Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Arch Microbiol ; 206(10): 391, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230763

RESUMEN

The fermentative model yeast Saccharomyces cerevisiae has been extensively used to study the genetic basis of stress response and homeostasis. In this study, we performed quantitative trait loci (QTL) analysis of the high-temperature fermentation trait of the progeny from the mating of the S. cerevisiae natural isolate BCC39850 (haploid#17) and the laboratory strain CEN.PK2-1C. A single QTL on chromosome X was identified, encompassing six candidate genes (GEA1, PTK2, NTA1, NPA3, IRT1, and IML1). The functions of these candidates were tested by reverse genetic experiments. Deletion mutants of PTK2, NTA1, and IML1 showed growth defects at 42 °C. The PTK2 knock-out mutant also showed significantly reduced ethanol production and plasma membrane H+ ATPase activity and increased sensitivity to acetic acid, ethanol, amphotericin B (AMB), and ß-1,3-glucanase treatment. The CRISPR-Cas9 system was used to construct knock-in mutants by replacement of PTK2, NTA1, IML1, and NPA3 genes with BCC39850 alleles. The PTK2 and NTA1 knock-in mutants showed increased growth and ethanol production titers at 42 °C. These findings suggest an important role for the PTK2 serine/threonine protein kinase in regulating plasma membrane H+ ATPase activity and the NTA1 N-terminal amidase in protein degradation via the ubiquitin-proteasome system machinery, which affects tolerance to heat stress in S. cerevisiae.


Asunto(s)
Etanol , Fermentación , Calor , Sitios de Carácter Cuantitativo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo
2.
Environ Sci Technol ; 58(33): 14831-14842, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39120612

RESUMEN

There have been numerous studies using effect-directed analysis (EDA) to identify key toxic substances present in source and drinking water, but none of these studies have considered the effects of metabolic activation. This study developed a comprehensive method including a pretreatment process based on an in vitro metabolic activation system, a comprehensive biological effect evaluation based on concentration-dependent transcriptome (CDT), and a chemical feature identification based on nontarget chemical analysis (NTA), to evaluate the changes in the toxic effects and differences in the chemical composition after metabolism. Models for matching metabolites and precursors as well as data-driven identification methods were further constructed to identify toxic metabolites and key toxic precursor substances in drinking water samples from the Yangtze River. After metabolism, the metabolic samples showed a general trend of reduced toxicity in terms of overall biological potency (mean: 3.2-fold). However, metabolic activation led to an increase in some types of toxic effects, including pathways such as excision repair, mismatch repair, protein processing in endoplasmic reticulum, nucleotide excision repair, and DNA replication. Meanwhile, metabolic samples showed a decrease (17.8%) in the number of peaks and average peak area after metabolism, while overall polarity, hydrophilicity, and average molecular weight increased slightly (10.3%). Based on the models for matching of metabolites and precursors and the data-driven identification methods, 32 chemicals were efficiently identified as key toxic substances as main contributors to explain the different transcriptome biological effects such as cellular component, development, and DNA damage related, including 15 industrial compounds, 7 PPCPs, 6 pesticides, and 4 natural products. This study avoids the process of structure elucidation of toxic metabolites and can trace them directly to the precursors based on MS spectra, providing a new idea for the identification of key toxic pollutants of metabolites.


Asunto(s)
Transcriptoma , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Activación Metabólica , Agua Potable/química
3.
Chemosphere ; 363: 142839, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019181

RESUMEN

The compound 1,2-dichloroethane (1,2-DCA), a persistent and ubiquitous pollutant, is often found in groundwater and can strongly affect the ecological environment. However, the extreme bio-impedance of C-Cl bonds means that a high energy input is needed to drive biological dechlorination. Biotechnology techniques based on microbial photoelectrochemical cell (MPEC) could potentially convert solar energy into electricity and significantly reduce the external energy inputs currently needed to treat 1,2-DCA. However, low electricity-generating efficiency at the anode and sluggish bioreaction kinetics at the cathode limit the application of MPEC. In this study, a g-C3N4/Blue TiO2-NTA photoanode was fabricated and incorporated into an MPEC for 1,2-DCA removal. Optimal performance was achieved when Blue TiO2 nanotube arrays (Blue TiO2-NTA) were loaded with graphitic carbon nitride (g-C3N4) 10 times. The photocurrent density of the g-C3N4/Blue TiO2-NTA composite electrode was 2.48-fold higher than that of the pure Blue TiO2-NTA electrode under light irradiation. Furthermore, the MPEC equipped with g-C3N4/Blue TiO2-NTA improved 1,2-DCA removal efficiency by 45.21% compared to the Blue TiO2-NTA alone, which is comparable to that of a microbial electrolysis cell. In the modified MPEC, the current efficiency reached 69.07% when the light intensity was 150 mW cm-2 and the 1,2-DCA concentration was 4.4 mM. The excellent performance of the novel MPEC was attributed to the efficient direct electron transfer process and the abundant dechlorinators and electroactive bacteria. These results provide a sustainable and cost-effective strategy to improve 1,2-DCA treatment using a biocathode driven by a photoanode.


Asunto(s)
Electrodos , Dicloruros de Etileno , Nanotubos , Titanio , Contaminantes Químicos del Agua , Titanio/química , Nanotubos/química , Dicloruros de Etileno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Grafito/química , Nitrilos/química , Compuestos de Nitrógeno/química , Fuentes de Energía Bioeléctrica , Técnicas Electroquímicas/métodos
4.
Heliyon ; 10(12): e33139, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39005923

RESUMEN

The distinctive photophysical characteristics possessed by lanthanides, including europium, neodymium, and ytterbium, render them adaptable molecular tools for studying biological systems. Specifically, their enduring photoluminescence, precise emission spectra, and significant Stokes shifts allow for experiments not achievable with organic fluorophores or fluorescent proteins. Moreover, the capacity of these metal ions for luminescence resonance energy transfer and photon upconversion extends the potential applications of lanthanide probes even further. In this research, a new [Nd(NTA)2·H2O]3- complex was synthesized and its optical properties were assessed using practical characterization techniques such as UV-Vis absorption, photoluminescence, and FTIR. It was discovered that when the sample was excited by a 357 nm wavelength, it emitted a strong line at 1076 nm with a full-width at half maximum (FWHM) of 10 nm, a phenomenon not previously documented. The Judd-Ofelt theory and its intensity parameters were utilized in a theoretical approach to determine the fluorescence branching ratio and the radiative lifetime of the [Nd(NTA)2·H2O]3- complex. The absorption and luminescence spectra were then analyzed accordingly. Experimental findings validated the potential applications of the prepared sample in bioimaging.

5.
Eur J Pharm Biopharm ; 200: 114340, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797222

RESUMEN

Lentiviral vectors (LVVs) are used as a starting material to generate chimeric antigen receptor (CAR) T cells. Therefore, LVVs need to be carefully analyzed to ensure safety, quality, and potency of the final product. We evaluated orthogonal and complementary analytical techniques for their suitability to characterize particulate matter (impurities and LVVs) in pharmaceutical LVV materials at development stage derived from suspension and adherent manufacturing processes. Microfluidic resistive pulse sensing (MRPS) with additional manual data fitting enabled the assessment of mode diameters for particles in the expected LVV size range in material from adherent production. LVV material from a suspension process, however, contained substantial amounts of particulate impurities which blocked MRPS cartridges. Sedimentation-velocity analytical ultracentrifugation (SV-AUC) resolved the LVV peak in material from adherent production well, whereas in more polydisperse samples from suspension production, presence of particulate impurities masked a potential signal assignable to LVVs. In interferometric light microscopy (ILM) and nanoparticle tracking analysis (NTA), lower size detection limits close to âˆ¼ 70 nm resulted in an apparent peak in particle size distributions at the expected size for LVVs emphasizing the need to interpret these data with care. Interpretation of data from dynamic light scattering (DLS) was limited by insufficient size resolution and sample polydispersity. In conclusion, the analysis of LVV products manufactured at pharmaceutical scale with current state-of-the-art physical (nano)particle characterization techniques was challenging due to the presence of particulate impurities of heterogeneous size. Among the evaluated techniques, MRPS and SV-AUC were most promising yielding acceptable results at least for material from adherent production.


Asunto(s)
Vectores Genéticos , Lentivirus , Nanopartículas , Tamaño de la Partícula , Ultracentrifugación , Lentivirus/genética , Nanopartículas/química , Ultracentrifugación/métodos , Humanos , Receptores Quiméricos de Antígenos
6.
Sensors (Basel) ; 24(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732912

RESUMEN

The high affinity of the biotin-streptavidin interaction has made this non-covalent coupling an indispensable strategy for the immobilization and enrichment of biomolecular affinity reagents. However, the irreversible nature of the biotin-streptavidin bond renders surfaces functionalized using this strategy permanently modified and not amenable to regeneration strategies that could increase assay reusability and throughput. To increase the utility of biotinylated targets, we here introduce a method for reversibly immobilizing biotinylated thrombin-binding aptamers onto a Ni-nitrilotriacetic acid (Ni-NTA) sensor chip using 6xHis-tagged streptavidin as a regenerable capture ligand. This approach enabled the reproducible immobilization of aptamers and measurements of aptamer-protein interaction in a surface plasmon resonance assay. The immobilized aptamer surface was stable during five experiments over two days, despite the reversible attachment of 6xHis-streptavidin to the Ni-NTA surface. In addition, we demonstrate the reproducibility of this immobilization method and the affinity assays performed using it. Finally, we verify the specificity of the biotin tag-streptavidin interaction and assess the efficiency of a straightforward method to regenerate and reuse the surface. The method described here will allow researchers to leverage the versatility and stability of the biotin-streptavidin interaction while increasing throughput and improving assay efficiency.


Asunto(s)
Aptámeros de Nucleótidos , Biotina , Ácido Nitrilotriacético , Estreptavidina , Resonancia por Plasmón de Superficie , Estreptavidina/química , Biotina/química , Aptámeros de Nucleótidos/química , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Técnicas Biosensibles/métodos , Trombina/química , Compuestos Organometálicos
7.
Protein Sci ; 33(6): e5021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747394

RESUMEN

While nickel-nitrilotriacetic acid (Ni-NTA) has greatly advanced recombinant protein purification, its limitations, including nonspecific binding and partial purification for certain proteins, highlight the necessity for additional purification such as size exclusion and ion exchange chromatography. However, specialized equipment such as FPLC is typically needed but not often available in many laboratories. Here, we show a novel method utilizing polyphosphate (polyP) for purifying proteins with histidine repeats via non-covalent interactions. Our study demonstrates that immobilized polyP efficiently binds to histidine-tagged proteins across a pH range of 5.5-7.5, maintaining binding efficacy even in the presence of reducing agent DTT and chelating agent EDTA. We carried out experiments of purifying various proteins from cell lysates and fractions post-Ni-NTA. Our results demonstrate that polyP resin is capable of further purification post-Ni-NTA without the need for specialized equipment and without compromising protein activity. This cost-effective and convenient method offers a viable approach as a complementary approach to Ni-NTA.


Asunto(s)
Histidina , Polifosfatos , Histidina/química , Polifosfatos/química , Polifosfatos/metabolismo , Ácido Nitrilotriacético/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Humanos , Proteínas/química , Proteínas/aislamiento & purificación
8.
Protein Expr Purif ; 221: 106507, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38777308

RESUMEN

Recombinant human interleukin-2 (rhIL-2) represents one of the most difficult-to-produce cytokines in E. coli due to its extreme hydrophobicity and high tendency to formation of inclusion bodies. Refolding of rhIL-2 inclusion bodies always represents cumbersome downstream processes and low production efficiency. Herein, we disclosed a fusion strategy for efficiently soluble expression and facile production of rhIL-2 in E. coli Origami B (DE3) host. A two-tandem SUMO fusion partner (His-2SUMO) with a unique SUMO protease cleavage site at C-terminus was devised to fuse with the N-terminus of rhIL-2 and the fusion protein (His-2SUMO-rhIL-2) was almost completely expressed in a soluble from. The fusion partner could be efficiently removed by Ulp1 cleavage and the rhIL-2 was simply produced by a two-step Ni-NTA affinity chromatography with a considerable purity and whole recovery. The eventually obtained rhIL-2 was well-characterized and the results showed that the purified rhIL-2 exhibits a compact and ordered structure. Although the finally obtained rhIL-2 exists in a soluble aggregates form and the aggregation probably has been occurred during expression stage, the soluble rhIL-2 aggregates remain exhibit comparable bioactivity with the commercially available rhIL-2 drug formulation.


Asunto(s)
Escherichia coli , Interleucina-2 , Proteínas Recombinantes de Fusión , Solubilidad , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Interleucina-2/genética , Interleucina-2/biosíntesis , Interleucina-2/química , Interleucina-2/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Expresión Génica , Cromatografía de Afinidad , Clonación Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Cuerpos de Inclusión/química , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo
9.
Biochim Biophys Acta Bioenerg ; 1865(3): 149045, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614453

RESUMEN

Cytochrome bo3 quinol oxidase belongs to the heme­copper-oxidoreductase (HCO) superfamily, which is part of the respiratory chain and essential for cell survival. While the reaction mechanism of cyt bo3 has been studied extensively over the last decades, specific details about its substrate binding and product release have remained unelucidated due to the lack of structural information. Here, we report a 2.8 Å cryo-electron microscopy structure of cyt bo3 from Escherichia coli assembled in peptidiscs. Our structural model shows a conformation for amino acids 1-41 of subunit I different from all previously published structures while the remaining parts of this enzyme are similar. Our new conformation shows a "U-shape" assembly in contrast to the transmembrane helix, named "TM0", in other reported structural models. However, TM0 blocks ubiquinone-8 (reaction product) release, suggesting that other cyt bo3 conformations should exist. Our structural model presents experimental evidence for an "open" conformation to facilitate substrate/product exchange. This work helps further understand the reaction cycle of this oxidase, which could be a benefit for potential drug/antibiotic design for health science.


Asunto(s)
Microscopía por Crioelectrón , Grupo Citocromo b , Proteínas de Escherichia coli , Escherichia coli , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Escherichia coli/enzimología , Grupo Citocromo b/química , Grupo Citocromo b/metabolismo , Conformación Proteica , Modelos Moleculares , Citocromos/química , Citocromos/metabolismo
10.
Int J Hyg Environ Health ; 259: 114383, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652942

RESUMEN

Children are known to be more vulnerable to exposure to endocrine-disrupting chemicals (EDCs) compared to adults, but evaluating the exposure pathways can be challenging. This research employed target and non-target analysis (NTA) to examine the exposure characteristics of EDCs in spot urine samples collected from 46 children's (aged 3-12 years) and their parents in Hong Kong (Chinese/Western lifestyle) and Guangzhou (mainly Chinese lifestyle). The results revealed that the geometric mean concentrations of phthalate esters metabolites (mPAEs) and bisphenols (BPs) in children's urine were 127.3 µg/gcrea and 2.5 µg/gcrea in Guangzhou, and 93.7 µg/gcrea and 2.9 µg/gcrea in Hong Kong, respectively, which were consistent with global levels. NTA identified a total of 1069 compounds, including 106 EDCs, commonly detected in food, cosmetics, and drugs. Notable regional differences were observed between Guangzhou and Hong Kong with potential sources of EDCs including dietary and cosmetic additives, toys, flooring and dust, as well as differences in lifestyles, diet, and living environment. However, age was found to significantly impact EDC exposure. The quantified EDCs (mPAEs and BPs) posed possible health risks to 60% of the children. Moreover, the presence of caffeine in children's urine, which exhibited higher detection rates in children from Hong Kong (95.6%) and Guangzhou (44.4%), warrants further attention. The sources of EDCs exposure in these regions need to be fully confirmed.


Asunto(s)
Disruptores Endocrinos , Exposición a Riesgos Ambientales , Contaminantes Ambientales , Estilo de Vida , Ácidos Ftálicos , Humanos , Disruptores Endocrinos/orina , Niño , Preescolar , Masculino , Femenino , Exposición a Riesgos Ambientales/análisis , China , Ácidos Ftálicos/orina , Contaminantes Ambientales/orina , Fenoles/orina , Adulto , Hong Kong , Padres , Compuestos de Bencidrilo/orina , Pueblos del Este de Asia
11.
Int J Pharm ; 656: 124097, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38609058

RESUMEN

The size and concentration are critical for the diagnostic and therapeutic applications of nanomaterials but the accurate measurement remains challenging. Nanoparticle tracking analysis (NTA) is widely used for size and concentration determination. However, highly repeatable standard operating procedures (SOPs) are absent. We adopted the "search-evaluate-test" strategy to standardize the measurement by searching the critical parameters. The particles per frame are linearly proportional to the sample concentration and the measured results are more accurate and repeatable when the concentration is 108-109 particles/ml. The optimal detection threshold is around 5. The optimal camera level is such that it allows clear observation of particles without diffractive rings and overexposure. The optimal speed is ≤ 50 in AU and âˆ¼ 10 µl/min in flow rate. We then evaluated the protocol using polydisperse polystyrene particles and we found that NTA could discriminate particles in bimodal mixtures with high size resolution but the performance on multimodal mixtures is not as good as that of resistive pulse sensing (RPS). We further analyzed the polystyrene particles, SiO2 particles, and biological samples by NTA following the SOPs. The size and concentration measured by NTA differentially varies to those determined by RPS and transmission electron microscopy.


Asunto(s)
Nanopartículas , Tamaño de la Partícula , Poliestirenos , Dióxido de Silicio , Nanopartículas/química , Nanopartículas/análisis , Poliestirenos/química , Dióxido de Silicio/química , Oro/química , Microscopía Electrónica de Transmisión , Nanoestructuras/química , Animales
12.
Chemosphere ; 358: 142139, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688349

RESUMEN

The widespread and increasing use of nanomaterials has resulted in a higher likelihood of exposure by inhalation for nanotechnology workers. However, tracking the internal dose of nanoparticles deposited at the airways level, is still challenging. To assess the suitability of particle number concentration determination as biomarker of internal dose, we carried out a cross sectional investigation involving 80 workers handling nanomaterials. External exposure was characterized by portable counters of particles DISCminiTM (Testo, DE), allowing to categorize 51 workers as exposed and 29 as non-exposed (NE) to nanoparticles. Each subject filled in a questionnaire reporting working practices and health status. Exhaled breath condensate was collected and analysed for the number of particles/ml as well as for inflammatory biomarkers. A clear-cut relationship between the number of airborne particles in the nano-size range determined by the particle counters and the particle concentration in exhaled breath condensate (EBC) was apparent. Moreover, inflammatory cytokines (IL-1ß, IL-10, and TNF-α) measured in EBC, were significantly higher in the exposed subjects as compared to not exposed. Finally, significant correlations were found between external exposure, the number concentration of particles measured by the nanoparticle tracking analysis (NTA) and inflammatory cytokines. As a whole, the present study, suggests that NTA can be regarded as a reliable tool to assess the inhaled dose of particles and that this dose can effectively elicit inflammatory effects.


Asunto(s)
Biomarcadores , Pruebas Respiratorias , Citocinas , Exposición por Inhalación , Nanopartículas , Nanoestructuras , Exposición Profesional , Humanos , Biomarcadores/análisis , Biomarcadores/metabolismo , Exposición Profesional/análisis , Adulto , Exposición por Inhalación/análisis , Exposición por Inhalación/estadística & datos numéricos , Masculino , Estudios Transversales , Citocinas/metabolismo , Citocinas/análisis , Persona de Mediana Edad , Espiración , Femenino , Tamaño de la Partícula , Pulmón/metabolismo , Contaminantes Ocupacionales del Aire/análisis , Inflamación/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/análisis
13.
Water Res ; 254: 121421, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461601

RESUMEN

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant posing a risk in environmental persistence, bioaccumulation and biotoxicity. This study was to reach a comprehensive and deeper understanding of PFOS elimination in a UV254 photolytic treatment with the co-presence of Fe2+ and nitrilotriacetic acid trisodium salt (NTA). PFOS defluorination was noticeably enhanced in the UV/Fe2+-NTA treatment compared with UV/NTA, UV/Fe2+ and our previously studied UV/Fe3+ treatments. UV-vis, FTIR, and UPLC/MS-MS results indicated the formation of PFOS-Fe2+-NTA complex in PFOS, Fe2+ and NTA mixture. The transition energy gap of PFOS-Fe2+-NTA decreased below the excitation energy supplied by UV254 irradiation, corresponding with red shift appearing in UV-vis scanning spectrum. This favored intramolecular electron transfer from Fe2+-NTA to PFOS under UV254 irradiation to form electron-accepting PFOS. Molecular electrostatic potential and atom charge distribution analyses suggested electron density rearrangement and perturbation in the perfluorinated carbon chain of electron-accepting PFOS, leading to the decrease in bond dissociation energies. Intermediate products detection suggested the parallel defluorination pathways of PFOS desulfonation, middle carbon chain scission and direct C-F cleavage. NTA exhibited crucial functions in the UV/Fe2+-NTA treatment by holding Fe2+/Fe3+ in soluble form as a chelant and favoring water activation to generate hydrated electrons (eaq-) under UV irradiation as a photosensitizer. Fe2+ acting as the conduit for electron transfer and the bridge of PFOS anion and NTA was thought functioning best at 200 µM in this study. The degree of UV/Fe2+-NTA -synergized PFOS defluorination also depended on eaq- yield and UV254 photon flux. The structure dependence on the electron transfer process of PFOS and PFOA was explored incorporating molecular structure descriptors. Because of possessing greater potential to acquire electrons or less likeliness to donate its electrons than PFOA, PFOS exhibited faster defluorination kinetics in the published "reduction treatments" than "oxidation" ones. Whereas, PFOA defluorination kinetics were at similar level in both "reduction" and "oxidation" treatments.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Electrones , Ácido Nitrilotriacético , Fotólisis , Fluorocarburos/química , Cloruro de Sodio , Ácidos Alcanesulfónicos/química , Carbono , Caprilatos
14.
J Hazard Mater ; 469: 134025, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492398

RESUMEN

Environmental contamination through direct contact, ingestion and inhalation are common routes of children's exposure to chemicals, in which through indoor and outdoor activities associated with common hand-to-mouth, touching objects, and behavioral tendencies, children can be susceptible and vulnerable to organic contaminants in the environment. The objectives of this study were the screening and identification of a wide range of organic contaminants in indoor dust, soil, food, drinking water, and urine matrices (N = 439), prioritizing chemicals to assess children's environmental exposure, and selection of unique tracers of soil and dust ingestion in young children by non-targeted analysis (NTA) using Q-Exactive Orbitrap followed data processing by the Compound Discoverer (v3.3, SP2). Chemical features were first prioritized based on their predominant abundance (peak area>500,000), detection frequency (in >50% of the samples), available information on their uses and potential toxicological effects. Specific tracers of soil and dust exposure in children were selected in this study including Tripropyl citrate and 4-Dodecylbenzenesulfonic acid. The criteria for selection of the tracers were based on their higher abundance, detection frequency, unique functional uses, measurable amounts in urine (suitable biomarker), and with information on gastrointestinal absorption, metabolism, and excretion, and were further confirmed by authentic standards. We are proposing for the first time suitable unique tracers for dust ingestion by children.


Asunto(s)
Contaminación del Aire Interior , Suelo , Niño , Humanos , Preescolar , Suelo/química , Exposición a Riesgos Ambientales/análisis , Compuestos Orgánicos/análisis , Espectrometría de Masas , Polvo/análisis , Contaminación del Aire Interior/análisis
15.
Antioxidants (Basel) ; 13(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38539879

RESUMEN

Metal-catalyzed lipid oxidation is a major factor in food waste, as it reduces shelf life. Addressing this issue, our study investigates the potential of hydrolysates derived from potato protein, a by-product of potato starch production, as metal-chelating antioxidants. Through sequential enzymatic hydrolysis using alcalase or trypsin combined with Flavourzyme, we produced various hydrolysates, which were then fractionated using ultrafiltration. Using a combination of peptidomics and bioinformatics, we predicted the presence of metal-chelating and free radical-scavenging peptides across all hydrolysate fractions, with a trend indicating a higher content of antioxidant peptides in lower molecular weight fractions. To validate these predictions, we utilized surface plasmon resonance (SPR) and a 9-day emulsion storage experiment. While SPR demonstrated potential in identifying antioxidant activity, it faced challenges in differentiating between hydrolysate fractions due to significant standard errors. In the storage experiment, all hydrolysates showed lipid oxidation inhibition, though not as effectively as ethylenediaminetetraacetic acid (EDTA). Remarkably, one fraction (AF13) was not significantly different (p < 0.05) from EDTA in suppressing hexanal formation. These results highlight SPR and peptidomics/bioinformatics as promising yet limited methods for antioxidant screening. Importantly, this study reveals the potential of potato protein hydrolysates as antioxidants in food products, warranting further research.

16.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511507

RESUMEN

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Asunto(s)
Escherichia coli , Péptidos , Animales , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Péptidos/genética , Péptidos/metabolismo , Indicadores y Reactivos/metabolismo , Productos del Gen tat/metabolismo , Colorantes/metabolismo , ADN/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
17.
Mol Neurodegener ; 19(1): 19, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38365825

RESUMEN

BACKGROUND: Novel phosphorylated-tau (p-tau) blood biomarkers (e.g., p-tau181, p-tau217 or p-tau231), are highly specific for Alzheimer's disease (AD), and can track amyloid-ß (Aß) and tau pathology. However, because these biomarkers are strongly associated with the emergence of Aß pathology, it is difficult to determine the contribution of insoluble tau aggregates to the plasma p-tau signal in blood. Therefore, there remains a need for a biomarker capable of specifically tracking insoluble tau accumulation in brain. METHODS: NTA is a novel ultrasensitive assay targeting N-terminal containing tau fragments (NTA-tau) in cerebrospinal fluid (CSF) and plasma, which is elevated in AD. Using two well-characterized research cohorts (BioFINDER-2, n = 1,294, and BioFINDER-1, n = 932), we investigated the association between plasma NTA-tau levels and disease progression in AD, including tau accumulation, brain atrophy and cognitive decline. RESULTS: We demonstrate that plasma NTA-tau increases across the AD continuum¸ especially during late stages, and displays a moderate-to-strong association with tau-PET (ß = 0.54, p < 0.001) in Aß-positive participants, while weak with Aß-PET (ß = 0.28, p < 0.001). Unlike plasma p-tau181, GFAP, NfL and t-tau, tau pathology determined with tau-PET is the most prominent contributor to NTA-tau variance (52.5% of total R2), while having very low contribution from Aß pathology measured with CSF Aß42/40 (4.3%). High baseline NTA-tau levels are predictive of tau-PET accumulation (R2 = 0.27), steeper atrophy (R2 ≥ 0.18) and steeper cognitive decline (R2 ≥ 0.27) in participants within the AD continuum. Plasma NTA-tau levels significantly increase over time in Aß positive cognitively unimpaired (ßstd = 0.16) and impaired (ßstd = 0.18) at baseline compared to their Aß negative counterparts. Finally, longitudinal increases in plasma NTA-tau levels were associated with steeper longitudinal decreases in cortical thickness (R2 = 0.21) and cognition (R2 = 0.20). CONCLUSION: Our results indicate that plasma NTA-tau levels increase across the AD continuum, especially during mid-to-late AD stages, and it is closely associated with in vivo tau tangle deposition in AD and its downstream effects. Moreover, this novel biomarker has potential as a cost-effective and easily accessible tool for monitoring disease progression and cognitive decline in clinical settings, and as an outcome measure in clinical trials which also need to assess the downstream effects of successful Aß removal.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteínas tau , Péptidos beta-Amiloides , Atrofia , Biomarcadores , Progresión de la Enfermedad , Tomografía de Emisión de Positrones
18.
Protein Pept Lett ; 31(3): 236-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38303525

RESUMEN

BACKGROUND: DDX3 is a protein with RNA helicase activity that is involved in a variety of biological processes, and it is an important protein target for the development of broad-spectrum antiviral drugs, multiple cancers and chronic inflammation. OBJECTIVES: The objective of this study is to establish a simple and efficient method to express and purify DDX3 protein in E. coli, and the recombinant DDX3 should maintain helicase activity for further tailor-made screening and biochemical function validation. METHODS: DDX3 cDNA was simultaneously cloned into pET28a-TEV and pNIC28-Bsa4 vectors and transfected into E. coli BL21 (DE3) to compare one suitable prokaryotic expression system. The 6×His-tag was fused to the C-terminus of DDX3 to form a His-tagging DDX3 fusion protein for subsequent purification. Protein dissolution buffer and purification washing conditions were optimized. The His-tagged DDX3 protein would bind with the Ni-NTA agarose by chelation and collected by affinity purification. The 6×His-tag fused with N-terminal DDX3 was eliminated from DDX3 by TEV digestion. A fine purification of DDX3 was performed by gel filtration chromatography. RESULTS: The recombinant plasmid pNIC28-DDX3, which contained a 6×His-tag and one TEV cleavage site at the N terminal of DDX3 sequence, was constructed for DDX3 prokaryotic expression and affinity purification based on considering the good solubility of the recombinant His-tagging DDX3, especially under 0.5 mM IPTG incubation at 18°C for 18 h to obtain more soluble DDX3 protein. Finally, the exogenous recombinant DDX3 protein was obtained with more than 95% purity by affinity purification on the Ni-NTA column and removal of miscellaneous through gel filtration chromatography. The finely-purified DDX3 still retained its ATPase activity. CONCLUSION: A prokaryotic expression pNIC28-DDX3 system is constructed for efficient expression and affinity purification of bioactive DDX3 protein in E. coli BL21(DE3), which provides an important high-throughput screening and validation of drugs targeting DDX3.


Asunto(s)
Cromatografía de Afinidad , ARN Helicasas DEAD-box , Escherichia coli , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Clonación Molecular , Expresión Génica
19.
Chemosphere ; 352: 141242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280648

RESUMEN

Biomass burning is a significant source of particulate matter (PM) in ambient air and its accurate source apportionment is a major concern for air quality. The discrimination between residential wood heating (RWH) and garden green waste burning (GWB) particulate matter (PM) is rarely achieved. The objective of this work was to evaluate the potential of non-targeted screening (NTS) analyses using HRMS (high resolution mass spectrometry) data to reveal discriminating potential molecular markers of both sources. Two residential wood combustion appliances (wood log stove and fireplace) were tested under different output conditions and wood moisture content. GWB experiments were carried out using two burning materials (fallen leaves and hedge trimming). PM samples were characterized using NTS approaches with both LC- and GC-HRMS (liquid and gas chromatography-HRMS). The analytical procedures were optimized to detect as many species as possible. Chemical fingerprints obtained were compared combining several multivariate statistical analyses (PCA, HCA and PLS-DA). Results showed a strong impact of the fuel nature and the combustion quality on the chemical fingerprints. 31 and 4 possible markers were discovered as characteristic of GWB and RWH, respectively. Complementary work was attempted to identify potential molecular formulas of the different potential marker candidates. The combination of HRMS NTS chemical characterization with multivariate statistical analyses shows promise for uncovering organic aerosol fingerprinting and discovering potential PM source markers.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Jardines , Madera/química , Calefacción , Cromatografía de Gases y Espectrometría de Masas , Material Particulado/análisis , Monitoreo del Ambiente
20.
Chinese Journal of Biologicals ; (12): 751-755+762, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1032206

RESUMEN

@#Objective To optimize the expression conditions(expression and induction conditions)and purification methods(non-denaturing and denaturing purification)of recombinant Hq001 protein in salivary glands of Haemaphysalis qinghaiensis.Methods The recombinant plasmid pET-30a-Hq001 was transformed into competent cells E.coil BL21(DE3),E.coil Rosetta(DE3)and E.coil ArcticExpress(DE3)pRARE2 respectively for the selection of an optimal expression strain.The final concentration of IPTG(0,0.5,1.0 mmol/L),induction temperature(20,25 ℃)and induction time(0,2,4,6,8 h)were optimized.The recombinant bacteria expressed under the ideal induction condition were homogenized by French press and the target protein was purified by passing through a Ni-NTA affinity chromatography column under either native(denaturationrenaturation-column chromatography)or denatured conditions(denaturation-column chromatography-renaturation).The purified products were analyzed by 12% SDS-PAGE.Results E.coil BL21(DE3)was proved to be the most suitable strain for the expression of recombinant Hq001 protein.The optimum induction condition was induction with 0.5 mmol/L IPTG for 4 h at 25 ℃.The target protein with a relative molecular mass of approximately 18 800 was obtained by non-denaturing purification method,and the size was consistent with the expectation.Conclusion The recombinant protein rHq001 in salivary glands of Haemaphysalis qinghaiensis can be obtained by the optimized expression conditions and purification methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA