Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.057
Filtrar
1.
Mol Ther Nucleic Acids ; 35(3): 102304, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39281707

RESUMEN

Nanobodies are emerging as critical tools for drug design. Several have been recently created to serve as inhibitors of severe acute respiratory syndrome coronavirus s (SARS-CoV-2) entry in the host cell by targeting surface-exposed spike protein. Here we have established a pipeline that instead targets highly conserved viral proteins made only after viral entry into the host cell when the SARS-CoV-2 RNA-based genome is translated. As proof of principle, we designed nanobodies against the SARS-CoV-2 non-structural protein (Nsp)9, which is required for viral genome replication. One of these anti-Nsp9 nanobodies, 2NSP23, previously characterized using immunoassays and nuclear magnetic resonance spectroscopy for epitope mapping, was expressed and found to block SARS-CoV-2 replication specifically. We next encapsulated 2NSP23 nanobody into lipid nanoparticles (LNPs) as mRNA. We show that this nanobody, hereby referred to as LNP-mRNA-2NSP23, is internalized and translated in cells and suppresses multiple SARS-CoV-2 variants, as seen by qPCR and RNA deep sequencing. These results are corroborated in three-dimensional reconstituted human epithelium kept at air-liquid interface to mimic the outer surface of lung tissue. These observations indicate that LNP-mRNA-2NSP23 is internalized and, after translation, it inhibits viral replication by targeting Nsp9 in living cells. We speculate that LNP-mRNA-2NSP23 may be translated into an innovative strategy to generate novel antiviral drugs highly efficient across coronaviruses.

2.
Int J Biol Macromol ; 279(Pt 2): 135274, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226976

RESUMEN

Stress granules (SGs) are cytoplasmic aggregates of proteins and mRNA that form in response to diverse environmental stressors, including viral infections. Several viruses possess the ability to block the formation of stress granules by targeting the SGs marker protein G3BP. However, the molecular functions and mechanisms underlying the regulation of SGs formation by Getah virus (GETV) remain unclear. In this study, we found that GETV infection triggered the formation of Nsp3-G3BP aggregates, which differed in composition from SGs. Further studies revealed that the presence of these aggregates was dependent on the activation of the PKR/eIF2α signaling pathway. Interestingly, we found that Nsp3 HVD domain blocked the formation of SGs by binding to G3BP NTF2 domain. Moreover, knockout of G3BP in NCI-H1299 cells had no effect on GETV replication, while overexpression of G3BP to form the genuine SGs significantly inhibited GETV replication. Overall, our study elucidates a novel role GETV Nsp3 to change the composition of SG as well as cellular stress response.

3.
FEMS Microbiol Rev ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231808

RESUMEN

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 non-structural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.

4.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282446

RESUMEN

Coronavirus (CoV) Nsp15 is a viral endoribonuclease (EndoU) with a preference for uridine residues. CoV Nsp15 is an innate immune antagonist which prevents dsRNA sensor recognition and stress granule formation by targeting viral and host RNAs. SARS-CoV-2 restricts and delays the host antiviral innate immune responses through multiple viral proteins, but the role of SARS-CoV-2 Nsp15 in innate immune evasion is not completely understood. Here, we generate an EndoU activity knockout rSARS-CoV-2Nsp15-H234A to elucidate the biological functions of Nsp15. Relative to wild-type rSARS-CoV-2, replication of rSARS-CoV-2Nsp15-H234A was significantly decreased in IFN-responsive A549-ACE2 cells but not in its STAT1 knockout counterpart. Transcriptomic analysis revealed upregulation of innate immune response genes in cells infected with rSARS-CoV-2Nsp15-H234A relative to wild-type virus, including cGAS-STING, cytosolic DNA sensors activated by both DNA and RNA viruses. Treatment with STING inhibitors H-151 and SN-011 rescued the attenuated phenotype of rSARS-CoV-2Nsp15-H234A. SARS-CoV-2 Nsp15 inhibited cGAS-STING-mediated IFN-ß promoter and NF-κB reporter activity, as well as facilitated the replication of EV-D68 and NDV by diminishing cGAS and STING expression and downstream innate immune responses. Notably, the decline in cGAS and STING was also apparent during SARS-CoV-2 infection. The EndoU activity was essential for SARS-CoV-2 Nsp15-mediated cGAS and STING downregulation, but not all HCoV Nsp15 share the consistent substrate selectivity. In the hamster model, rSARS-CoV-2Nsp15-H234A replicated to lower titers in the nasal turbinates and lungs and induced higher innate immune responses. Collectively, our findings exhibit that SARS-CoV-2 Nsp15 serves as a host innate immune antagonist by targeting host cGAS and STING.

5.
ChemMedChem ; : e202400618, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258386

RESUMEN

Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.

6.
J Virol ; : e0081624, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264156

RESUMEN

Viruses employ various evasion strategies to establish prolonged infection, with evasion of innate immunity being particularly crucial. Porcine reproductive and respiratory syndrome virus (PRRSV) is a significant pathogen in swine industry, characterized by reproductive failures in sows and respiratory distress in pigs of all ages, leading to substantial economic losses globally. In this study, we found that the non-structural protein 5 (Nsp5) of PRRSV antagonizes innate immune responses via inhibiting the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs), which is achieved by degrading multiple proteins of RIG-I-like receptor (RLR) signaling pathway (RIG-I, MDA5, MAVS, TBK1, IRF3, and IRF7). Furthermore, we showed that PRRSV Nsp5 is located in endoplasmic reticulum (ER), where it promotes accumulation of RLR signaling pathway proteins. Further data demonstrated that Nsp5 activates reticulophagy (ER-phagy), which is responsible for the degradation of RLR signaling pathway proteins and IFN-I production. Mechanistically, Nsp5 interacts with one of the ER-phagy receptor family with sequence similarity 134 member B (FAM134B), promoting the oligomerization of FAM134B. These findings elucidate a novel mechanism by which PRRSV utilizes FAM134B-mediated ER-phagy to elude host antiviral immunity.IMPORTANCEInnate immunity is the first line of host defense against viral infections. Therefore, viruses developed numerous mechanisms to evade the host innate immune responses for their own benefit. PRRSV, one of the most important endemic swine viruses, poses a significant threat to the swine industry worldwide. Here, we demonstrate for the first time that PRRSV utilizes its non-structural protein Nsp5 to degrade multiple proteins of RLR signaling pathways, which play important roles in IFN-I production. Moreover, FAM134B-mediated ER-phagy was further proved to be responsible for the protein's degradation. Our study highlights the critical role of ER-phagy in immune evasion of PRRSV to favor replication and provides new insights into the prevention and control of PRRSV.

7.
Eur J Med Chem ; 278: 116808, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39236495

RESUMEN

Chikungunya virus (CHIKV) is responsible for the most endemic alphavirus infections called Chikungunya. The endemicity of Chikungunya has increased over the past two decades, and it is a pathogen with pandemic potential. There is currently no approved direct-acting antiviral to treat the disease. As part of our antiviral drug discovery program focused on alphaviruses and the non-structural protein 2 protease, we discovered that J12 and J13 can inhibit CHIKV nsP2 protease and block the replication of CHIKV in cell cultures. Both compounds are metabolically stable to human liver microsomal and S9 enzymes. J13 has excellent oral bioavailability in pharmacokinetics studies in mice and ameliorated Chikungunya symptoms in preliminary efficacy studies in mice. J13 exhibited an excellent safety profile in in vitro safety pharmacology and off-target screening assays, making J13 and its analogs good candidates for drug development against Chikungunya.


Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Modelos Animales de Enfermedad , Animales , Virus Chikungunya/efectos de los fármacos , Ratones , Fiebre Chikungunya/tratamiento farmacológico , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/síntesis química , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga , Estructura Molecular , Cisteína Endopeptidasas/metabolismo , Microsomas Hepáticos/metabolismo , Replicación Viral/efectos de los fármacos
8.
Sci Rep ; 14(1): 20697, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237598

RESUMEN

Human coronaviruses (hCoVs) infect millions of people every year. Among these, MERS, SARS-CoV-1, and SARS-CoV-2 caused significant morbidity and mortality and their emergence highlights the risk of possible future coronavirus outbreaks. Therefore, broadly-active anti-coronavirus drugs are needed. Pharmacological inhibition of the hCoV protease Nsp5 (3CLpro) is clinically beneficial as shown by the wide and effective use of Paxlovid (nirmatrelvir, ritonavir). However, further treatment options are required due to the risk of drug resistance. To facilitate the assessment of coronavirus protease function and its pharmacological inhibition, we developed an assay allowing rapid and reliable quantification of Nsp5 activity under biosafety level 1 conditions. It is based on an ACE2-Gal4 transcription factor fusion protein separated by a Nsp5 recognition site. Cleavage by Nsp5 releases the Gal4 transcription factor, which then induces the expression of Gaussia luciferase. Our assay is compatible with Nsp5 proteases from all hCoVs and allows simultaneous measurement of inhibitory and cytotoxic effects of the tested compounds. Proof-of-concept measurements confirmed that nirmatrelvir, GC376 and lopinavir inhibit SARS-CoV-2 Nsp5 function. Furthermore, the assay accurately predicted the impact of Nsp5 mutations on catalytic activity and inhibitor sensitivity. Overall, the reporter assay is suitable for evaluating viral protease activity.


Asunto(s)
Proteasas 3C de Coronavirus , Luciferasas , Humanos , Luciferasas/metabolismo , Luciferasas/genética , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Genes Reporteros , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Antivirales/farmacología , Células HEK293
9.
Virology ; 600: 110213, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39265448

RESUMEN

Porcine reproductive and respiratory syndrome (PRRS) significantly impacts the global swine industry. Sichuan province, a key pig breeding center in China, has limited data on the molecular epidemiology of PRRS Virus (PRRSV). To address this, 1618 suspected PRRSV samples were collected from 2021 to 2023, with a prevalence rate of 39.74% (643/1618). Phylogenetic analysis showed PRRSV-2 as dominant (95.65%, 615/643), with PRRSV-1 at 4.35% (28/643). PRRSV-2 strains were further classified into NADC30-like (74.18%), NADC34-like (11.98%), C-PRRSV (5.44%), and HP-PRRSV (4.04%). The significant change in the proportions of different lineages indicates genomic divergence. NADC30-like strains exhibited significant amino acid mutations in ORF5, aiding immune evasion. Recombination analysis revealed complex patterns, primarily involving NADC30-like strains. This study highlights the genomic divergence of PRRSV in Sichuan, with NADC30-like strains becoming predominant and emerging strains like NADC34-like showing potential for further spread.

10.
Mol Immunol ; 175: 1-9, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265360

RESUMEN

The NSP14 protein of SARS-CoV-2 not only facilitates viral replication but also plays a pivotal role in activating the host immune system by enhancing cytokine production. In this study, we found that NSP14 markedly activated the activator protein 1 (AP-1) pathway by increasing the phosphorylation of ERK (p-ERK), which enters the nucleus and promotes AP-1 transcription. The screening of the main proteins of the ERK pathway revealed that NSP14 could interact with MEK, a kinase of ERK, and increase the level of phosphorylated MEK. The addition of the MEK inhibitor U0126 suppressed the level of p-ERK induced by NSP14 and partly blocked cytokine production, suggesting that NSP14 activates MEK to enhance AP-1 signaling. Further investigation demonstrated that the ExoN domain of NSP14 might be crucial for the interaction and activation of MEK. These results suggest a novel mechanism by which NSP14 of SARS-CoV-2 induces a proinflammatory response in the host.

11.
Cell Signal ; 124: 111387, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251053

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19). Severe and fatal COVID-19 cases often display cytokine storm i.e. significant elevation of pro-inflammatory cytokines and acute respiratory distress syndrome (ARDS) with systemic hypoxia. Understanding the mechanisms of these pathogenic manifestations would be essential for the prevention and especially treatment of COVID-19 patients. Here, using a dual luciferase reporter assay for hypoxia-response element (HRE), we initially identified SARS-CoV-2 nonstructural protein 5 (NSP5), NSP16, and open reading frame 3a (ORF3a) to upregulate hypoxia-inducible factor-1α (HIF-1α) signaling. Further experiments showed NSP16 to have the most prominent effect on HIF-1α, thus contributing to the induction of COVID-19 associated pro-inflammatory response. We demonstrate that NSP16 interrupts von Hippel-Lindau (VHL) protein interaction with HIF-1α, thereby inhibiting ubiquitin-dependent degradation of HIF-1α and allowing it to bind HRE region in the IL-6 promoter region. Taken together, the findings imply that SARS-CoV-2 NSP16 induces HIF-1α expression, which in turn exacerbates the production of IL-6.

12.
J Med Virol ; 96(9): e29891, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39223933

RESUMEN

The ubiquitin-proteasome system is frequently employed to degrade viral proteins, thereby inhibiting viral replication and pathogenicity. Through an analysis of the degradation kinetics of all the SARS-CoV-2 proteins, our study revealed rapid degradation of several proteins, particularly NSP5. Additionally, we identified FBXO22, an E3 ubiquitin ligase, as the primary regulator of NSP5 ubiquitination. Moreover, we validated the interaction between FBXO22 and NSP5, demonstrating that FBXO22-mediated ubiquitination of NSP5 facilitated its recognition by the proteasome, leading to subsequent degradation. Specifically, FBXO22 catalyzed the formation of K48-linked polyubiquitin chains on NSP5 at lysine residues 5 and 90. Knockdown of FBXO22 resulted in decreased NSP5 ubiquitination levels, increased stability, and enhanced ability to evade the host innate immune response. Notably, the protein level of FBXO22 were negatively correlated with SARS-CoV-2 load, highlighting its importance in inhibiting viral replication. This study elucidates the molecular mechanism by which FBXO22 mediates the degradation of NSP5 and underscores its critical role in limiting viral replication. The identification of FBXO22 as a regulator of NSP5 stability provides new insights and potential avenues for targeting NSP5 in antiviral strategies.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , SARS-CoV-2 , Ubiquitinación , Replicación Viral , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , COVID-19/virología , COVID-19/metabolismo , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteolisis , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Receptores Citoplasmáticos y Nucleares
13.
Viruses ; 16(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39205192

RESUMEN

The SARS-CoV-2 main protease (Mpro) is initially synthesized as part of polyprotein precursors that undergo autoproteolysis to release the free mature Mpro. To investigate the autoprocessing mechanism in transfected mammalian cells, we examined several fusion precursors, with the mature SARS-CoV-2 Mpro along with the flanking amino acids (to keep the native substrate sequences) sandwiched between different tags. Our analyses revealed differential proteolysis kinetics at the N- and C-terminal cleavage sites. Particularly, N-terminal processing is differentially influenced by various upstream fusion tags (GST, sGST, CD63, and Nsp4) and amino acid variations at the N-terminal P1 position, suggesting that precursor catalysis is flexible and subject to complex regulation. Mutating Q to E at the N-terminal P1 position altered both precursor catalysis and the properties of the released Mpro. Interestingly, the wild-type precursors exhibited different enzymatic activities compared to those of the released Mpro, displaying much lower susceptibility to known inhibitors targeting the mature form. These findings suggest the precursors as alternative targets for antiviral development. Accordingly, we developed and validated a high-throughput screening (HTS)-compatible platform for functional screening of compounds targeting either the N-terminal processing of the SARS-CoV-2 Mpro precursor autoprocessing or the released mature Mpro through different mechanisms of action.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , SARS-CoV-2 , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/metabolismo , Antivirales/química , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/química , Proteolisis , Células HEK293 , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
14.
J Virol ; 98(9): e0097524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194242

RESUMEN

Rotaviruses (RVs) are classified into nine species, A-D and F-J, with species A being the most studied. In rotavirus of species A (RVA), replication occurs in viroplasms, which are cytosolic globular inclusions composed of main building block proteins NSP5, NSP2, and VP2. The co-expression of NSP5 with either NSP2 or VP2 in uninfected cells leads to the formation of viroplasm-like structures (VLSs). Although morphologically identical to viroplasms, VLSs do not produce viral progeny but serve as excellent tools for studying complex viroplasms. A knowledge gap exists regarding non-RVA viroplasms due to the lack of specific antibodies and suitable cell culture systems. In this study, we explored the ability of NSP5 and NSP2 from non-RVA species to form VLSs. The co-expression of these two proteins led to globular VLSs in RV species A, B, D, F, G, and I, while RVC formed filamentous VLSs. The co-expression of NSP5 and NSP2 of RV species H and J did not result in VLS formation. Interestingly, NSP5 of all RV species self-oligomerizes, with the ordered C-terminal region, termed the tail, being necessary for self-oligomerization of RV species A-C and G-J. Except for NSP5 from RVJ, all NSP5 interacted with their cognate NSP2. We also found that interspecies VLS are formed between closely related RV species B with G and D with F. Additionally, VLS from RVH and RVJ formed when the tail of NSP5 RVH and RVJ was replaced by the tail of NSP5 from RVA and co-expressed with their respective NSP2. IMPORTANCE: Rotaviruses (RVs) are classified into nine species, A-D and F-J, infecting mammals and birds. Due to the lack of research tools, all cumulative knowledge on RV replication is based on RV species A (RVA). The RV replication compartments are globular cytosolic structures named viroplasms, which have only been identified in RV species A. In this study, we examined the formation of viroplasm-like structures (VLSs) by the co-expression of NSP5 with NSP2 across RV species A to J. Globular VLSs formed for RV species A, B, D, F, G, and I, while RV species C formed filamentous structures. The RV species H and J did not form VLS with their cognates NSP5 and NSP2. Similar to RVA, NSP5 self-oligomerizes in all RV species, which is required for VLS formation. This study provides basic knowledge of the non-RVA replication mechanisms, which could help develop strategies to halt virus infection across RV species.


Asunto(s)
Rotavirus , Proteínas no Estructurales Virales , Replicación Viral , Rotavirus/genética , Rotavirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Animales , Humanos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Infecciones por Rotavirus/virología , Proteínas de Unión al ARN
15.
SLAS Discov ; 29(6): 100180, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39173831

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for nearly 7 million deaths worldwide since its outbreak in late 2019. Even with the rapid development and production of vaccines and intensive research, there is still a huge need for specific anti-viral drugs that address the rapidly arising new variants. To address this concern, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) Centers, tasked with exploring approaches to target pathogens with pandemic potential, including SARS-CoV-2. In this study, we sought inhibitors of SARS-CoV2 non-structural protein 13 (nsP13) as potential antivirals, first developing a HTS-compatible assay to measure SARS-CoV2 nsP13 helicase activity. Here we present our effort in implementing the assay in a 1,536 well-plate format and in identifying nsP13 inhibitor hit compounds from a ∼650,000 compound library. The primary screen was robust (average Z' = 0.86 ± 0.05) and resulted in 7,009 primary hits. 1,763 of these compounds upon repeated retests were further confirmed, showing consistent inhibition. Following in-silico analysis, an additional orthogonal assay and titration assays, we identified 674 compounds with IC50 <10 µM. We confirmed activity of independent compound batches from de novo powders while also incorporating multiple counterscreen assays. Our study highlights the potential of this assay for use on HTS platforms to discover novel compounds inhibiting SARS-CoV2 nsP13, which merit further development as an effective SARS-CoV2 antiviral.


Asunto(s)
Antivirales , Ensayos Analíticos de Alto Rendimiento , ARN Helicasas , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/farmacología , Humanos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Descubrimiento de Drogas/métodos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Simulación del Acoplamiento Molecular , Metiltransferasas
16.
Microb Pathog ; 195: 106873, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173850

RESUMEN

As one of the most important swine enteropathogenic coronavirus, porcine epidemic diarrhea virus (PEDV) is the causative agent of an acute and devastating enteric disease that causes lethal watery diarrhea in suckling piglets. Recent progress in studying PEDV has revealed many intriguing findings on its prevalence and genetic evolution, rapid diagnosis, suppression of host gene expression, and suppression of the host innate immune system. Due to the continuous mutation of the PEDV genome, viral evasions from innate immune defenses and mixed infection with other coronaviruses, the spread of the virus is becoming wider and faster, making it even more necessary to prevent the infections caused by wild-type PEDV variants. It has also been reported that PEDV nsp1 is an essential virulence determinant and is critical for inhibiting host gene expression by structural and biochemical analyses. The inhibition of host protein synthesis employed by PEDV nsp1 may contribute to the regulation of host cell proliferation and immune evasion-related biological functions. In this review, we critically evaluate the recent studies on these aspects of PEDV and assess prospects in understanding the function of PEDV proteins in regulating host innate immune response and viral virulence.


Asunto(s)
Infecciones por Coronavirus , Evasión Inmune , Inmunidad Innata , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/inmunología , Virus de la Diarrea Epidémica Porcina/patogenicidad , Animales , Porcinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Virulencia/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Interacciones Huésped-Patógeno/inmunología , Factores de Virulencia/genética
17.
Virology ; 598: 110195, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089050

RESUMEN

Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.


Asunto(s)
Enfermedades de los Bovinos , Genoma Viral , Genotipo , Filogenia , Recombinación Genética , Infecciones por Rotavirus , Rotavirus , Toxinas Biológicas , Proteínas no Estructurales Virales , Animales , Bovinos , Rotavirus/genética , Rotavirus/clasificación , Rotavirus/aislamiento & purificación , Bangladesh/epidemiología , Proteínas no Estructurales Virales/genética , Humanos , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/epidemiología , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Estudios Transversales , Toxinas Biológicas/genética , Glicoproteínas/genética
18.
Biologicals ; 87: 101785, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39121525

RESUMEN

Diagnostic assays that are able to detect foot-and-mouth disease (FMD) virus infection in the vaccinated population are essential tools in the progressive control pathway for the FMD. However, testing of serum samples using a single diagnostic assay may not completely substantiate freedom from the virus infection. Therefore, viral non-structural proteins (NSPs)-based various serological assays have been developed for the detection of FMD infection. Nevertheless, the NSPs-based ELISAs have been developed in the indirect-ELISA format, thereby necessitating the use of species-specific conjugated secondary-antibodies for the detection of anti-NSP antibodies in various FMD-susceptible species. Therefore, this study presents a novel recombinant 2B-NSP-based indirect ELISA, employing HRP-conjugated protein-A/G detection system which can detect anti-NSPs antibodies from multiple FMD-susceptible species in a single ELISA platform. Recombinant 2B (r2B) protein was expressed as His-SUMO tagged protein in the E. Coli cells and purified using NI-NTA affinity column chromatography. Using the r2B protein and HRP-conjugated protein A/G, an indirect ELISA was developed and validated for the detection of anti-2B antibodies in serum samples collected from multiple FMD-susceptible animal species with known FMD status. Further, a resampling based statistical technique has been reported for determination of optimal cut-off value for the diagnostic assay. Through this technique, the optimal cut-off of 44 percentage of positivity value was determined for the assay. At this optimal cut-off value, the developed diagnostic assay provided diagnostic sensitivity, specificity, and accuracy, positive and negative predictive values (PPV and NPV) of 92.35 %, 98.41 %, 95.21 %, 98.58 %, and 91.67 %, respectively. The assay was validated further by analyzing random serum samples collected across multi-locations in India. The assay can be used as a single platform for testing serum samples from different species of FMDV-susceptible animals and will be useful for NSP-based serosurveillance of FMDV.


Asunto(s)
Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática , Virus de la Fiebre Aftosa , Fiebre Aftosa , Proteínas no Estructurales Virales , Virus de la Fiebre Aftosa/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Animales , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/inmunología , Fiebre Aftosa/sangre , Fiebre Aftosa/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Proteínas no Estructurales Virales/inmunología , Bovinos , Proteínas Recombinantes/inmunología , Porcinos , Especificidad de la Especie
19.
PNAS Nexus ; 3(8): pgae321, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39161732

RESUMEN

Myc is a major driver of tumor initiation, progression, and maintenance. Up-regulation of Myc protein level rather than acquisition of neomorphic properties appears to underlie most Myc-driven cancers. Cellular mechanisms governing Myc expression remain incompletely defined. In this study, we show that ribosome-associated quality control (RQC) plays a critical role in maintaining Myc protein level. Ribosomes stall during the synthesis of the N-terminal portion of cMyc, generating aberrant cMyc species and necessitating deployment of the early RQC factor ZNF598 to handle translational stress and restore cMyc translation. ZNF598 expression is up-regulated in human glioblastoma (GBM), and its expression positively correlates with that of cMyc. ZNF598 knockdown inhibits human GBM neurosphere formation in cell culture and Myc-dependent tumor growth in vivo in Drosophila. Intriguingly, the SARS-COV-2-encoded translational regulator Nsp1 impinges on ZNF598 to restrain cMyc translation and consequently cMyc-dependent cancer growth. Remarkably, Nsp1 exhibits synthetic toxicity with the translation and RQC-related factor ATP-binding cassette subfamily E member 1, which, despite its normally positive correlation with cMyc in cancer cells, is co-opted by Nsp1 to down-regulate cMyc and inhibit tumor growth. Ribosome stalling during c-myc translation thus offers actionable cancer cell vulnerability.

20.
Arch Biochem Biophys ; 759: 110111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111614

RESUMEN

Chikungunya virus (CHIKV), transmitted by mosquitoes, poses a significant global health threat. Presently, no effective treatment options are available to reduce the disease burden. The lack of approved therapeutics against CHIKV and the complex spectrum of chronic musculoskeletal and neurological manifestations raise significant concerns, and repurposing drugs could offer swift avenues in the development of effective treatment strategies. RNA capping is a crucial step meditated by non-structural protein 1 (nsP1) in CHIKV replication. In this study, FDA-approved antivirals targeting CHIKV nsP1 methyltransferase (MTase) have been identified by structure-based virtual screening. Berbamine Hydrochloride (BH), ABT199/Venetoclax (ABT), and Ponatinib (PT) were the top-hits, which exhibited robust binding energies. Tryptophan fluorescence spectroscopy-based assay confirmed binding of BH-, ABT-, and PT to purified nsP1 with KD values ∼5.45 µM, ∼161.3 µM, and ∼3.83 µM, respectively. In a capillary electrophoresis-based assay, a decrease in CHIKV nsP1 MTase activity was observed in a dose-dependent manner. Treatment with BH, ABT, and PT lead to a dose-dependent reduction in the virus titer with IC50 < 100, ∼6.75, and <3.9 nM, respectively, and reduced viral mRNA levels. The nsP1 MTases are highly conserved among alphaviruses; therefore, BH, ABT, and PT, as expected, inhibited replication machinery in Sindbis virus (SINV) replicon assay with IC50 ∼1.94, ∼0.23, and >1.25 µM, respectively. These results highlight the potential of repurposing drugs as rapid and effective antiviral therapeutics against CHIKV.


Asunto(s)
Antivirales , Virus Chikungunya , Metiltransferasas , Antivirales/farmacología , Antivirales/química , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Virus Chikungunya/efectos de los fármacos , Animales , Sulfonamidas/farmacología , Sulfonamidas/química , Humanos , Piridazinas/farmacología , Piridazinas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Replicación Viral/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/química , Bencilisoquinolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA