Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
IEEE J Transl Eng Health Med ; 12: 600-612, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247844

RESUMEN

The integration of electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) can facilitate the advancement of brain-computer interfaces (BCIs). However, existing research in this domain has grappled with the challenge of the efficient selection of features, resulting in the underutilization of the temporal richness of EEG and the spatial specificity of fNIRS data.To effectively address this challenge, this study proposed a deep learning architecture called the multimodal DenseNet fusion (MDNF) model that was trained on two-dimensional (2D) EEG data images, leveraging advanced feature extraction techniques. The model transformed EEG data into 2D images using a short-time Fourier transform, applied transfer learning to extract discriminative features, and consequently integrated them with fNIRS-derived spectral entropy features. This approach aimed to bridge existing gaps in EEG-fNIRS-based BCI research by enhancing classification accuracy and versatility across various cognitive and motor imagery tasks.Experimental results on two public datasets demonstrated the superiority of our model over existing state-of-the-art methods.Thus, the high accuracy and precise feature utilization of the MDNF model demonstrates the potential in clinical applications for neurodiagnostics and rehabilitation, thereby paving the method for patient-specific therapeutic strategies.


Asunto(s)
Interfaces Cerebro-Computador , Aprendizaje Profundo , Electroencefalografía , Espectroscopía Infrarroja Corta , Humanos , Electroencefalografía/métodos , Espectroscopía Infrarroja Corta/métodos , Procesamiento de Señales Asistido por Computador , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Masculino , Femenino
2.
Geroscience ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276251

RESUMEN

Recent advances in computational modeling techniques have facilitated a more nuanced understanding of sleep neural dynamics across the lifespan. In this study, we tensorize multiscale multimodal electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals and apply Generalized Autoregressive Conditional Heteroskedasticity (GARCH) modeling to quantify interactions between age scales and the use of pharmacological sleep aids on sleep stage transitions. Our cohort consists of 22 subjects in a crossover design study, where each subject received both a sleep aid and a placebo in different sessions. To understand these effects across the lifespan, three evenly distributed age groups were formed: 18-29, 30-49, and 50-66 years. The methodological framework implemented here employs tensor-based machine learning techniques to compute continuous wavelet transform time-frequency features and utilizes a GARCH model to quantify sleep signal volatility across age scales. Support Vector Machines are used for feature ranking, and our analysis captures interactions between signal entropy, age, and sleep aid status across frequency bands, sleep transitions, and sleep stages. GARCH model results reveal statistically significant volatility clustering in EEG, EMG, and EOG signals, particularly during transitions between REM and non-REM sleep. Notably, volatility was higher in the 50-66 age group compared to the 18-29 age group, with marked fluctuations during transitions from deep sleep to REM sleep (standard deviation of 0.35 in the older group vs. 0.30 in the 18-29 age group, p < 0.05). Statistical comparisons of volatility across frequency bands, age scales, and sleep stages highlight significant differences attributable to sleep aid use. Mean conditional volatility parameterization of the GARCH model reveals directional influences, with a causality index of 0.75 from frontal to occipital regions during REM sleep transition periods. Our methodological framework identifies distinct neural behavior patterns across age groups associated with each sleep stage and transition, offering insights into the development of targeted interventions for sleep regularity across the lifespan.

3.
ArXiv ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39253637

RESUMEN

Multimodal neuroimaging modeling has become a widely used approach but confronts considerable challenges due to heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret these diverse datasets within a cohesive analytical framework. In our research, we amalgamate functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and structural MRI (sMRI) into a cohesive framework. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain's connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging-derived features from various modalities-functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI-within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating a holistic amalgamation of multimodal imaging data. This technique enhances interpretability at connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved predictive accuracy and uncovers crucial anatomical features and essential neural connections, deepening our understanding of brain structure and function. This study not only advances multi-modal neuroimaging analytics by offering a novel method for the integrated analysis of diverse imaging modalities but also improves the understanding of intricate relationship between the brain's structural and functional networks and cognitive development.

4.
Biol Psychiatry ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218137

RESUMEN

BACKGROUND: Glutathione (GSH) is a crucial antioxidant in the human brain. Although proton magnetic resonance spectroscopy (MRS) using the MEscher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) sequence is highly recommended, limited literature has measured cortical GSH using this method in major psychiatric disorders. METHODS: By combining MRS using the MEGA-PRESS and resting-state functional magnetic resonance imaging, we quantified brain GSH and glutamate in the medial prefrontal cortex (mPFC) and precuneus and explore relationships between the GSH levels and intrinsic neuronal activity as well as clinical symptoms among the three groups of healthy controls (HCs, N=30), major depressive disorder (MDD, N=28), and obsessive-compulsive disorder (OCD, N=28). RESULTS: GSH concentrations were lower in both the mPFC and precuneus in both the MDD and OCD groups compared to HCs. In HCs, positive correlations were noted between the GSH and glutamate levels, and between GSH and fractional amplitude of low-frequency fluctuations (fALFF) in both regions. However, while these correlations were absent in both patient groups, they showed a weak positive correlation between glutamate and fALFF values. Moreover, GSH levels negatively correlated with depressive and compulsive symptoms in MDD and OCD, respectively. CONCLUSIONS: These findings suggest that reduced GSH levels and an imbalance between GSH and glutamate could increase oxidative stress and alter neurotransmitter signaling, leading to disruptions in GSH-related neurochemical-neuronal coupling and psychopathologies across MDD and OCD. Understanding these mechanisms could provide valuable insights into the underlying processes of these disorders, potentially becoming a springboard for future directions and advancing our knowledge of their neurobiological foundations.

5.
Hum Brain Mapp ; 45(13): e70017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230055

RESUMEN

Atypical social impairments (i.e., impaired social cognition and social communication) are vital manifestations of autism spectrum disorder (ASD) patients, and the incidence rate of ASD is significantly higher in males than in females. Characterizing the atypical brain patterns underlying social deficits of ASD is significant for understanding the pathogenesis. However, there are no robust imaging biomarkers that are specific to ASD, which may be due to neurobiological complexity and limitations of single-modality research. To describe the multimodal brain patterns related to social deficits in ASD, we highlighted the potential functional role of white matter (WM) and incorporated WM functional activity and gray matter structure into multimodal fusion. Gray matter volume (GMV) and fractional amplitude of low-frequency fluctuations of WM (WM-fALFF) were combined by fusion analysis model adopting the social behavior. Our results revealed multimodal spatial patterns associated with Social Responsiveness Scale multiple scores in ASD. Specifically, GMV exhibited a consistent brain pattern, in which salience network and limbic system were commonly identified associated with all multiple social impairments. More divergent brain patterns in WM-fALFF were explored, suggesting that WM functional activity is more sensitive to ASD's complex social impairments. Moreover, brain regions related to social impairment may be potentially interconnected across modalities. Cross-site validation established the repeatability of our results. Our research findings contribute to understanding the neural mechanisms underlying social disorders in ASD and affirm the feasibility of identifying biomarkers from functional activity in WM.


Asunto(s)
Trastorno del Espectro Autista , Sustancia Gris , Imagen por Resonancia Magnética , Imagen Multimodal , Sustancia Blanca , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Masculino , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Adulto Joven , Adulto , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adolescente , Conducta Social , Niño , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología
6.
J Am Stat Assoc ; 119(546): 1486-1499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205862

RESUMEN

Statistical analysis of multimodal imaging data is a challenging task, since the data involves high-dimensionality, strong spatial correlations and complex data structures. In this paper, we propose rigorous statistical testing procedures for making inferences on the complex dependence of multimodal imaging data. Motivated by the analysis of multitask fMRI data in the Human Connectome Project (HCP) study, we particularly address three hypothesis testing problems: (a) testing independence among imaging modalities over brain regions, (b) testing independence between brain regions within imaging modalities, and (c) testing independence between brain regions across different modalities. Considering a general form for all the three tests, we develop a global testing procedure and a multiple testing procedure controlling the false discovery rate. We study theoretical properties of the proposed tests and develop a computationally efficient distributed algorithm. The proposed methods and theory are general and relevant for many statistical problems of testing independence structure among the components of high-dimensional random vectors with arbitrary dependence structures. We also illustrate our proposed methods via extensive simulations and analysis of five task fMRI contrast maps in the HCP study.

7.
Bioengineering (Basel) ; 11(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39061729

RESUMEN

The intricate dynamics of brain aging, especially the neurodegenerative mechanisms driving accelerated (ABA) and resilient brain aging (RBA), are pivotal in neuroscience. Understanding the temporal dynamics of these phenotypes is crucial for identifying vulnerabilities to cognitive decline and neurodegenerative diseases. Currently, there is a lack of comprehensive understanding of the temporal dynamics and neuroimaging biomarkers linked to ABA and RBA. This study addressed this gap by utilizing a large-scale UK Biobank (UKB) cohort, with the aim to elucidate brain aging heterogeneity and establish the foundation for targeted interventions. Employing Lasso regression on multimodal neuroimaging data, structural MRI (sMRI), diffusion MRI (dMRI), and resting-state functional MRI (rsfMRI), we predicted the brain age and classified individuals into ABA and RBA cohorts. Our findings identified 1949 subjects (6.2%) as representative of the ABA subpopulation and 3203 subjects (10.1%) as representative of the RBA subpopulation. Additionally, the Discriminative Event-Based Model (DEBM) was applied to estimate the sequence of biomarker changes across aging trajectories. Our analysis unveiled distinct central ordering patterns between the ABA and RBA cohorts, with profound implications for understanding cognitive decline and vulnerability to neurodegenerative disorders. Specifically, the ABA cohort exhibited early degeneration in four functional networks and two cognitive domains, with cortical thinning initially observed in the right hemisphere, followed by the temporal lobe. In contrast, the RBA cohort demonstrated initial degeneration in the three functional networks, with cortical thinning predominantly in the left hemisphere and white matter microstructural degeneration occurring at more advanced stages. The detailed aging progression timeline constructed through our DEBM analysis positioned subjects according to their estimated stage of aging, offering a nuanced view of the aging brain's alterations. This study holds promise for the development of targeted interventions aimed at mitigating age-related cognitive decline.

8.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979274

RESUMEN

Within-individual coupling between measures of brain structure and function evolves in development and may underlie differential risk for neuropsychiatric disorders. Despite increasing interest in the development of structure-function relationships, rigorous methods to quantify and test individual differences in coupling remain nascent. In this article, we explore and address gaps in approaches for testing and spatially localizing individual differences in intermodal coupling. We propose a new method, called CIDeR, which is designed to simultaneously perform hypothesis testing in a way that limits false positive results and improve detection of true positive results. Through a comparison across different approaches to testing individual differences in intermodal coupling, we delineate subtle differences in the hypotheses they test, which may ultimately lead researchers to arrive at different results. Finally, we illustrate the utility of CIDeR in two applications to brain development using data from the Philadelphia Neurodevelopmental Cohort.

10.
J Behav Addict ; 13(2): 565-575, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38842943

RESUMEN

Background: Exercise dependence (ED) is characterised by behavioural and psychological symptoms that resemble those of substance use disorders. However, it remains inconclusive whether ED is accompanied by similar brain alterations as seen in substance use disorders. Therefore, we investigated brain alterations in individuals with ED and inactive control participants. Methods: In this cross-sectional neuroimaging investigation, 29 individuals with ED as assessed with the Exercise Dependence Scale (EDS) and 28 inactive control participants (max one hour exercising per week) underwent structural and functional resting-state magnetic resonance imaging (MRI). Group differences were explored using voxel-based morphometry and functional connectivity analyses. Analyses were restricted to the striatum, amygdala, and inferior frontal gyrus (IFG). Exploratory analyses tested whether relationships between brain structure and function were differently related to EDS subscales among groups. Results: No structural differences were found between the two groups. However, right IFG and bilateral putamen volumes were differently related to the EDS subscales "time" and "tolerance", respectively, between the two groups. Resting-state functional connectivity was increased from right IFG to right superior parietal lobule in individuals with ED compared to inactive control participants. Furthermore, functional connectivity of the angular gyrus to the left IFG and bilateral caudate showed divergent relationships to the EDS subscale "tolerance" among groups. Discussion: The findings suggest that ED may be accompanied by alterations in cognition-related brain structures, but also functional changes that may drive compulsive habitual behaviour. Further prospective studies are needed to disentangle beneficial and detrimental brain effects of ED.


Asunto(s)
Ejercicio Físico , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Estudios Transversales , Femenino , Ejercicio Físico/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Imagen Multimodal , Conducta Adictiva/diagnóstico por imagen , Conducta Adictiva/fisiopatología , Neuroimagen
11.
Cogn Neurodyn ; 18(3): 775-794, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826669

RESUMEN

In recent years, Alzheimer's disease (AD) has been a serious threat to human health. Researchers and clinicians alike encounter a significant obstacle when trying to accurately identify and classify AD stages. Several studies have shown that multimodal neuroimaging input can assist in providing valuable insights into the structural and functional changes in the brain related to AD. Machine learning (ML) algorithms can accurately categorize AD phases by identifying patterns and linkages in multimodal neuroimaging data using powerful computational methods. This study aims to assess the contribution of ML methods to the accurate classification of the stages of AD using multimodal neuroimaging data. A systematic search is carried out in IEEE Xplore, Science Direct/Elsevier, ACM DigitalLibrary, and PubMed databases with forward snowballing performed on Google Scholar. The quantitative analysis used 47 studies. The explainable analysis was performed on the classification algorithm and fusion methods used in the selected studies. The pooled sensitivity and specificity, including diagnostic efficiency, were evaluated by conducting a meta-analysis based on a bivariate model with the hierarchical summary receiver operating characteristics (ROC) curve of multimodal neuroimaging data and ML methods in the classification of AD stages. Wilcoxon signed-rank test is further used to statistically compare the accuracy scores of the existing models. With a 95% confidence interval of 78.87-87.71%, the combined sensitivity for separating participants with mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%; for separating participants with AD from NC, it was 94.60% (90.76%, 96.89%); for separating participants with progressive MCI (pMCI) from stable MCI (sMCI), it was 80.41% (74.73%, 85.06%). With a 95% confidence interval (78.87%, 87.71%), the Pooled sensitivity for distinguishing mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%, with a 95% confidence interval (90.76%, 96.89%), the Pooled sensitivity for distinguishing AD from NC was 94.60%, likewise (MCI) from healthy control (NC) participants was 83.77% progressive MCI (pMCI) from stable MCI (sMCI) was 80.41% (74.73%, 85.06%), and early MCI (EMCI) from NC was 86.63% (82.43%, 89.95%). Pooled specificity for differentiating MCI from NC was 79.16% (70.97%, 87.71%), AD from NC was 93.49% (91.60%, 94.90%), pMCI from sMCI was 81.44% (76.32%, 85.66%), and EMCI from NC was 85.68% (81.62%, 88.96%). The Wilcoxon signed rank test showed a low P-value across all the classification tasks. Multimodal neuroimaging data with ML is a promising future in classifying the stages of AD but more research is required to increase the validity of its application in clinical practice.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38839036

RESUMEN

BACKGROUND: Heavy alcohol use and its associated conditions, such as alcohol use disorder, impact millions of individuals worldwide. While our understanding of the neurobiological correlates of alcohol use has evolved substantially, we still lack models that incorporate whole-brain neuroanatomical, functional, and pharmacological information under one framework. METHODS: Here, we utilized diffusion and functional magnetic resonance imaging to investigate alterations to brain dynamics in 130 individuals with a high amount of current alcohol use. We compared these alcohol-using individuals to 308 individuals with minimal use of any substances. RESULTS: We found that individuals with heavy alcohol use had less dynamic and complex brain activity, and through leveraging network control theory, had increased control energy to complete transitions between activation states. Furthermore, using separately acquired positron emission tomography data, we deployed an in silico evaluation demonstrating that decreased D2 receptor levels, as found previously in individuals with alcohol use disorder, may relate to our observed findings. CONCLUSIONS: This work demonstrates that whole-brain, multimodal imaging information can be combined under a network control framework to identify and evaluate neurobiological correlates and mechanisms of heavy alcohol use.

13.
Neurosci Bull ; 40(9): 1333-1352, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38703276

RESUMEN

Schizophrenia is a complex and serious brain disorder. Neuroscientists have become increasingly interested in using magnetic resonance-based brain imaging-derived phenotypes (IDPs) to investigate the etiology of psychiatric disorders. IDPs capture valuable clinical advantages and hold biological significance in identifying brain abnormalities. In this review, we aim to discuss current and prospective approaches to identify potential biomarkers for schizophrenia using clinical multimodal neuroimaging and imaging genetics. We first described IDPs through their phenotypic classification and neuroimaging genomics. Secondly, we discussed the applications of multimodal neuroimaging by clinical evidence in observational studies and randomized controlled trials. Thirdly, considering the genetic evidence of IDPs, we discussed how can utilize neuroimaging data as an intermediate phenotype to make association inferences by polygenic risk scores and Mendelian randomization. Finally, we discussed machine learning as an optimum approach for validating biomarkers. Together, future research efforts focused on neuroimaging biomarkers aim to enhance our understanding of schizophrenia.


Asunto(s)
Biomarcadores , Encéfalo , Neuroimagen , Esquizofrenia , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Humanos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fenotipo , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
14.
J Neurosci Methods ; 408: 110177, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795978

RESUMEN

BACKGROUND: Data on human brain function obtained with direct electrical stimulation (DES) in neurosurgical patients have been recently integrated and combined with modern neuroimaging techniques, allowing a connectome-based approach fed by intraoperative DES data. Within this framework is crucial to develop reliable methods for spatial localization of DES-derived information to be integrated within the neuroimaging workflow. NEW METHOD: To this aim, we applied the Kernel Density Estimation for modelling the distribution of DES sites from different patients into the MNI space. The algorithm has been embedded in a MATLAB-based User Interface, Peaglet. It allows an accurate probabilistic weighted and unweighted estimation of DES sites location both at cortical level, by using shortest path calculation along the brain 3D geometric topology, and subcortical level, by using a volume-based approach. RESULTS: We applied Peaglet to investigate spatial estimation of cortical and subcortical stimulation sites provided by recent brain tumour studies. The resulting NIfTI maps have been anatomically investigated with neuroimaging open-source tools. COMPARISON WITH EXISTING METHODS: Peaglet processes differently cortical and subcortical data following their distinguishing geometrical features, increasing anatomical specificity of DES-related results and their reliability within neuroimaging environments. CONCLUSIONS: Peaglet provides a robust probabilistic estimation of the cortical and subcortical distribution of DES sites going beyond a region of interest approach, respecting cortical and subcortical intrinsic geometrical features. Results can be easily integrated within the neuroimaging workflow to drive connectomic analysis.


Asunto(s)
Algoritmos , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Conectoma/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Eléctrica , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen
15.
medRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559205

RESUMEN

Alzheimer's disease (AD) is the most common form of age-related dementia, leading to a decline in memory, reasoning, and social skills. While numerous studies have investigated the genetic risk factors associated with AD, less attention has been given to identifying a brain imaging-based measure of AD risk. This study introduces a novel approach to assess mild cognitive impairment MCI, as a stage before AD, risk using neuroimaging data, referred to as a brain-wide risk score (BRS), which incorporates multimodal brain imaging. To begin, we first categorized participants from the Open Access Series of Imaging Studies (OASIS)-3 cohort into two groups: controls (CN) and individuals with MCI. Next, we computed structure and functional imaging features from all the OASIS data as well as all the UK Biobank data. For resting functional magnetic resonance imaging (fMRI) data, we computed functional network connectivity (FNC) matrices using fully automated spatially constrained independent component analysis. For structural MRI data we computed gray matter (GM) segmentation maps. We then evaluated the similarity between each participant's neuroimaging features from the UK Biobank and the difference in the average of those features between CN individuals and those with MCI, which we refer to as the brain-wide risk score (BRS). Both GM and FNC features were utilized in determining the BRS. We first evaluated the differences in the distribution of the BRS for CN vs MCI within the OASIS-3 (using OASIS-3 as the reference group). Next, we evaluated the BRS in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (using OASIS-3 as the reference group), showing that the BRS can differentiate MCI from CN in an independent data set. Subsequently, using the sMRI BRS, we identified 10 distinct subgroups and similarly, we identified another set of 10 subgroups using the FNC BRS. For sMRI and FNC we observed results that mutually validate each other, with certain aspects being complementary. For the unimodal analysis, sMRI provides greater differentiation between MCI and CN individuals than the fMRI data, consistent with prior work. Additionally, by utilizing a multimodal BRS approach, which combines both GM and FNC assessments, we identified two groups of subjects using the multimodal BRS scores. One group exhibits high MCI risk with both negative GM and FNC BRS, while the other shows low MCI risk with both positive GM and FNC BRS. Moreover, in the UKBB we have 46 participants diagnosed with AD showed FNC and GM patterns similar to those in high-risk groups, defined in both unimodal and multimodal BRS. Finally, to ensure the reproducibility of our findings, we conducted a validation analysis using the ADNI as an additional reference dataset and repeated the above analysis. The results were consistently replicated across different reference groups, highlighting the potential of FNC and sMRI-based BRS in early Alzheimer's detection.

16.
17.
J Affect Disord ; 354: 293-301, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494136

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is a highly heterogeneous mental condition with a diverse symptom. Existing studies classified OCD on the basis of conventional phenomenology-based taxonomy ignoring the fact that the same subtype identified in accordance with clinical symptom may have different mechanisms and treatment responses. METHODS: This research involved 50 medicine-free patients with OCD and 50 matched healthy controls (HCs). All the participants were subjected to structural and functional magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) and amplitude of low frequency fluctuation (ALFF) were used to evaluate gray matter volume (GMV) and spontaneous neuronal activities at rest respectively. Similarity network fusion (SNF) was utilized to integrate GMVs and spontaneous neuronal activities, and heterogeneity by discriminant analysis was applied to characterise OCD subtypes. RESULTS: Two OCD subtypes were identified: Subtype 1 exhibited decreased GMVs (i.e., left inferior temporal gyrus, right supplementary motor area and right lingual gyrus) and increased ALFF value (i.e., right orbitofrontal cortex), whereas subtype 2 exhibited increased GMVs (i.e., left cuneus, right precentral gyrus, left postcentral gyrus and left hippocampus) and decreased ALFF value (i.e., right caudate nucleus). Furthermore, the altered GMVs was negatively correlated with abnormal ALFF values in both subtype 1 and 2. LIMITATIONS: This study requires further validation via a larger, independent dataset and should consider the potential influences of psychotropic medication on OCD patients' brain activities. CONCLUSIONS: Results revealed two reproducible subtypes of OCD based on underlying multimodal neuroimaging and provided new perspectives on the classification of OCD.


Asunto(s)
Corteza Motora , Trastorno Obsesivo Compulsivo , Humanos , Encéfalo , Neuroimagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Trastorno Obsesivo Compulsivo/diagnóstico
18.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38282456

RESUMEN

While disruptions in brain maturation in the first years of life in ASD are well documented, little is known about how the brain structure and function are related in young children with ASD compared to typically developing peers. We applied a multivariate pattern analysis to examine the covariation patterns between brain morphometry and local brain spontaneous activity in 38 toddlers and preschoolers with ASD and 31 typically developing children using T1-weighted structural MRI and resting-state fMRI data acquired during natural sleep. The results revealed significantly reduced brain structure-function correlations in ASD. The resultant brain structure and function composite indices were associated with age among typically developing children, but not among those with ASD, suggesting mistiming of typical brain maturational trajectories early in life in autism. Additionally, the brain function composite indices were associated with the overall developmental and adaptive behavior skills in the ASD group, highlighting the neurodevelopmental significance of early local brain activity in autism.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Preescolar , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
19.
Psychol Med ; 54(4): 710-720, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37642202

RESUMEN

BACKGROUND: Obsessive-compulsive disorder (OCD) is a classic disorder on the compulsivity spectrum, with diverse comorbidities. In the current study, we sought to understand OCD from a dimensional perspective by identifying multimodal neuroimaging patterns correlated with multiple phenotypic characteristics within the striatum-based circuits known to be affected by OCD. METHODS: Neuroimaging measurements of local functional and structural features and clinical information were collected from 110 subjects, including 51 patients with OCD and 59 healthy control subjects. Linked independent component analysis (LICA) and correlation analysis were applied to identify associations between local neuroimaging patterns across modalities (including gray matter volume, white matter integrity, and spontaneous functional activity) and clinical factors. RESULTS: LICA identified eight multimodal neuroimaging patterns related to phenotypic variations, including three related to symptoms and diagnosis. One imaging pattern (IC9) that included both the amplitude of low-frequency fluctuation measure of spontaneous functional activity and white matter integrity measures correlated negatively with OCD diagnosis and diagnostic scales. Two imaging patterns (IC10 and IC27) correlated with compulsion symptoms: IC10 included primarily anatomical measures and IC27 included primarily functional measures. In addition, we identified imaging patterns associated with age, gender, and emotional expression across subjects. CONCLUSIONS: We established that data fusion techniques can identify local multimodal neuroimaging patterns associated with OCD phenotypes. The results inform our understanding of the neurobiological underpinnings of compulsive behaviors and OCD diagnosis.


Asunto(s)
Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo , Humanos , Imagen por Resonancia Magnética/métodos , Corteza Cerebral , Neuroimagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Conducta Compulsiva/diagnóstico por imagen , Encéfalo
20.
Psychol Med ; 54(5): 1045-1056, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37750294

RESUMEN

BACKGROUND: Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS: In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS: Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS: The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.


Asunto(s)
Núcleo Accumbens , Sustancia Blanca , Femenino , Humanos , Persona de Mediana Edad , Anciano , Masculino , Núcleo Accumbens/diagnóstico por imagen , Depresión/diagnóstico por imagen , Estudios Transversales , Corteza Cerebral , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA