Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
JA Clin Rep ; 10(1): 59, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297916

RESUMEN

BACKGROUND: During epilepsy surgery, it is equally important to record electrocorticography (ECoG) for detecting epileptogenic activity and guiding brain resection, and to evaluate neuromonitoring data, particularly motor evoked potentials (MEP), for avoidance of postoperative neurological complications. However, sevoflurane, which is commonly used during recording of ECoG, may attenuate the MEP response. It enforces anesthesiologists and neurosurgeons to select one anesthetic agent over another, facilitating either ECoG or MEP monitoring. CASE PRESENTATION: In the presented case of a 20-year-old man, who underwent surgery for temporal lobe epilepsy, a novel technique of neuroanesthesia was introduced, integrating initial induction of the total intravenous anesthesia (TIVA) with propofol (effect-site concentration, 2.3-3.0 µg/ml), its subsequent switching to sevoflurane (end-tidal concentration, 2.5%) for ECoG recording, and further change back to TIVA for MEP monitoring during brain resection. CONCLUSIONS: Intraoperative switch of anesthetic agents according to specific intraoperative requirements may be useful for cases of brain surgery requiring both ECoG recordings and MEP monitoring.

2.
J Sex Med ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279159

RESUMEN

BACKGROUND: Motor cortex excitability may represent the neuronal endpoint of motivational processes and was shown to be modulated by both sexual arousal and deceptive behavior. AIM: This is the first study to investigate the influence of lying and sex in heterosexual women and men based on motor-evoked potentials (MEPs) measured while viewing sexually arousing pictures. METHODS: Sixteen heterosexual couples were shown 360 trials consisting of pictures displaying both almost naked females and males and neutral control images. In a subsequent forced-choice question about wanting to see the respective pictures fully naked, they were instructed to either answer in agreement with or opposite to their sexual preference. Participants went through 2 blocks of answering truthfully and 2 blocks of lying, with these 4 blocks being shown in a randomized alternating order. OUTCOMES: To measure cortical excitability, MEPs were used, evoked by single transcranial magnetic stimulation pulses between image presentation and response. RESULTS: In normalized MEPs, women and men showed higher amplitudes for preferred over non-preferred sexual stimuli, but only on a descriptive level. Planned contrasts showed higher non-normalized MEPs for lying in all picture categories. Direct comparisons to a preliminary study showed overall lower effect sizes. CLINICAL IMPLICATIONS: Both sexes tend to show higher MEPs in response to their sexually preferred stimuli. MEPs are not stable markers for willful volitionally controlled deception although lying does increase cortical excitability. The present experimental design does not seem valid enough to serve as a diagnostic marker for sexual preference or paraphilia and malingering. STRENGTHS AND LIMITATIONS: This is the first study investigating whether sexual motivational stimuli modulate MEPs in women, while also examining the influence of lying for both sexes. The sample was too small for some found effects to be significant. Also, the experimental setup may have been less suited for female participants in comparison to male ones. CONCLUSION: The operationalization of sexual motivation via MEPs seems to highly depend on different experimental factors including the sex of the participants, induced motivation, and lying.

4.
Clin Neurophysiol ; 166: 176-190, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178552

RESUMEN

OBJECTIVE: Our aim is to explore the value of intraoperative facial motor evoked potentials (FMEP) for facial outcomes in cerebellopontine angle (CPA) tumor surgery to provide an evidence-based consensus standard for future clinical practice and prospective studies. METHODS: Electronic databases were searched from inception to June 2023. Study quality was assessed with the QUADAS-2 tool. Bivariate and random-effects models for meta-analysis and meta-regression generated summary receiver operating characteristic curves (ROC) and forest plots for estimates of sensitivity and specificity. RESULTS: We included 17 studies (1,206 participants). Sensitivity was lower in the immediate (IM) post-operative (0.76, 95% CI 0.65-0.84) compared to follow-up (FU) period (0.82, 95% CI 0.74-0.88) while specificity was similar in both groups (IM, 0.94, 95% CI 0.89-0.97; FU, 0.93, 95% CI 0.87-0.96). Data driven estimates improved FMEP performance but require confirmation from future studies. Amplitude cutoff criteria and studies that scored new deficits as worse than House-Brackmann (HB) grade 2 yielded best sensitivities. CONCLUSIONS: FMEP demonstrated statistically significant accuracy for facial function monitoring. Implementation of FMEPs varied widely across studies. SIGNIFICANCE: Our study is the first systematic review with meta-analysis to demonstrate that intraoperative FMEP is valuable in CPA tumor surgery for facial outcomes. Meta-regression identified the methods that were most useful in the application of FMEPs.


Asunto(s)
Potenciales Evocados Motores , Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Potenciales Evocados Motores/fisiología , Valor Predictivo de las Pruebas , Ángulo Pontocerebeloso/cirugía , Ángulo Pontocerebeloso/fisiopatología , Nervio Facial/fisiopatología , Neoplasias Cerebelosas/cirugía , Neoplasias Cerebelosas/fisiopatología
5.
Medicina (Kaunas) ; 60(8)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39202523

RESUMEN

D-waves (also called direct waves) result from the direct activation of fast-conducting, thickly myelinated corticospinal tract (CST) fibres after a single electrical stimulus. During intraoperative neurophysiological monitoring, D-waves are used to assess the long-term motor outcomes of patients undergoing surgery for intramedullary spinal cord tumours, selected cases of intradural extramedullary tumours and surgery for syringomyelia. In the present manuscript, we discuss D-wave monitoring and its role as a tool for monitoring the CST during spinal cord surgery. We describe the neurophysiological background and provide some recommendations for recording and stimulation, as well as possible future perspectives. Further, we introduce the concept of anti D-wave and present an illustrative case with successful recordings.


Asunto(s)
Neoplasias de la Médula Espinal , Humanos , Neoplasias de la Médula Espinal/cirugía , Neoplasias de la Médula Espinal/fisiopatología , Monitorización Neurofisiológica Intraoperatoria/métodos , Tractos Piramidales/fisiopatología , Monitoreo Intraoperatorio/métodos , Masculino
6.
Front Surg ; 11: 1386049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045089

RESUMEN

Introduction: Dexmedetomidine is often used as an adjunct to total intravenous anesthesia (TIVA) for procedures requiring intraoperative neurophysiologic monitoring (IONM). However, it has been reported that dexmedetomidine might mask the warning of a neurological deficit on intraoperative monitoring. Methods: We reviewed the intraoperative neurophysiological monitoring data of 47 patients who underwent surgery and IONM from March 2019 to March 2021 at the Department of Neurosurgery, Renmin Hospital of Wuhan University. Pre- and postoperative motor function scores were recorded and analyzed. Dexmedetomidine was administered intravenously at 0.5 µg/kg/h 40 min after anesthesia and discontinued after 1 h in the dexmedetomidine group. Results: We found that the amplitude of transcranial motor-evoked potentials (Tce-MEPs) was significantly lower in the dexmedetomidine group than in the negative control group (P < 0.0001). There was no statistically significant difference in the somatosensory-evoked potentials (SSEPs) amplitude or the Tce-MEPs or SSEPs latency. There was no significant decrease in postoperative motor function in the dexmedetomidine group compared with the preoperative group, suggesting that there is no evidence that dexmedetomidine affects patient prognosis. In addition, we noticed a synchronized bilateral decrease in the Tce-MEPs amplitude in the dexmedetomidine group and a mostly unilateral decrease on the side of the brain injury in the positive control group (P = 0.001). Discussion: Although dexmedetomidine does not affect the prognosis of patients undergoing craniotomy, the potential risks and benefits of applying it as an adjunctive medication during craniotomy should be carefully evaluated. When dexmedetomidine is administered, Tce-MEPs should be monitored. When a decrease in the Tce-MEPs amplitude is detected, the cause of the decrease in the MEPs amplitude can be indirectly determined by whether the decrease is bilateral.

7.
J Neurol Sci ; 463: 123141, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39043070

RESUMEN

OBJECTIVES: Target localization for deep brain stimulation (DBS) is a crucial step that influences the clinical benefit of the DBS procedure together with the reduction of side effects. In this work, we address the feasibility of DBS target localization in the globus pallidus internus (GPi) aided by intraoperative motor evoked potentials (MEP) with emphasis on the reduction of capsular side effects. MATERIAL AND METHODS: Micro-macroelectrode recordings were performed intraoperatively on 20 patients that underwent DBS treatment of the GPi (GPi-DBS). MEP were elicited intraoperatively by microelectrode stimulation during stereotactic DBS surgery. We studied the relationship between MEP thresholds and the internal capsule (IC) proximity. RESULTS: We found a significant correlation between intraoperative MEP thresholds and IC proximity. CONCLUSIONS: We provide further evidence of the role of MEPs for DBS target localization in the GPi, which extends and confirms the usefulness of MEPs as previously reported by DBS target localization studies dealing with the subthalamic and thalamic nuclei. Our approach is advantageous in that it provides criteria to determine the DBS target without the need to rely on a patient's response while avoiding capsular effects.


Asunto(s)
Estimulación Encefálica Profunda , Potenciales Evocados Motores , Globo Pálido , Humanos , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiología , Masculino , Femenino , Persona de Mediana Edad , Potenciales Evocados Motores/fisiología , Anciano , Monitorización Neurofisiológica Intraoperatoria/métodos , Adulto , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología
8.
Clin Neurophysiol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39079793

RESUMEN

OBJECTIVE: We assessed the Transcranial Electrical Stimulation (TES)-induced Corticobulbar-Motor Evoked Potentials (Cb-MEPs) evoked from Orbicularis Oculi (Oc) and Orbicularis Oris (Or) muscles with FCC5h/FCC6h-Mz, C3/C4-Cz and C5/C6/-Cz stimulation, during IntraOperative NeuroMonitoring (IONM) in 30 patients who underwent skull-base surgery. METHODS: before (T0) and after (T1) the surgery, we compared the peak-to-peak amplitudes of Cb-MEPs obtained from TES with C3/C4-Cz, C5/C6-Cz and FCC5h/FCC6h-Mz. Then, we compared the response category (present, absent and peripheral) related to different montages. Finally, we classified the Cb-MEPs data from each patient for concordance with clinical outcome and we assessed the diagnostic measures for Cb-MEPs data obtained from FCC5h/FCC6h-Mz, C3/C4-Cz and C5/C6-Cz TES stimulation. RESULTS: Both at T0 and T1, FCC5h/FCC6h-Mz stimulation evoked larger Cb-MEPs than C3/C4-Cz, less peripheral responses from direct activation of facial nerve than C5/C6-Cz. FCC5h/FCC6h-Mz stimulation showed the best accuracy and specificity of Cb-MEPs for clinical outcomes. CONCLUSIONS: FCC5h/FCC6h-Mz stimulation showed the best performances for monitoring the facial nerve functioning, maintaining excellent diagnostic measures even at low stimulus voltages. SIGNIFICANCE: We demonstrated that FCC5h/FCC6h-Mz TES montage for Cb-MEPs in IONM has good accuracy in predicting the post-surgery outcome of facial nerve functioning.

10.
Sci Rep ; 14(1): 14862, 2024 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937562

RESUMEN

Tactile Imagery (TI) remains a fairly understudied phenomenon despite growing attention to this topic in recent years. Here, we investigated the effects of TI on corticospinal excitability by measuring motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation (TMS). The effects of TI were compared with those of tactile stimulation (TS) and kinesthetic motor imagery (kMI). Twenty-two participants performed three tasks in randomly assigned order: imagine finger tapping (kMI); experience vibratory sensations in the middle finger (TS); and mentally reproduce the sensation of vibration (TI). MEPs increased during both kMI and TI, with a stronger increase for kMI. No statistically significant change in MEP was observed during TS. The demonstrated differential effects of kMI, TI and TS on corticospinal excitability have practical implications for devising the imagery-based and TS-based brain-computer interfaces (BCIs), particularly the ones intended to improve neurorehabilitation by evoking plasticity changes in sensorimotor circuitry.


Asunto(s)
Potenciales Evocados Motores , Imaginación , Tacto , Estimulación Magnética Transcraneal , Humanos , Estimulación Magnética Transcraneal/métodos , Masculino , Femenino , Potenciales Evocados Motores/fisiología , Adulto , Imaginación/fisiología , Adulto Joven , Tacto/fisiología , Tractos Piramidales/fisiología , Dedos/fisiología , Corteza Motora/fisiología , Vibración , Interfaces Cerebro-Computador
11.
Neuromodulation ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38878056

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) is used to modulate neuronal activity, but the exact mechanism of action (MOA) is unclear. This study investigates tDCS-induced modulation of the corticospinal excitability and the underlying MOA. By anesthetizing the scalp before applying tDCS and by stimulating the cheeks, we investigated whether stimulation of peripheral and/or cranial nerves contributes to the effects of tDCS on corticospinal excitability. MATERIALS AND METHODS: In a randomized cross-over study, four experimental conditions with anodal direct current stimulation were compared in 19 healthy volunteers: 1) tDCS over the motor cortex (tDCS-MI), 2) tDCS over the motor cortex with a locally applied topical anesthetic (TA) on the scalp (tDCS-MI + TA), 3) DCS over the cheek region (DCS-C), and 4) sham tDCS over the motor cortex(sham). tDCS was applied for 20 minutes at 1 mA. Motor evoked potentials (MEPs) were measured before tDCS and immediately, 15, 30, 45, and 60 minutes after tDCS. A questionnaire was used to assess the tolerability of tDCS. RESULTS: A significant MEP amplitude increase compared with baseline was found 30 minutes after tDCS-MI, an effect still observed 60 minutes later; no time∗condition interaction effect was detected. In the other three conditions (tDCS-MI + TA, DCS-C, sham), no significant MEP modulation was found. The questionnaire indicated that side effects are significantly lower when the local anesthetic was applied before stimulation than in the other three conditions. CONCLUSIONS: The significant MEP amplitude increase observed from 30 minutes on after tDCS-MI supports the modulatory effect of tDCS on corticospinal neurotransmission. This effect lasted one hour after stimulation. The absence of a significant modulation when a local anesthetic was applied suggests that effects of tDCS are not solely established through direct cortical stimulation but that stimulation of peripheral and/or cranial nerves also might contribute to tDCS-induced modulation.

12.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891875

RESUMEN

Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Plasticidad Neuronal , Estimulación Magnética Transcraneal , Animales , Corteza Motora/fisiología , Ratas , Masculino , Potenciales Evocados Motores/fisiología , Estimulación Magnética Transcraneal/métodos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ondas Ultrasónicas , Ratas Sprague-Dawley , Proteína Ácida Fibrilar de la Glía/metabolismo , Glutamato Descarboxilasa/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-38862033

RESUMEN

OBJECTIVES: To first investigate the effectiveness of modified constraint-induced movement therapy (mCIMT) in low-functioning patients with stroke (PwS). Second, we aimed to investigate the efficiency of intermittent theta-burst stimulation (iTBS), applied on intermittent days, in addition to the mCIMT in PwS. DESIGN: A randomized, sham-controlled, single-blinded study. SETTING: Outpatient clinic. PARTICIPANTS: Fifteen PwS (age [mean±SD]: 66.3±9.2 years; 53% female) who were in the first 1 to 12 months after the incident were included in the study. INTERVENTIONS: PwS were divided into 3 groups: (1) mCIMT alone; (2) mCIMT + sham iTBS; (3) mCIMT + iTBS. Each group received 15 sessions of mCIMT (1 hour/session, 3 sessions/week). iTBS was applied with 600 pulses on impaired M1 before mCIMT. MAIN OUTCOME MEASURES: Upper extremity (UE) impairment was assessed with the Fugl-Meyer Test (FMT-UE), whereas the motor function was evaluated with the Wolf-Motor Function Test (WMFT). Motor Activity Log-28 (MAL-28) was used to evaluate the amount of use and how well (How Well Scale) the impaired UE movements. RESULTS: With-in-group analysis revealed that all groups had statistically significant improvements based on the FMT-UE and MAL-28 (p<.05). However, the performance time and arm strength variables of WMFT were only increased in the mCIMT + iTBS group (p<.05). The only between-group difference was observed in the intracortical facilitation in favor of the mCIMT + iTBS group (p<.05). The effect size of iTBS was f=0.18. CONCLUSIONS: Our findings suggest that mCIMT with and without the application of iTBS has increased the UE motor function in low-functioning PwS. iTBS applied on intermittent days may have additional benefits as an adjunct therapy for facilitating cortical excitability, increasing the speed and strength of the impaired UE as well as decreasing disability.

14.
Neurodiagn J ; 64(3): 96-111, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941588

RESUMEN

Intraoperative neurophysiological monitoring (IONM) is shown to be useful in surgeries when the nervous system is at risk. Its success in part relies upon proper setup of often dozens of electrodes correctly placed and secured upon patients and inserted in specific stimulating and recording receptacles. Given the complicated setups and the demanding operating room environment, errors in setup are bound to occur. These have led to false negatives associated with new patient morbidities including, at times, paralysis. No studies quantify the prevalence of these types of setup errors. Approximately 800,000 operations annually utilize intraoperative neuromonitoring in the US alone, so even a small percentage of errors suggests clinical significance. In addition, these types of errors hinder the overall effectiveness of IONM and may result in lower reported sensitivities and lower cost-effectiveness of this important service. We sought to discover through a prospective study and verification through chart review the prevalence of "electrode-swap" errors (when recording and/or stimulating electrodes are incorrectly placed on the patient or in the IONM equipment during setup) across all procedures monitored. We found recording and/or stimulating electrode set up errors in 24 of 454 cases (5.3%). These data and examples of how errors were discovered intraoperatively are reported. We also offer techniques to help reduce this error rate. This study demonstrates a significant potential avoidable error in IONM diagnostic utility, patient outcome, and sensitivity/specificity of alert criteria. The value of identifying and correcting these errors is consequential, multifaceted, and far-reaching.


Asunto(s)
Electrodos , Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Monitorización Neurofisiológica Intraoperatoria/estadística & datos numéricos , Estudios Prospectivos , Masculino , Femenino , Prevalencia , Persona de Mediana Edad , Adulto , Anciano , Errores Médicos/prevención & control , Errores Médicos/estadística & datos numéricos
15.
J Appl Physiol (1985) ; 137(1): 51-62, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38722751

RESUMEN

Acute intermittent hypoxia (AIH) can induce sustained facilitation of motor output in people with spinal cord injury (SCI). Most studies of corticospinal tract excitability in humans have used 9% fraction inspired oxygen ([Formula: see text]) AIH (AIH-9%), with inconsistent outcomes. We investigated the effect of single sessions of 9% [Formula: see text] and 12% [Formula: see text] AIH (AIH-12%) on corticospinal excitability of a hand and leg muscle in able-bodied adults. Ten naïve participants completed three sessions on separate days comprising 15 epochs of 1 min of AIH-9%, AIH-12%, or sham (SHAM-21%) followed by 1 min of room air (21% [Formula: see text]) in a randomized crossover design. Motor-evoked potentials (MEPs; n = 30, ∼1 mV) elicited at rest by transcranial magnetic stimulation and maximal M-waves (Mmax) evoked by peripheral nerve stimulation were measured from the first dorsal interosseous (FDI) and tibialis anterior (TA) muscles at baseline and at ∼0, 20, 40, and 60 min post intervention. AIH-9% induced the greatest reduction in peripheral oxygen saturation (to 85% vs. 93% and 100% in AIH-12% and SHAM-21%, respectively; P < 0.001) and the greatest increase in ventilation [by 22% vs. 12% and -3% in AIH-9%, AIH-12%, and SHAM-21%, respectively (P < 0.001)]. There was no difference in MEP amplitudes (%Mmax) after any of the three conditions (AIH-9%, AIH-12%, SHAM-21%) for both the FDI (P = 0.399) and TA (P = 0.582). Despite greater cardiorespiratory changes during AIH-9%, there was no evidence of corticospinal facilitation (tested with MEPs) in this study. Further studies could explore variability in response to AIH between individuals and other methods to measure motor facilitation in people with and without spinal cord injuries.NEW & NOTEWORTHY This is the first study that tests whether acute intermittent hypoxia (AIH) induces motor output facilitation in humans after two different doses of AIH (9% and 12% [Formula: see text]) and the reproducibility of participant responses after a repeat AIH intervention at 9% AIH. There was no motor output facilitation in response to either dose of AIH. The results question the effectiveness of a single 30-min session of AIH in inducing motor output facilitation, tested in this way.


Asunto(s)
Potenciales Evocados Motores , Hipoxia , Extremidad Inferior , Músculo Esquelético , Estimulación Magnética Transcraneal , Humanos , Masculino , Potenciales Evocados Motores/fisiología , Hipoxia/fisiopatología , Adulto , Femenino , Músculo Esquelético/fisiopatología , Estimulación Magnética Transcraneal/métodos , Extremidad Inferior/fisiopatología , Adulto Joven , Tractos Piramidales/fisiopatología , Estudios Cruzados , Extremidad Superior/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología
16.
J Physiol ; 602(12): 2961-2983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38758005

RESUMEN

Volitional movement requires descending input from the motor cortex and sensory feedback through the spinal cord. We previously developed a paired brain and spinal electrical stimulation approach in rats that relies on convergence of the descending motor and spinal sensory stimuli in the cervical cord. This approach strengthened sensorimotor circuits and improved volitional movement through associative plasticity. In humans, it is not known whether posterior epidural spinal cord stimulation targeted at the sensorimotor interface or anterior epidural spinal cord stimulation targeted within the motor system is effective at facilitating brain evoked responses. In 59 individuals undergoing elective cervical spine decompression surgery, the motor cortex was stimulated with scalp electrodes and the spinal cord was stimulated with epidural electrodes, with muscle responses being recorded in arm and leg muscles. Spinal electrodes were placed either posteriorly or anteriorly, and the interval between cortex and spinal cord stimulation was varied. Pairing stimulation between the motor cortex and spinal sensory (posterior) but not spinal motor (anterior) stimulation produced motor evoked potentials that were over five times larger than brain stimulation alone. This strong augmentation occurred only when descending motor and spinal afferent stimuli were timed to converge in the spinal cord. Paired stimulation also increased the selectivity of muscle responses relative to unpaired brain or spinal cord stimulation. Finally, clinical signs suggest that facilitation was observed in both injured and uninjured segments of the spinal cord. The large effect size of this paired stimulation makes it a promising candidate for therapeutic neuromodulation. KEY POINTS: Pairs of stimuli designed to alter nervous system function typically target the motor system, or one targets the sensory system and the other targets the motor system for convergence in cortex. In humans undergoing clinically indicated surgery, we tested paired brain and spinal cord stimulation that we developed in rats aiming to target sensorimotor convergence in the cervical cord. Arm and hand muscle responses to paired sensorimotor stimulation were more than five times larger than brain or spinal cord stimulation alone when applied to the posterior but not anterior spinal cord. Arm and hand muscle responses to paired stimulation were more selective for targeted muscles than the brain- or spinal-only conditions, especially at latencies that produced the strongest effects of paired stimulation. Measures of clinical evidence of compression were only weakly related to the paired stimulation effect, suggesting that it could be applied as therapy in people affected by disorders of the central nervous system.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Músculo Esquelético , Médula Espinal , Corteza Motora/fisiología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Médula Espinal/fisiología , Adulto , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Estimulación de la Médula Espinal/métodos , Anciano , Estimulación Eléctrica/métodos
17.
J Neurol ; 271(7): 4513-4528, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38709305

RESUMEN

INTRODUCTION: Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS). METHODS: nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test). RESULTS: nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency. CONCLUSIONS: This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.


Asunto(s)
Potenciales Evocados Motores , Corteza Motora , Esclerosis Múltiple , Estimulación Magnética Transcraneal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiopatología , Corteza Motora/diagnóstico por imagen , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Mapeo Encefálico , Evaluación de la Discapacidad , Mano/fisiopatología , Músculo Esquelético/fisiopatología , Músculo Esquelético/diagnóstico por imagen , Electromiografía , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Plasticidad Neuronal/fisiología
18.
BJA Educ ; 24(5): 173-182, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38646449
19.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565296

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique capable of inducing neuroplasticity as measured by changes in peripheral muscle electromyography (EMG) or electroencephalography (EEG) from pre-to-post stimulation. However, temporal courses of neuromodulation during ongoing rTMS are unclear. Monitoring cortical dynamics via TMS-evoked responses using EMG (motor-evoked potentials; MEPs) and EEG (transcranial-evoked potentials; TEPs) during rTMS might provide further essential insights into its mode of action - temporal course of potential modulations. The objective of this study was to first evaluate the validity of online rTMS-EEG and rTMS-EMG analyses, and second to scrutinize the temporal changes of TEPs and MEPs during rTMS. As rTMS is subject to high inter-individual effect variability, we aimed for single-subject analyses of EEG changes during rTMS. Ten healthy human participants were stimulated with 1,000 pulses of 1 Hz rTMS over the motor cortex, while EEG and EMG were recorded continuously. Validity of MEPs and TEPs measured during rTMS was assessed in sensor and source space. Electrophysiological changes during rTMS were evaluated with model fitting approaches on a group- and single-subject level. TEPs and MEPs appearance during rTMS was consistent with past findings of single pulse experiments. Heterogeneous temporal progressions, fluctuations or saturation effects of brain activity were observed during rTMS depending on the TEP component. Overall, global brain activity increased over the course of stimulation. Single-subject analysis revealed inter-individual temporal courses of global brain activity. The present findings are in favor of dose-response considerations and attempts in personalization of rTMS protocols.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Electromiografía/métodos , Estimulación Magnética Transcraneal/métodos , Corteza Motora/fisiología , Electroencefalografía , Músculo Esquelético/fisiología
20.
Spine J ; 24(9): 1740-1749, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38614157

RESUMEN

BACKGROUND CONTEXT: Intraoperative neurophysiological monitoring (IONM) is used to reduce the risk of spinal cord injury during pediatric spinal deformity surgery. Significant reduction and/or loss of IONM signals without immediate recovery may lead the surgeon to acutely abort the case. The timing of when monitorable signals return remains largely unknown. PURPOSE: The goal of this study was to investigate the correlation between IONM signal loss, clinical examination, and subsequent normalization of IONM signals after aborted pediatric spinal deformity surgery to help determine when it is safe to return to the operating room. STUDY DESIGN/SETTING: This is a multicenter, multidisciplinary, retrospective study of pediatric patients (<18 years old) undergoing spinal deformity surgery whose surgery was aborted due to a significant reduction or loss of IONM potentials. PATIENT SAMPLE: Sixty-six patients less than 18 years old who underwent spinal deformity surgery that was aborted due to IONM signal loss were enrolled into the study. OUTCOME MEASURES: IONM data, operative reports, and clinical examinations were investigated to determine the relationship between IONM loss, clinical examination, recovery of IONM signals, and clinical outcome. METHODS: Information regarding patient demographics, deformity type, clinical history, neurologic and ambulation status, operative details, IONM information (eg, quality of loss [SSEPs, MEPs], laterality, any recovery of signals, etc.), intraoperative wake-up test, postoperative neurologic exam, postoperative imaging, and time to return to the operating were all collected. All factors were analyzed and compared with univariate and multivariate analysis using appropriate statistical analysis. RESULTS: Sixty-six patients were enrolled with a median age of 13 years [IQR 11-14], and the most common sex was female (42/66, 63.6%). Most patients had idiopathic scoliosis (33/66, 50%). The most common causes of IONM loss were screw placement (27/66, 40.9%) followed by rod correction (19/66, 28.8%). All patients had either complete bilateral (39/66, 59.0%), partial bilateral (10/66, 15.2%) or unilateral (17/66, 25.8%) MEP loss leading to termination of the case. Overall, when patients were returned to the operating room 2 weeks postoperatively, nearly 75% (40/55) had monitorable IONM signals. Univariate analysis demonstrated that bilateral SSEP loss (p=.019), bilateral SSEP and MEP loss (p=.022) and delayed clinical neurologic recovery (p=.008) were significantly associated with having unmonitorable IONM signals at repeat surgery. Multivariate regression analysis demonstrated that delayed clinical neurologic recovery (> 72 hours) was significantly associated with unmonitorable IONM signals when returned to the operating room (p=.006). All patients ultimately made a full neurologic recovery. CONCLUSIONS: In children whose spinal deformity surgery was aborted due to intraoperative IONM loss, there was a strong correlation between combined intraoperative SSEP/MEP loss, the magnitude of IONM loss, the timing of clinical recovery, and the time of electrophysiological IONM recovery. The highest likelihood of having a prolonged postoperative neurological deficit and undetectable IONM signals upon return to the OR occurs with bilateral complete loss of SSEPs and MEPs.


Asunto(s)
Monitorización Neurofisiológica Intraoperatoria , Humanos , Monitorización Neurofisiológica Intraoperatoria/métodos , Niño , Femenino , Masculino , Adolescente , Estudios Retrospectivos , Traumatismos de la Médula Espinal/cirugía , Preescolar , Recuperación de la Función , Escoliosis/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA