Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Braz. J. Pharm. Sci. (Online) ; 59: e23017, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1505848

RESUMEN

Abstract Infusion solutions must be stable from the production stage until the infusion stage. Some infusion fluids contain degradation products, known as advanced glycation end products (AGEs); however, it is unknown whether AGEs exist in parenteral nutrition solutions. We aimed to investigate this question and test the effect of infusion conditions on AGE formation in parenteral nutrition solution. Nine parenteral nutrition solutions were supplied by the pharmacy with which we collaborated. To simulate the infusion conditions, the solutions were held in a patient room with standard lighting and temperature for 24 hours. Samples were taken at the beginning (group A) and the end (24th hour, group B) of the infusion period. The degradation products were 3-deoxyglucosone, pentosidine, N-carboxymethyl lysine, and 4-hydroxynonenal, which we investigated by high-performance liquid chromatography-mass spectrometry (LC-MS) and Q-TOF LC/MS methods. Two of four degradation products, 4-hydroxynonenal and N-carboxymethyl lysine, were detected in all samples, and Group B had higher levels of both compounds compared to Group A, who showed that the quantities of these compounds increased in room conditions over time. The increase was significant for 4-hydroxynonenal (p=0.03), but not for N-carboxymethyl lysine (p=0.23). Moreover, we detected in the parenteral nutrition solutions a compound that could have been 4-hydroxy-2-butynal or furanone


Asunto(s)
Nutrición Parenteral/efectos adversos , Productos Finales de Glicación Avanzada/análisis , Soluciones para Nutrición Parenteral/administración & dosificación , Farmacia/clasificación , Espectrometría de Masas/métodos , Habitaciones de Pacientes/clasificación , Iluminación/clasificación , Cromatografía Líquida de Alta Presión/métodos
2.
Inflammation ; 45(2): 477-496, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34787800

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory, autoimmune disease that gradually affects the synovial membrane and joints. Many intrinsic and/or extrinsic factors are crucial in making RA pathology challenging throughout the disease. Substantial enzymatic or non-enzymatic modification of proteins driving inflammation has gained a lot of interest in recent years. Endogenously modified glycated protein influences disease development linked with AGEs/non-AGEs and is reported as a disease marker. In this review, we summarized current knowledge of the differential abundance of glycated proteins by compiling and analyzing a variety of AGE and non-AGE ligands that bind with RAGE to activate multi-faceted inflammatory and oxidative stress pathways that are pathobiologically associated with RA-fibroblast-like synoviocytes (RA-FLS). It is critical to comprehend the connection between oxidative stress and inflammation generation, mediated by glycated protein, which may bind to the receptor RAGE, activate downstream pathways, and impart immunogenicity in RA. It is worth noting that AGEs and non-AGEs ligands play a variety of functions, and their functionality is likely to be more reliant on pathogenic states and severity that may serve as biomarkers for RA. Screening and monitoring of these differentially glycated proteins, as well as their stability in circulation, in combination with established pre-clinical characteristics, may aid or predict the onset of RA.


Asunto(s)
Artritis Reumatoide , Sinoviocitos , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamación/metabolismo , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
3.
JACC Basic Transl Sci ; 5(8): 755-766, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32875167

RESUMEN

Valvular heart diseases are associated with significant cardiovascular morbidity and mortality, and often require surgical and/or percutaneous repair or replacement. Valve replacement is limited to mechanical and biological prostheses, the latter of which circumvent the need for lifelong anticoagulation but are subject to structural valve degeneration (SVD) and failure. Although calcification is heavily studied, noncalcific SVD, which represent roughly 30% of BHV failures, is relatively underinvestigated. This original work establishes 2 novel and interacting mechanisms-glycation and serum albumin incorporation-that occur in clinical valves and are sufficient to induce hallmarks of structural degeneration as well as functional deterioration.

4.
Nutrients ; 12(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963378

RESUMEN

Endothelial dysfunction and intima-media thickness of common carotid arteries (IMT-CC) are considered subclinical markers of atherosclerotic cardiovascular disease (ASCVD). Advanced glycation end products (AGEs) are increased in type 2 diabetes mellitus (T2DM) patients, compared with non-diabetics, being implicated in micro- and macrovascular complications. Our aim was to compare serum AGEs levels and subclinical atherosclerotic markers between patients with established and newly diagnosed T2DM. Among 540 patients with T2DM and coronary heart disease from the CORDIOPREV study, 350 patients had established T2DM and 190 patients had newly diagnosed T2DM. Serum levels of AGEs (methylglyoxal (MG) and N-carboxymethyl lysine (CML)) and subclinical atherosclerotic markers (brachial flow-mediated vasodilation (FMD) and IMT-CC) were measured. AGEs levels (all p < 0.001) and IMT-CC (p = 0.025) were higher in patients with established vs. newly diagnosed T2DM, whereas FMD did not differ between the two groups. Patients with established T2DM and severe endothelial dysfunction (i.e., FMD < 2%) had higher serum MG levels, IMT-CC, HOMA-IR and fasting insulin levels than those with newly diagnosed T2DM and non-severe endothelial dysfunction (i.e., FMD ≥ 2%) (all p < 0.05). Serum CML levels were greater in patients with established vs. newly diagnosed T2DM, regardless of endothelial dysfunction severity. Serum AGEs levels and IMT-CC were significantly higher in patients with established vs. newly diagnosed T2DM, highlighting the progressively increased risk of ASCVD in the course of T2DM. Establishing therapeutic strategies to reduce AGEs production and delay the onset of cardiovascular complications in newly diagnosed T2DM patients or minimize ASCVD risk in established T2DM patients is needed.


Asunto(s)
Enfermedades de las Arterias Carótidas/sangre , Enfermedades de las Arterias Carótidas/fisiopatología , Enfermedad Coronaria/sangre , Enfermedad Coronaria/fisiopatología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/fisiopatología , Productos Finales de Glicación Avanzada/sangre , Vasodilatación , Biomarcadores/sangre , Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Enfermedades de las Arterias Carótidas/dietoterapia , Enfermedad Coronaria/diagnóstico por imagen , Enfermedad Coronaria/dietoterapia , Estudios Transversales , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/dietoterapia , Dieta Saludable , Femenino , Humanos , Lisina/análogos & derivados , Lisina/sangre , Masculino , Persona de Mediana Edad , Aceite de Oliva/administración & dosificación , Piruvaldehído/sangre , Método Simple Ciego
5.
J Appl Biomed ; 17(3): 190-197, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34907701

RESUMEN

The advanced glycated end products (AGEs) are formed in the diabetic patients; it is a major cause of macrovascular and microvascular complications in diabetes. Clinically there is no treatment available for the AGEs. Stveoside (Stv), a sweetener has potent anti-diabetic and anti-oxidant activity. Hence, we investigated its use in prevention of AGEs formation using in vitro and in vivo models. Diabetes was induced by streptozotocin (STZ). These rats were kept without treatment till blood HbA1c was markedly increased. They were then divided into 5 groups and treated orally with vehicle or Metformin (MET) or Stv respectively for 28 days. Every 7th day, animals were tested for body weight and blood glucose (BG). On the last day of treatment, all the groups were evaluated for physiological and biochemical parameters, histopathology and AGEs; N-carboxymethyl-lysine (CML) estimation. Stv showed inhibition of AGEs in in vitro as well as in in vivo respectively. Positive effects were seen on the BG, lipid profile and urine parameters as well it showed reduced formation of CML. It also showed antihyperglycaemic, antihyperlipedemic and nephroprotective activities. The present study provides scientific rationale for the use of Stv as a sweetener with additional benefits in diabetes.

6.
Neural Regen Res ; 13(8): 1368-1374, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30106048

RESUMEN

Our previous study showed an association between advanced glycation end products (AGEs) and neural tube defects (NTDs). To understand the molecular mechanisms underlying the effect of AGEs on neural tube development, C57BL/6 female mice were fed for 4 weeks with commercial food containing 3% advanced glycation end product bovine serum albumin (AGE-BSA) or 3% bovine serum albumin (BSA) as a control. After mating mice, oxidative stress markers including malondialdehyde and H2O2 were measured at embryonic day 7.5 (E7.5) of gestation, and the level of intracellular reactive oxygen species (ROS) in embryonic cells was determined at E8.5. In addition to evaluating NTDs, an enzyme-linked immunosorbent assay was used to determine the effect of embryonic protein administration on the N-(carboxymethyl) lysine reactivity of acid and carboxyethyl lysine antibodies at E10.5. The results showed a remarkable increase in the incidence of NTDs at E10.5 in embryos of mice fed with AGE-BSA (no hyperglycemia) compared with control mice. Moreover, embryonic protein administration resulted in a noticeable increase in the reactivity of N-(carboxymethyl) lysine and N(ε)-(carboxyethyl) lysine antibodies. Malondialdehyde and H2O2 levels in embryonic cells were increased at E7.5, followed by increased intracellular ROS levels at E8.5. Vitamin E supplementation could partially recover these phenomena. Collectively, these results suggest that AGE-BSA could induce NTDs in the absence of hyperglycemia by an underlying mechanism that is at least partially associated with its capacity to increase embryonic oxidative stress levels.

7.
Expert Rev Endocrinol Metab ; 5(6): 839-854, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30780826

RESUMEN

Obesity is an important contributor to the burden of insulin resistance, Type 2 diabetes and cardiovascular disease. An important mechanism by which excess adiposity causes obesity-associated complications is the dysregulated production and secretion of biologically active molecules derived from adipocytes. These adipokines affect the vascular wall and contribute to the development of insulin resistance and Type 2 diabetes. However, factors that cause an increased production of pro-inflammatory adipokines, while decreasing anti-inflammatory adipokines, have not been fully clarified. Owing to local conditions in adipose tissue, that is, increased fatty acids, hypoxia and oxidative stress, we speculate that an increased formation of the major advanced lipoxidation end product, Nε-(carboxymethyl)lysine (CML), may play a role. CML-adducts in proteins are major ligands for the receptor for advanced glycation end products (RAGE). The consequence of RAGE activation by CML is the activation of important signaling inflammatory pathways. The putative role of CML-modified proteins in obesity is addressed in this article. The identification of this pathway may provide an important strategy for novel therapeutic approaches against obesity-associated complications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA