Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.085
Filtrar
1.
Zool Res ; 45(5): 1161-1174, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39257378

RESUMEN

Acute kidney injury (AKI) and chronic kidney disease (CKD) are significant public health issues associated with a long-term increase in mortality risk, resulting from various etiologies including renal ischemia, sepsis, drug toxicity, and diabetes mellitus. Numerous preclinical models have been developed to deepen our understanding of the pathophysiological mechanisms and therapeutic approaches for kidney diseases. Among these, rodent models have proven to be powerful tools in the discovery of novel therapeutics, while the development of kidney organoids has emerged as a promising advancement in the field. This review provides a comprehensive analysis of the construction methodologies, underlying biological mechanisms, and recent therapeutic developments across different AKI and CKD models. Additionally, this review summarizes the advantages, limitations, and challenges inherent in these preclinical models, thereby contributing robust evidence to support the development of effective therapeutic strategies.


Asunto(s)
Modelos Animales de Enfermedad , Animales , Enfermedades Renales/etiología , Enfermedades Renales/patología , Humanos , Lesión Renal Aguda/fisiopatología , Lesión Renal Aguda/patología , Insuficiencia Renal Crónica/patología
2.
Cancer Diagn Progn ; 4(5): 544-557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39238629

RESUMEN

The field of experimental microsurgery was pioneered by the great microsurgeon Sun Lee, who developed the foundation of transplant surgery in the clinic. Dr Lee also played a seminal role in introducing microsurgery to establish mouse models of cancer. In 1990, at the age of 70, Dr Lee demonstrated microsurgery techniques to the mouse-model team at AntiCancer Inc., leading to the development of the surgical orthotopic implant (SOI) technique and the first orthotopic mouse models of cancer that metastasized in a pattern similar to clinical cancer. At the beginning of the present century, one of us (NY) from Kanazawa University School of Medicine became a visiting scientist at AntiCancer to learn SOI and develop mouse models of cancer using cancer cells expressing fluorescent reporter genes, such as green fluorescent protein (GFP) and red fluorescent protein (RFP), in order to image metastatic cancer cells trafficking in real time. Since then, a total of eight young surgeons from Kanazawa University have been visiting researchers at AntiCancer, developing SOI mouse models of cancer to visualize cancer cells in vivo, tracking all stages of metastasis in real time. The present perspective review summarizes this seminal work, which has revolutionized the field of metastasis research.

3.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273325

RESUMEN

Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aß in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Cognición , Radiación Cósmica , Ratones Transgénicos , Animales , Femenino , Masculino , Radiación Cósmica/efectos adversos , Ratones , Cognición/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Técnicas de Sustitución del Gen , Ratones Endogámicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Factores Sexuales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Humanos
4.
J Clin Invest ; 134(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286984

RESUMEN

T cell-based immunotherapies are a promising therapeutic approach for multiple malignancies, but their efficacy is limited by tumor hypoxia arising from dysfunctional blood vessels. Here, we report that cell-intrinsic properties of a single vascular component, namely the pericyte, contribute to the control of tumor oxygenation, macrophage polarization, vessel inflammation, and T cell infiltration. Switching pericyte phenotype from a synthetic to a differentiated state reverses immune suppression and sensitizes tumors to adoptive T cell therapy, leading to regression of melanoma in mice. In melanoma patients, improved survival is correlated with enhanced pericyte maturity. Importantly, pericyte plasticity is regulated by signaling pathways converging on Rho kinase activity, with pericyte maturity being inducible by selective low-dose therapeutics that suppress pericyte MEK, AKT, or notch signaling. We also show that low-dose targeted anticancer therapy can durably change the tumor microenvironment without inducing adaptive resistance, creating a highly translatable pathway for redosing anticancer targeted therapies in combination with immunotherapy to improve outcome.


Asunto(s)
Pericitos , Animales , Pericitos/inmunología , Pericitos/metabolismo , Pericitos/patología , Ratones , Humanos , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Inmunoterapia , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/patología , Fenotipo , Melanoma/inmunología , Melanoma/terapia , Melanoma/patología , Melanoma/tratamiento farmacológico , Línea Celular Tumoral , Tolerancia Inmunológica/efectos de los fármacos
5.
J Exp Clin Cancer Res ; 43(1): 253, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243039

RESUMEN

BACKGROUND: Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS: Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS: Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS: The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Factores de Transcripción del Choque Térmico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Colangiocarcinoma/tratamiento farmacológico , Humanos , Animales , Ratones , Pronóstico , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proliferación Celular
6.
Cell Rep Med ; 5(9): 101711, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39232498

RESUMEN

Pancreatic cancer is associated with an oncogenic KRAS mutation in approximately 90% of cases. However, a non-negligible proportion of pancreatic cancer cases harbor wild-type KRAS (KRAS-WT). This study establishes genetically engineered mouse models that develop spontaneous pancreatic cancer in the context of KRAS-WT. The Trp53loxP/loxP;Smad4loxP/loxP;Pdx1-Cre (PPSSC) mouse model harbors KRAS-WT and loss of Trp53/Smad4. The Trp53loxP/loxP;Tgfbr2loxP/loxP;Pdx1-Cre (PPTTC) mouse model harbors KRAS-WT and loss of Trp53/Tgfbr2. We identify that either Trp53/Smad4 loss or Trp53/Tgfbr2 loss can induce spontaneous pancreatic tumor formation in the absence of an oncogenic KRAS mutation. The Trp53/Smad4 loss and Trp53/Tgfbr2 loss mouse models exhibit distinct pancreatic tumor histological features, as compared to oncogenic KRAS-driven mouse models. Furthermore, KRAS-WT pancreatic tumors with Trp53/Smad4 loss reveal unique histological features of pancreatic adenosquamous carcinoma (PASC). Single-cell RNA sequencing (scRNA-seq) analysis reveals the distinct tumor immune microenvironment landscape of KRAS-WT (PPSSC) pancreatic tumors as compared with that of oncogenic KRAS-driven pancreatic tumors.


Asunto(s)
Mutación , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Proteína Smad4 , Proteína p53 Supresora de Tumor , Proteína Smad4/genética , Proteína Smad4/metabolismo , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación/genética , Ratones , Humanos , Carcinoma Adenoescamoso/genética , Carcinoma Adenoescamoso/patología , Carcinoma Adenoescamoso/metabolismo , Modelos Animales de Enfermedad , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo
7.
Genes Dev ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231614

RESUMEN

Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.

8.
J Neurochem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268880

RESUMEN

The development of therapeutic strategies to reduce impairments following spinal cord injury (SCI) motivates an active area of research, because there are no effective therapies. One strategy is to address injury-induced demyelination of spared axons by promoting endogenous or exogenous remyelination. However, previously, we showed that new myelin was not necessary to regain hindlimb stepping following moderate thoracic spinal cord contusion in 3-month-old mice. The present analysis investigated two potential mechanisms by which animals can re-establish locomotion in the absence of remyelination: compensation through intact white matter and conduction through spared axons. We induced a severe contusion injury to reduce the spared white matter rim in the remyelination deficient model, with no differences in recovery between remyelination deficient animals and injured littermate controls. We investigated the nodal properties of the axons at the lesion and found that in the remyelination deficient model, axons express the Nav1.2 voltage-gated sodium channel, a sub-type not typically expressed at mature nodes of Ranvier. In a moderate contusion injury, conduction velocities through the lesions of remyelination deficient animals were similar to those in animals with the capacity to remyelinate after injury. Detailed gait analysis and kinematics reveal subtle differences between remyelination deficient animals and remyelination competent controls, but no worse deficits. It is possible that upregulation of Nav1.2 channels may contribute to establishing conduction through the lesion. This conduction could contribute to compensation and regained motor function in mouse models of SCI. Such compensatory mechanism may have implications for interpreting efficacy results for remyelinating interventions in mice and the development of therapies for improving recovery following SCI.

9.
Ther Adv Rare Dis ; 5: 26330040241273464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295819

RESUMEN

On September 27, 2023, the CureSHANK nonprofit foundation sponsored a conference in Boston, Massachusetts, to identify gaps in knowledge surrounding SHANK3-related epilepsy with the goal of determining future research priorities and recommendations. In addition to patient families and members of the CureSHANK community, participants in the conference included a broad cross-section of preclinical and clinical researchers and clinicians with expertise in SHANK3-related epilepsy as well as representatives from the pharmaceutical industry. Here we summarize the outcomes from comprehensive premeeting deliberations and the final conference recommendations, including (1) gaps in knowledge related to clinical science, (2) gaps in knowledge related to preclinical science, and (3) research priorities moving forward.


A roadmap for SHANK3-related Epilepsy Research: recommendations from the 2023 strategic planning workshop Phelan-McDermid Syndrome, a rare genetic disorder linked to the SHANK3 gene, manifests in a spectrum of clinical phenotypes including intellectual disability, autism spectrum disorder, and epilepsy. Epilepsy has been particularly under-investigated in this syndrome, and most of the animal models studied to date do not display seizures. On September 27, 2023, the CureSHANK nonprofit foundation sponsored a conference in Boston, Massachusetts, to identity gaps in knowledge surrounding SHANK3-related epilepsy. Conference attendees included patient families, basic scientists, clinical researchers, clinicians and representatives from the pharmaceutical industry with interest in SHANK3-related epilepsy. This review summarizes the outcome of this conference, including a summary of current state of knowledge and resources available, gaps in our understanding, priorities for future research in this important manifestation of PMS.

10.
Biochem Soc Trans ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221783

RESUMEN

Autism spectrum disorders (ASD) are a heterogenous set of syndromes characterised by social impairment and cognitive symptoms. Currently, there are limited treatment options available to help people with ASD manage their symptoms. Understanding the biological mechanisms that result in ASD diagnosis and symptomatology is an essential step in developing new interventional strategies. Human genetic studies have identified common gene variants of small effect and rare risk genes and copy number variants (CNVs) that substantially increase the risk of developing ASD. Reverse translational studies using rodent models based on these genetic variants provide new insight into the biological basis of ASD. Here we review recent findings from three ASD associated CNV mouse models (16p11.2, 2p16.3 and 22q11.2 deletion) that show behavioural and cognitive phenotypes relevant to ASD. These models have identified disturbed excitation-inhibition neurotransmitter balance, evidenced by dysfunctional glutamate and GABA signalling, as a key aetiological mechanism. These models also provide emerging evidence for serotoninergic neurotransmitter system dysfunction, although more work is needed to clarify the nature of this. At the brain network level, prefrontal cortex (PFC) dysfunctional connectivity is also evident across these models, supporting disturbed PFC function as a key nexus in ASD aetiology. Overall, published data highlight the utility and valuable insight gained into ASD aetiology from preclinical CNV mouse models. These have identified key aetiological mechanisms that represent putative novel therapeutic targets for the treatment of ASD symptoms, making them useful translational models for future drug discovery, development and validation.

11.
Matrix Biol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39232994

RESUMEN

Fibronectin (FN) serves as a critical organizer of extracellular matrix networks in two principal isoforms, the plasma FN and the cellular FN. While FN's pivotal role in various organ systems, including the blood vasculature, is well-established, its contribution to the development of the skeletal system is much less explored. Furthermore, the pathomechanisms of spondyloepiphyseal dysplasia caused by FN mutations remain elusive. In this minireview, we discuss findings from our recent two studies using i) an iPSC-based cell culture model to explore how FN mutations in spondyloepiphyseal dysplasia impact mesenchymal cell differentiation into chondrocytes and ii) conditional FN knockout mouse models to determine the physiological roles of FN isoforms during postnatal skeletal development. The data revealed that FN mutations cause severe intracellular and matrix defects in mesenchymal cells and impair their ability to differentiate into chondrocytes. The findings further demonstrate the important roles of both FN isoforms in orchestrating regulated chondrogenesis during skeletal development. We critically discuss the findings in the context of the existing literature.

12.
Curr Protoc ; 4(9): e1116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222027

RESUMEN

The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.


Asunto(s)
Imagen por Resonancia Magnética , Animales , Ratones , Imagen por Resonancia Magnética/métodos , Ecocardiografía/métodos , Sistema Cardiovascular/diagnóstico por imagen
13.
Front Immunol ; 15: 1451974, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165362

RESUMEN

T cells express an enormous repertoire of T cell receptors, enabling them to recognize any potential antigen. This large repertoire undergoes stringent selections in the thymus, where receptors that react to self- or non-danger-associated- antigens are purged. We know that thymic tolerance depends on signals and antigens presented by the thymic antigen presenting cells, but we still do not understand precisely how many of these cells actually contribute to tolerance. This is especially true for thymic dendritic cells (DC), which are composed of diverse subpopulations that are derived from different progenitors. Although the importance of thymic DCs has long been known, the functions of specific DC subsets have been difficult to untangle. There remains insufficient systematic characterization of the ontogeny and phenotype of thymic APCs in general. As a result, validated experimental models for studying thymic DCs are limited. Recent technological advancement, such as multi-omics analyses, has enabled new insights into thymic DC biology. These recent findings indicate a need to re-evaluate the current tools used to study the function of these cells within the thymus. This review will discuss how thymic DC subpopulations can be defined, the models that have been used to assess functions in the thymus, and models developed for other settings that can be potentially used for studying thymic DCs.


Asunto(s)
Células Dendríticas , Timo , Animales , Células Dendríticas/inmunología , Timo/inmunología , Timo/citología , Ratones , Diferenciación Celular/inmunología , Linfocitos T/inmunología , Tolerancia Inmunológica
14.
Brain ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155061

RESUMEN

Huntington disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) resulting in toxic gain-of-function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and may contribute to HD pathology. This finding suggests that reducing the expression of HTT1a may achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT may not fully prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes, and have been the rationale for phase I/II clinical studies now ongoing in the US and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type, littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at two months post-injection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit compared to other HTT-targeting modalities.

15.
JCI Insight ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163122

RESUMEN

This study aimed at defining the role of the B-cell adaptor protein BANK1 in the appearance of age-associated B cells (ABCs) in two SLE mouse models (TLR7.tg6 and Imiquimod-induced mice), crossed with Bank1-/- mice. The absence of Bank1 led to a significant reduction in ABC levels, also affecting other B cell populations. To gain deeper insights into their differentiation pathway and the impact of Bank1 on B cell populations, a single-cell transcriptome assay was performed. In the TLR7.tg6 model, we identified 10 clusters within B cells, including an ABC-specific cluster which was decreased in Bank1-deficient mice. In its absence, ABCs exhibited an anti-inflammatory gene expression profile, while being pro-inflammatory in Bank1-sufficient lupus mice. Trajectory analyses revealed that ABCs originated from marginal zone and memory-like B cells, ultimately acquiring transcriptional characteristics associated with atypical memory cells and long-lived plasma cells. Also, Bank1 deficiency normalized the presence of naïve B cells, which were nearly absent in lupus mice. Interestingly, Bank1 deficiency significantly reduced a distinct cluster containing IFN-responsive genes. These findings underscore the critical role of Bank1 in ABC development, impacting early B cell stages towards ABC differentiation, and the presence of IFN-stimulated gene-containing B cells, both populations determinant for autoimmunity.

16.
Adv Biol (Weinh) ; : e2300653, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164219

RESUMEN

Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and ß-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.

17.
Clin Cosmet Investig Dermatol ; 17: 1729-1737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104773

RESUMEN

Introduction: Vitiligo is an acquired skin pigmentation disorder, the cause of which is poorly understood. Researchers in this field are dedicated to exploring novel treatments for achieving re-pigmentation. Methods: Mice were randomly selected and divided into control, model, and model+laser groups. Evaluate the impact of different levels of carbon dioxide laser irradiation on tyrosinase activity, melanocyte viability, and melanin content. Results: In this study, it was found that the cell viability and melanin content were significantly enhanced in human melanocytes after treatment with different energy densities of fractional carbon dioxide laser. In addition, laser-treated vitiligo mouse models showed mild pathological changes. Discussion: Therefore, we believe that fractional carbon dioxide laser may be a potential adjunctive modality for treating vitiligo.

18.
Front Cell Infect Microbiol ; 14: 1369226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086605

RESUMEN

Objective: The study delved into the epigenetic factors associated with periodontal disease in two lineages of mice, namely C57bl/6 and Balb/c. Its primary objective was to elucidate alterations in the methylome of mice with distinct genetic backgrounds following systemic microbial challenge, employing high-throughput DNA methylation analysis as the investigative tool. Methods: Porphyromonas gingivalis (Pg)was orally administered to induce periodontitis in both Balb/c and C57bl/6 lineage. After euthanasia, genomic DNA from both maxilla and blood were subjected to bisulfite conversion, PCR amplification and genome-wide DNA methylation analysis using the Ovation RRBS Methyl-Seq System coupled with the Illumina Infinium Mouse Methylation BeadChip. Results: Of particular significance was the distinct methylation profile observed within the Pg-induced group of the Balb/c lineage, contrasting with both the control and Pg-induced groups of the C57bl/6 lineage. Utilizing rigorous filtering criteria, we successfully identified a substantial number of differentially methylated regions (DMRs) across various tissues and comparison groups, shedding light on the prevailing hypermethylation in non-induced cohorts and hypomethylation in induced groups. The comparison between blood and maxilla samples underscored the unique methylation patterns specific to the jaw tissue. Our comprehensive methylome analysis further unveiled statistically significant disparities, particularly within promoter regions, in several comparison groups. Conclusion: The differential DNA methylation patterns observed between C57bl/6 and Balb/c mouse lines suggest that epigenetic factors contribute to the variations in disease susceptibility. The identified differentially methylated regions associated with immune regulation and inflammatory response provide potential targets for further investigation. These findings emphasize the importance of considering epigenetic mechanisms in the development and progression of periodontitis.


Asunto(s)
Metilación de ADN , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Porphyromonas gingivalis , Animales , Porphyromonas gingivalis/genética , Ratones , Periodontitis/microbiología , Epigénesis Genética , Enfermedades Periodontales/microbiología , Susceptibilidad a Enfermedades , Infecciones por Bacteroidaceae/microbiología , Epigenoma
19.
bioRxiv ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39091807

RESUMEN

Compared to the rapidly growing literature on transcranial electrical stimulation (tES) in humans, research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is growing but still relatively rare. Such research, however, is key to overcoming experimental limitations in humans and essential to build a detailed understanding of the in-vivo consequences of tES that can ultimately lead to development of targeted and effective therapeutic applications of noninvasive brain stimulation. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies. Here we extend previous approaches to model intracranial electric fields to generate predictions that can be tested with in-vivo intracranial recordings. Although the toolbox has general applicability and could be used to predict intracranial fields for any tES study using mice, we illustrate its usage by comparing fields in a high-density multi-electrode montage with a more traditional two electrode montage. Our simulations show that both montages can produce strong focal homogeneous electric fields in targeted areas. However, the high-density montage produces a field that is more perpendicular to the visual cortical surface, which is expected to result in larger changes in neuronal excitability.

20.
Geroscience ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112719

RESUMEN

Studies aimed at preventing age-associated diseases are fundamental in addressing the challenges posed by an aging population. However, biomedical and technological advancements have now reached a stage where it appears increasingly possible to repair the damage caused by severe pathologies and reverse the functional decline that accompanies aging. This perspective highlights the significance of using aging models, specifically non-transgenic geriatric mice (aged over 24 months), to study interventions aimed at reversing or ameliorating age-related pathologies. While most research typically utilizes young, adult, and mid-aged mice to investigate aging mechanisms and develop preventive strategies, geriatric models provide unique insights into the efficacy and safety of treatments in conditions that mimic the complexities of multiple concurrent diseases or syndromes. This manuscript highlights the importance of considering timing responses in aging interventions, illustrated by recent findings such as those involving canagliflozin. These studies reveal that the timing of intervention can significantly influence the outcomes, highlighting aspects often overlooked. Practical challenges and resource demands associated with geriatric mouse studies including concerns related to animal husbandry and aging phenotypes are also discussed. This perspective aims to foster a deeper understanding of the potential benefits and limitations of geriatric mice models in geroscience research and emphasizes the need for continued innovation in this field to meet the critical need to develop effective treatments for age-related diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA