and, at lesser extent, residual caseins), which can be valorized by the fermentative action of yeasts. In the present study, we characterized the spoilage yeast population inhabiting natural whey starter (NWS), the undefined starter culture of thermophilic lactic acid bacteria used in Parmigiano Reggiano (PR) cheesemaking, and evaluated thermotolerance, mating type, and the aptitude to produce ethanol and bioactive peptides from whey lactose and proteins, respectively, in a selected pool of strains. PCR-RFLP assay of ribosomal ITS regions and phylogenetic analysis of 26S rDNA D1/D2 domains showed that PR NWS yeast population consists of the well-documented Kluyveromyces marxianus, as well as of other species (Saccharomyces cerevisiae, Wickerhamiella pararugosa, and Torulaspora delbrueckii), with multiple biotypes scored within each species as demonstrated by (GTG)5-based MSP-PCR. Haploid and diploid K. marxianus strains were identified through MAT genotyping, while thermotolerance assay allowed the selection of strains suitable to grow up to 48 °C. In whey fermentation trials, one thermotolerant strain was suitable to release ethanol with a fermentation efficiency of 86.5%, while another candidate was able to produce the highest amounts of both ethanol and bioactive peptides with potentially anti-hypertensive function. The present work demonstrated that PR NWS is a reservoir of ethanol and bioactive peptides producer yeasts, which can be exploited to valorize whey, in agreement with the principles of circularity and sustainability.

8.
Front Microbiol ; 12: 678012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194413

RESUMEN

This study focused on the microbial and bacteriophages identification and characterization in cheese-production facilities that use natural whey starter (NWS) cultures for Trentingrana production. Bacterial and phage screening was carried out on cooked not acidified whey and NWS samples isolated from six dairy factories, for 4 consecutive days in four different months. By means of a combined approach, using plate counts, bacterial isolation, and metataxonomic analysis Lactobacillus helveticus was found occurring as the dominant species in NWS cultures and Levilactobacillus brevis as codominant in the cheese factories where the temperature of NWS production was mainly lower than 40°C, suggesting that the variability in the parameters of the NWS culture preparation could differently modulate the bacterial species in NWS cultures. Using turbidity test approach on 303 bacterial isolates from the NWS cultures, 120 distinct phages were identified. L. helveticus phage contamination of NWS cultures was revealed in most of the analyzed samples, but despite the great recovery of bacteriophage contamination cases, the microbial quality of NWS cultures was high. Our results support the presence of natural bacteriophage resistance mechanisms in L. helveticus. The use of NWS cultures probably creates an ideal environment for the proliferation of different L. helveticus strains balanced with their phages without a clear dominance. It is evident, from this study, that the presence of a high biodiversity of NWS bacterial strains is relevant to avoid phages dominance in NWS cultures and consequently to keep a good acidification ability.

9.
Food Res Int ; 129: 108860, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036924

RESUMEN

Natural starter cultures are undefined multiple-strains culture communities of mostly thermophilic lactic acid bacteria (LAB), in association with minor amounts of mesophilic bacteria, which structure could be affected by small changes in the parameters of the cheese/whey-making process. This study aims to investigate the complex microbiota of natural whey starter (NWS) used in Parmigiano Reggiano (PR) cheese-making, focusing on both the absolute and relative abundance of bacterial species and on the modification of the bacterial community under environmental and technological pressures. To reach this purpose a combined approach, using quantitative PCR (qPCR) and High-Throughput Sequencing (HTS), was used to investigate the bacterial dynamics of 91 whey samples collected during different steps of PR cheese-making, in one dairy, through two different lines of production, one Conventional and one Organic, over a 10 weeks period. Our results highlighted that NWS used for the production of PR cheese is a dynamic microbial community, which adapts to the different technological parameters encountered in the cheese/NWS manufacturing process, while retaining a high level of resilience of the thermophilic LAB species mainly involved in the steps of curd acidification and the early maturation process. Differences were also observed in bacterial species diversity between samples from Conventional and Organic line but, in conclusion, NWS resulted to be shaped by technological treatments, regardless of its initial different composition.


Asunto(s)
Bacterias/clasificación , Queso/microbiología , Microbiología de Alimentos , Suero Lácteo , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Humanos , Microbiota , ARN Ribosómico 16S/genética
10.
Front Microbiol ; 9: 63, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29441050

RESUMEN

Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus-to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories "cell wall/membrane biogenesis" and "defense mechanisms" were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level.

11.
J Dairy Sci ; 99(12): 9521-9533, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27771088

RESUMEN

Five protected designation of origin (PDO) Caciocavallo Silano and 6 non-PDO Caciocavallo cheeses, ripened for 6mo and collected in the 5 Italian regions of the PDO area (Apulia, Basilicata, Calabria, Campania, and Molise, Italy), were studied to assess their physico-chemical (pH, acidity, moisture, fat, ash, protein, and free amino acid composition) and microbiological profiles. Analyses evidenced a certain fluctuation of previous parameters among samples regardless of the kind of cheese evaluated (PDO and non-PDO). The PCR-denaturing gradient gel electrophoresis analysis performed on the DNA directly extracted from cheeses gave different results, but a low number of bands was always observed. Only one band, corresponding to the species Streptococcus thermophilus, was detectable in 1 PDO and in 2 non-PDO cheese samples, whose free amino acid content was the lowest. Analyses were repeated on experimental Caciocavallo cheeses. Specifically, 2 productions were made, one mimicking the industrial technology (pasteurized milk and selected starter culture) and one the artisanal technology (raw milk and natural whey starter). Results obtained on experimental cheeses at 6mo of ripening showed that industrial samples had lower amounts of total free amino acids then the artisanal ones (1,188.2 vs. 7,523.67mg/100 g of dry matter). Moreover, the PCR-denaturing gradient gel electrophoresis analysis evidenced the sole presence of S. thermophilus in the case of the industrial technology. These data sustain the hypothesis that, out of 11 cheeses analyzed previously, 1 PDO Caciocavallo Silano and 2 non-PDO Caciocavallo cheeses were obtained with the industrial technology. These results could be of help in the discrimination of PDO products, taking into account that the PDO production regulation does not allow the milk pasteurization, nor the use of selected starters.


Asunto(s)
Aminoácidos , Queso/análisis , Queso/microbiología , Animales , Italia , Leche/microbiología
12.
J Dairy Sci ; 97(2): 573-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24290824

RESUMEN

The robustness of the starter culture during cheese fermentation is enhanced by the presence of a rich consortium of microbes. Natural starters are consortia of microbes undoubtedly richer than selected starters. Among natural starters, natural whey starters (NWS) are the most common cultures currently used to produce different varieties of cheeses. Undefined NWS are typically used for Italian cooked, long-ripened, extra-hard, raw milk cheeses, such as Parmigiano Reggiano and Grana Padano. Together with raw milk microbiota, NWS are responsible for most cheese characteristics. The microbial ecology of these 2 cheese varieties is based on a complex interaction among starter lactic acid bacteria (SLAB) and nonstarter lactic acid bacteria (NSLAB), which are characterized by their different abilities to grow in a changing substrate. This review aims to summarize the latest findings on Parmigiano Reggiano and Grana Padano to better understand the dynamics of SLAB, which mainly arise from NWS, and NSLAB, which mainly arise from raw milk, and their possible role in determining the characteristics of these cheeses. The review is presented in 4 main sections. The first summarizes the main microbiological and chemical properties of the ripened cheese as determined by cheese-making process variables, as these variables may affect microbial growth. The second describes the microbiota of raw milk as affected by specific milk treatments, from milking to the filling of the cheese milk vat. The third describes the microbiota of NWS, and the fourth reviews the knowledge available on microbial dynamics from curd to ripened cheese. As the dynamics and functionality of complex undefined NWS is one of the most important areas of focus in current food microbiology research, this review may serve as a good starting point for implementing future studies on microbial diversity and functionality of undefined cheese starter cultures.


Asunto(s)
Queso/análisis , Queso/microbiología , Microbiología de Alimentos , Leche/microbiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA