Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Microdevices ; 26(2): 18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416278

RESUMEN

High-throughput transcriptomics is of increasing fundamental biological and clinical interest. The generation of molecular data from large collections of samples, such as biobanks and drug libraries, is boosting the development of new biomarkers and treatments. Focusing on gene expression, the transcriptomic market exploits the benefits of next-generation sequencing (NGS), leveraging RNA sequencing (RNA-seq) as standard for measuring genome-wide gene expression in biological samples. The cumbersome sample preparation, including RNA extraction, conversion to cDNA and amplification, prevents high-throughput translation of RNA-seq technologies. Bulk RNA barcoding and sequencing (BRB-seq) addresses this limitation by enabling sample preparation in multi-well plate format. Sample multiplexing combined with early pooling into a single tube reduces reagents consumption and manual steps. Enabling simultaneous pooling of all samples from the multi-well plate into one tube, our technology relies on smart labware: a pooling lid comprising fluidic features and small pins to transport the liquid, adapted to standard 96-well plates. Operated with standard fluidic tubes and pump, the system enables over 90% recovery of liquid in a single step in less than a minute. Large scale manufacturing of the lid is demonstrated with the transition from a milled polycarbonate/steel prototype into an injection molded polystyrene lid. The pooling lid demonstrated its value in supporting high-throughput barcode-based sequencing by pooling 96 different DNA barcodes directly from a standard 96-well plate, followed by processing within the single sample pool. This new pooling technology shows great potential to address medium throughput needs in the BRB-seq workflow, thereby addressing the challenge of large-scale and cost-efficient sample preparation for RNA-seq.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , ARN , Heces
2.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339634

RESUMEN

A spectral image analysis has the potential to replace traditional approaches for assessing plant responses to different types of stresses, including herbicides, through non-destructive and high-throughput screening (HTS). Therefore, this study was conducted to develop a rapid bioassay method using a multi-well plate and spectral image analysis for the diagnosis of herbicide activity and modes of action. Crabgrass (Digitaria ciliaris), as a model weed, was cultivated in multi-well plates and subsequently treated with six herbicides (paraquat, tiafenacil, penoxsulam, isoxaflutole, glufosinate, and glyphosate) with different modes of action when the crabgrass reached the 1-leaf stage, using only a quarter of the recommended dose. To detect the plant's response to herbicides, plant spectral images were acquired after herbicide treatment using RGB, infrared (IR) thermal, and chlorophyll fluorescence (CF) sensors and analyzed for diagnosing herbicide efficacy and modes of action. A principal component analysis (PCA), using all spectral data, successfully distinguished herbicides and clustered depending on their modes of action. The performed experiments showed that the multi-well plate assay combined with a spectral image analysis can be successfully applied for herbicide bioassays. In addition, the use of spectral image sensors, especially CF images, would facilitate HTS by enabling the rapid observation of herbicide responses at as early as 3 h after herbicide treatment.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Plantas , Glifosato , Bioensayo , Malezas
3.
Curr Res Toxicol ; 2: 99-115, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345855

RESUMEN

Smoking is a cause of serious diseases in smokers including chronic respiratory diseases. This study aimed to evaluate the tobacco harm reduction (THR) potential of an electronic vapor product (EVP, myblu™) compared to a Kentucky Reference Cigarette (3R4F), and assessed endpoints related to chronic respiratory diseases. Endpoints included: cytotoxicity, barrier integrity (TEER), cilia function, immunohistochemistry, and pro-inflammatory markers. In order to more closely represent the user exposure scenario, we have employed the in vitro 3D organotypic model of human airway epithelium (MucilAir™, Epithelix) for respiratory assessment. The model was repeatedly exposed to either whole aerosol of the EVP, or whole 3R4F smoke, at the air liquid interface (ALI), for 4 weeks to either 30, 60 or 90 puffs on 3-exposure-per-week basis. 3R4F smoke generation used the ISO 20778:2018 regime and EVP aerosol used the ISO 20768:2018 vaping regime. Exposure to undiluted whole EVP aerosol did not trigger any significant changes in the level of pro-inflammatory mediators, cilia beating function, barrier integrity and cytotoxicity when compared with air controls. In contrast, exposure to diluted (1:17) whole cigarette smoke caused significant changes to all the endpoints mentioned above. To our knowledge, this is the first study evaluating the effects of repeated whole cigarette smoke and whole EVP aerosol exposure to a 3D lung model at the ALI. Our results add to the growing body of scientific literature supporting the THR potential of EVPs relative to combustible cigarettes and the applicability of the 3D lung models in human-relevant product risk assessments.

4.
Micromachines (Basel) ; 11(8)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32751967

RESUMEN

Recently, microdevices made of resins have been strongly supporting cell analysis in a range of fields, from fundamental life science research to medical applications. Many microdevices are fabricated by molding resin to a mold made precisely from rigid materials. However, because dimensional errors in the mold are also accurately printed to the products, the accuracy of the product is limited to less than the accuracy of the rigid mold. Therefore, we hypothesized that if dimensional errors could be self-corrected by elastic molds, microdevices could be facilely fabricated with precision beyond that of molds. In this paper, we report a novel processing strategy in which an elastic mold made of polymethylsiloxane (PDMS) deforms to compensate for the dimensional error on the products. By heat-press molding a polycarbonate plate using a mold that has 384 PDMS convexes with a large dimensional error of height of ± 15.6 µm in standard deviation, a 384-round-well plate with a bottom thickness 13.3 ± 2.3 µm (n = 384) was easily fabricated. Finally, single-cell observation and polymerase chain reactions (PCRs) demonstrated the application of the products made by elastic PDMS molds. Therefore, this processing method is a promising strategy for facile, low-cost, and higher precision microfabrication.

5.
J Dairy Res ; 85(4): 453-459, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30132424

RESUMEN

Optimization of dairy fermentation processes often requires multiplexed pH measurements over several hours. The method developed here measures up to 90 samples simultaneously, where traditional electrode-based methods require a lot more time for handing the same number of samples. Moreover, the new method employs commonly used materials and can be used with a wider range of fluorescence readers than commercial 96-well plates with optical pH sensors. For this application, a milk-like transparent medium is developed that shows acidification properties with dairy starters that are similar to milk. Combination of this milk-like medium and 3 fluorescent indicators allow precise measurements of pH in a range of 4·0-7·0. The new method showed much higher throughput compared to the benchmark electrode systems while being as accurate, as shown by successful application for a comparison of various dairy starter cultures and for optimizing the inoculation rate.


Asunto(s)
Productos Lácteos Cultivados/análisis , Análisis de los Alimentos/métodos , Animales , Bovinos , Fermentación , Manipulación de Alimentos , Concentración de Iones de Hidrógeno , Sensibilidad y Especificidad
6.
Acta Histochem ; 120(3): 179-186, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29395318

RESUMEN

The MTT assay was the first widely accepted method to assess cytotoxicity and cell viability. However, there is controversy on whether this indicator is a useful tool. In this work we intend to expand the interpretability of the MTT study by its combination with widely used cellular biology techniques. We propose complementary approaches to the colorimetric assay, based on the use of measurements in three different settings: confocal microscopy, multi-well plate assay and flow cytometry. Using confocal microscopy, we confirmed that MTT uptake and reduction by cells is a time-dependent process, and that formazan accumulates in round-shaped organelles. Quantitative measurements with a multi-well fluorimeter combined with nuclear staining result in a useful method, yielding a ratio between formazan production and cell number that informs about the average cell metabolic state. We also found that flow cytometry is a suitable technique to measure MTT reduction in large cell populations. When assaying the effect of an oxidizing agent such as paraquat (PQ), this approach allows for the distinction of subpopulations of cells with different reducing power. Finally, we prove that it is feasible to monitor MTT reduction in an in vivo model, the Drosophila larvae, without affecting its survival rate. Formazan accumulates exclusively in the larval fat body, confirming its lipid solubility. The methods explored in this work expand the MTT potential as a useful tool to provide information of the physiological state of cells and organisms.


Asunto(s)
Formazáns , Larva/efectos de los fármacos , Paraquat/farmacología , Sales de Tetrazolio , Animales , Bioensayo , Recuento de Células , Drosophila/efectos de los fármacos , Cuerpo Adiposo/efectos de los fármacos , Citometría de Flujo , Formazáns/química , Células HeLa , Humanos , Lípidos/farmacocinética , Microscopía Confocal , Oxidación-Reducción , Paraquat/farmacocinética , Solubilidad , Sales de Tetrazolio/química , Factores de Tiempo
7.
Microsc Microanal ; 23(5): 932-937, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28712372

RESUMEN

Image segmentation is a key process in analyzing biological images. However, it is difficult to detect the differences between foreground and background when the image is unevenly illuminated. The unambiguous segmenting of multi-well plate microscopy images with various uneven illuminations is a challenging problem. Currently, no publicly available method adequately solves these various problems in bright-field multi-well plate images. Here, we propose a new method based on contrast values which removes the need for illumination correction. The presented method is effective enough to distinguish foreground and therefore a model organism (Caenorhabditis elegans) from an unevenly illuminated microscope image. In addition, the method also can solve a variety of problems caused by different uneven illumination scenarios. By applying this methodology across a wide range of multi-well plate microscopy images, we show that our approach can consistently analyze images with uneven illuminations with unparalleled accuracy and successfully solve various problems associated with uneven illumination. It can be used to process the microscopy images captured from multi-well plates and detect experimental subjects from an unevenly illuminated background.

8.
Naunyn Schmiedebergs Arch Pharmacol ; 389(5): 521-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26905519

RESUMEN

Organ baths have been successfully used for over a century to study the contractile or relaxation effects of drugs. Indeed, most of our understanding of vascular pharmacology is based on such in vitro studies. However, multiple parallel organ baths that require mechanical transduction consume relatively large amounts of drugs, gases, and buffers, and they take up a considerable bench space. In addition, such experiments have a high demand in terms of cost and animals, and the tissue preparation is labor intensive and slow. For these reasons, organ baths are no longer in the front line of industrial pharmacological research and they have almost disappeared from most academic laboratories. We have developed a very simple system, which can be implemented virtually in any laboratory, for the automatic analyses of rat aorta ring contraction based on optical methods and using multi-well plates. Rat aorta rings (≈0.5 mm wide) were situated in 96-multi-well plates, and the luminal vessel areas were continuously monitored using a USB camera driven by newly developed algorithms. Liquids were handled using multichannel pipettes, although these procedures can be automated for drug screening. The concentration-response curves obtained were similar to those reported in the literature using traditional force transduction techniques on isolated tissues. This system can also be used with other tissue preparations and for simultaneous fluorescence measurements. The new system described here offers a simple, cheap, and reliable alternative to the classic organ bath system.


Asunto(s)
Aorta/fisiología , Técnicas In Vitro , Vasoconstricción , Animales , Aorta/efectos de los fármacos , Broncoconstrictores/farmacología , Masculino , Cloruro de Metacolina/farmacología , Agonistas Muscarínicos/farmacología , Nitroprusiato/farmacología , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Ratas Sprague-Dawley , Tráquea/efectos de los fármacos , Tráquea/fisiología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA