Your browser doesn't support javascript.
loading
Multiscale neural dynamics in sleep transition volatility across age scales: a multimodal EEG-EMG-EOG analysis of temazepam effects.
Sirpal, Parikshat; Sikora, William A; Refai, Hazem H.
Afiliación
  • Sirpal P; School of Electrical and Computer Engineering, University of Oklahoma, Gallogly College of Engineering, Norman, OK, 73019, USA. Parikshat.Sirpal-1@ou.edu.
  • Sikora WA; School of Biomedical Engineering, University of Oklahoma, Gallogly College of Engineering, Norman, OK, 73019, USA.
  • Refai HH; School of Electrical and Computer Engineering, University of Oklahoma, Gallogly College of Engineering, Norman, OK, 73019, USA.
Geroscience ; 2024 Sep 14.
Article en En | MEDLINE | ID: mdl-39276251
ABSTRACT
Recent advances in computational modeling techniques have facilitated a more nuanced understanding of sleep neural dynamics across the lifespan. In this study, we tensorize multiscale multimodal electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG) signals and apply Generalized Autoregressive Conditional Heteroskedasticity (GARCH) modeling to quantify interactions between age scales and the use of pharmacological sleep aids on sleep stage transitions. Our cohort consists of 22 subjects in a crossover design study, where each subject received both a sleep aid and a placebo in different sessions. To understand these effects across the lifespan, three evenly distributed age groups were formed 18-29, 30-49, and 50-66 years. The methodological framework implemented here employs tensor-based machine learning techniques to compute continuous wavelet transform time-frequency features and utilizes a GARCH model to quantify sleep signal volatility across age scales. Support Vector Machines are used for feature ranking, and our analysis captures interactions between signal entropy, age, and sleep aid status across frequency bands, sleep transitions, and sleep stages. GARCH model results reveal statistically significant volatility clustering in EEG, EMG, and EOG signals, particularly during transitions between REM and non-REM sleep. Notably, volatility was higher in the 50-66 age group compared to the 18-29 age group, with marked fluctuations during transitions from deep sleep to REM sleep (standard deviation of 0.35 in the older group vs. 0.30 in the 18-29 age group, p < 0.05). Statistical comparisons of volatility across frequency bands, age scales, and sleep stages highlight significant differences attributable to sleep aid use. Mean conditional volatility parameterization of the GARCH model reveals directional influences, with a causality index of 0.75 from frontal to occipital regions during REM sleep transition periods. Our methodological framework identifies distinct neural behavior patterns across age groups associated with each sleep stage and transition, offering insights into the development of targeted interventions for sleep regularity across the lifespan.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Geroscience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Geroscience Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza