Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Chemosphere ; 364: 143272, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243905

RESUMEN

Rare-earth elements (REEs) play a crucial role in state-of-the-art technologies and sustainable energy generation. However, conventional production methods of REE often instigate detrimental impacts on environment. Hence, the development of efficient and sustainable hydrometallurgical methods for REE recovery from complex solution has become a crucial research focus. This study investigates a mixed-matrix membrane composed of a highly europium selective metal-organic framework-based adsorbent, Cr-MIL-PMIDA, embedded in sulfonated poly(ether ketone) (SPEK) polymer membrane matrix to preferentially concentrate europium (Eu3+) ions in the presence of other competing cations. The activated membrane notably reduced ionic conductivity for Eu3+ compared to other multivalent ions. Membrane extraction experiments further confirmed the selective behavior, demonstrating slower diffusion for Eu3+ compared to Mg2+ and Zn2+ cations. Especially, at pH 5, Mg2⁺ and Zn2⁺ recovery was greater than 30%, whereas Eu³âº recovery remained lower than 4%. We propose that the strong chemical affinity between the phosphate group and Eu3+ help partition of the Eu3+ ions in the membrane phase and inhibit the diffusion and further partitioning of the Eu3+ ion from bulk solution. Furthermore, we demonstrate the stability of the composite membrane and the embedded MOF particles in aqueous solution for up to 12 days without degradation, attributing it to the robust chemical stability of the MOF structure.

2.
Eco Environ Health ; 3(3): 381-391, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281072

RESUMEN

The escalating challenges in water treatment, exacerbated by climate change, have catalyzed the emergence of innovative solutions. Novel adsorption separation and membrane filtration methodologies, achieved through molecular structure manipulation, are gaining traction in the environmental and energy sectors. Separation technologies, integral to both the chemical industry and everyday life, encompass concentration and purification processes. Macrocycles, recognized as porous materials, have been prevalent in water treatment due to their inherent benefits: stability, adaptability, and facile modification. These structures typically exhibit high selectivity and reversibility for specific ions or molecules, enhancing their efficacy in water purification processes. The progression of purification methods utilizing macrocyclic frameworks holds promise for improved adsorption separations, membrane filtrations, resource utilization, and broader water treatment applications. This review encapsulates the latest breakthroughs in macrocyclic host-guest chemistry, with a focus on adsorptive and membrane separations. The aim is to spotlight strategies for optimizing macrocycle designs and their subsequent implementation in environmental and energy endeavors, including desalination, elemental extraction, seawater energy harnessing, and sustainable extraction. Hopefully, this review can guide the design and functionality of macrocycles, offering a significantly promising pathway for pollutant removal and resource utilization.

3.
Angew Chem Int Ed Engl ; : e202411440, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261286

RESUMEN

Metal-organic framework (MOF)-based membranes excel in molecular separation, attracting significant research interest. The crystallographic microstructure and selective adsorption capacity of MOFs closely correlate with their gas separation performance. Here, aniline was added to the ZIF-8 synthesis in varying concentrations. Aniline, encapsulated within ZIF-8 cavities, interacts strongly with the 2-methylimidazole linker, resulting in both a shift in crystallographic phase from I_43m to Cm in Rietveld refinement of X-ray diffraction (XRD) patterns and the selective adsorption behavior between propylene and propane. Consequently, an aniline decorative ZIF-8 (Anix-ZIF-8) membrane was prepared using a fast current-driven synthesis method, which exhibits good propylene/propane separation selectivity of up to 85. Calculation of the interaction energy between aniline and the various crystallographic phases of ZIF-8 using density functional theory (DFT) further verifies that aniline not only promotes the formation of crystallographic Cm phase, but also enhances the adsorption selectivity of propylene over propane. Aniline modification effectively tunes the crystallographic microstructure of ZIF-8, thereby, improving molecular sieving capabilities.

4.
Environ Res ; : 119981, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270959

RESUMEN

Ammonia recovery from industrial wastewater using membrane contactor processes is emerging as a promising method owing to the diverse applications of ammonia. This study uniquely addressed ammonia recovery from coke plant wastewater, which is challenging due to the presence of numerous toxic and volatile phenolic compounds. Experiments were conducted using a synthetic coke plant effluent to assess the effects of various pH levels and temperatures on ammonia recovery. Specifically, the aim was to achieve high-purity ammonia recovery while minimizing the permeation of phenolic compounds. The results demonstrate that ammonia recovery in the membrane contactor processes is highly efficient, even in the presence of phenolic compounds. During temperature variations at 25°C and 40°C, the recovery of ammonia increased from 42.36% to 52.97% at pH 11. Additionally, increasing the pH of a feed solution from 7 to 12 significantly increased the ammonia content to 58.3%. At this pH, the recovered ammonia was of exceptional purity (>99%), with phenol, p-Cresol, and 2,4-xylenol present at negligible concentrations (0.001%, 0.002%, and 0.004%, respectively). This was attributed to the ionization of phenolic compounds at higher pH levels, which prevents their permeation through the hydrophobic membrane. The estimated cost analysis revealed that the membrane contactor process at pH 12 was approximately 1.41 times more cost-effective than conventional air-stripping processes over eight years of operating period (pH-12 membrane contactor: $19.79; pH-12 air stripping: $23.75). This study provides a detailed analysis of the optimal conditions for selective ammonia recovery from complex wastewater, highlighting both effective treatment and sustainable resource recovery and offering a superior alternative to traditional methods.

5.
Data Brief ; 55: 110676, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39234060

RESUMEN

Food plays a significant role in the environmental impacts of human activities. However, many agro-industrial processes are multi-product systems and their impacts need to be distributed between the different co-products in order to properly address two major issues: (1) prevention of food spoilage and food losses and (2) the eco-design of food systems, from processing up to recommendations for changes in Western diets. As a culturally and nutritionally central component of most human diets, milk is critical because processing is a preservation issue and most dairy products follow from separations, thereby generating co-products. Life Cycle Assessment (LCA) is a reference and standard method that allows quantification of the potential environmental impacts of a manufactured product throughout its life cycle. Application of the method requires foreground information on the system considered, as well as input and output flows that feed and exit the system. This data paper provides data related to the fractionation of milk into cream, casein, lactose and two whey protein ingredients at industrial scale, using up-to-date technologies used in French dairy factories in years 2000-2010s. Cleaning is included. Transcription of these input and output flows into a selection of processes in the Agribalyse 3.0.1 and Ecoinvent 3.8 databases is also provided. Application of the LCA method in its attributional approach leaves methodological choices up to the practitioner, such as subdivision of the system, allocation of the environmental burden where subdivision is not applied or not possible, and aggregation of the impacts. Therefore, this data paper also provides the allocation factors that are necessary to apply mass, dry matter, protein or economic allocation at every separation operation throughout the processing itinerary. Using the characterization method EF 3.0, this data paper provides the potential environmental impacts of the 5 co-products obtained with an initial input of 600 tons of raw milk, i.e., 63 tons of cream, 183 tons of wet casein, 90 tons of lactose, 1.7 ton of dried ß-lactoglobulin and 0.3 ton of dried α-lactalbumin. The respective shares of the 5 co-products are calculated for each allocation rule. Finally, this data paper provides the potential environmental impacts for the manufacture of 1 kg of α-lactalbumin enriched ingredient, as the co-product with the longest process itinerary, with details of all intermediate input contributions as well as two possible aggregation rules: by step or by input type. The dataset participates in providing often confidential industrial-scale LCI data to the public. It will be helpful for the eco-design of future itineraries. In particular, it contributes to taking the fate of the co-products into account when using LCA for such eco-design.

6.
Front Bioeng Biotechnol ; 12: 1448927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148940

RESUMEN

Nylon 54 is a novel, biodegradable polyamide with excellent thermal resistance and water absorption properties. It can be polymerized using bio-based cadaverine and succinic acid as monomers. Traditional separation methods isolate individual monomers from the fermentation broth through acidification or alkalization, resulting in significant amounts of waste salts; however, synchronous separation of dibasic acids and diamines has not been reported. This study investigated an integrated process for the separation and extraction of nylon 54 salts from a co-fermentation broth without acidification or alkalization. We meticulously optimized the operational parameters of the integrated process to achieve maximum separation efficiency. Following microfiltration, ultrafiltration, and decolorization, the bacterial eliminating rate was ≥99.83%, and the protein concentration was ≤40 mg/L. The absorbance of the decolorized solution was ≤0.021 at 430 nm, and the recovery rate of nylon 54 salt reached 97%. Then, the pretreated solution was passed through sequential chromatographic columns, which effectively removed organic acid by-products (such as acetic acid and lactic acid), SO4 2-, and NH4 + from the fermentation broth, resulting in a cadaverine yield of 98.01% and a succinic acid yield of 89.35%. Finally, by concentrating and crystallizing the eluent, the simulated fermentation broth yielded nylon 54 salt with a purity of 99.16% and a recovery rate of 58%, and the real fermentation broth yielded nylon 54 salt with a purity of 98.10% and a recovery rate of 56.21%. This integrated process offers a sustainable and environmentally friendly pathway for the complete biosynthesis of nylon 54 salt and has the potential to be extended to the preparation of other nylon salts.

7.
Fetal Diagn Ther ; : 1-11, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068923

RESUMEN

INTRODUCTION: Chorioamniotic membrane separation (CMS) is a known complication after fetal spina bifida (fSB) repair. This study's goal was to analyze women's outcomes with open fSB repair and CMS (group A) compared to the ones without (group B) and to assess the influence of CMS size and patient management. METHODS: A total of 194 women with open fSB repair at our center were included in this retrospective study. Outcomes of group A were compared to the ones of group B. Regression analysis was performed to assess risk factors for CMS. Two subgroup analyses assessed the impact of CMS size (small [A-small] vs. large [A-large]) as well as patient management (A1 = hospitalization vs. A2 = no hospitalization) on pregnancy outcomes. RESULTS: Of 194 women, 23 (11.9%) were in group A and 171 (88.1%) in group B. Preterm premature rupture of membranes (PPROMs) (69.6% vs. 24.1%, p = <0.001), amniotic infection syndrome (AIS) (22.7% vs. 7.1%, p = 0.03), histologically confirmed chorioamnionitis (hCA) (40.0% vs. 14.7%, p = 0.03), length of hospital stay (LOS) after fSB repair (35 [19-65] vs. 17 [14-27] days), and overall LOS (43 [33-71] vs. 35 [27-46] days, p = 0.004) were significantly more often/longer in group A. Gestational age (GA) at delivery was significantly lower in group A compared to group B (35.3 [32.3-36.3] vs. 36.7 [34.9-37.0] weeks, p = 0.006). Regression analysis did not identify risk factors for CMS. Subgroup analysis comparing CMS sized in group A-small versus A-large showed higher AIS rate (42% vs. 0%, p = 0.04), lower LOS (22.0 [15.5-42.5] vs. 59.6 ± 24.1, p = 0.003). Comparison of group A1 versus A2 showed longer LOS (49.3 ± 22.8 vs. 15 [15-17.5] days, p < 0.001), lower planned readmission rate (5.6% vs. 80%, p = 0.003). CONCLUSION: CMS significantly increased the risk of PPROM, AIS, hCA, caused longer LOS, and caused lower GA at delivery. Women with small CMS had higher AIS rates but shorter LOS compared to women with large CMS, while apart from LOS pregnancy outcomes did not differ regarding patient management (hospitalization after CMS yes vs. no).

8.
Mar Pollut Bull ; 206: 116752, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053257

RESUMEN

Microplastic pollution is one of the most pressing global environmental problems due to its harmful effects on living organisms and ecosystems. To address this issue, researchers have explored several techniques to successfully eliminate microplastics from water sources. Chemical coagulation, electrocoagulation, magnetic extraction, adsorption, photocatalytic degradation, and biodegradation are some of the recognized techniques used for the removal of microplastics from water. In addition, membrane-based techniques encompass processes propelled by pressure or potential, along with sophisticated membrane technologies like the dynamic membrane and the membrane bioreactor. Recently, researchers have been developing advanced membranes composed of metal-organic frameworks, MXene, zeolites, carbon nanomaterials, metals, and metal oxides to remove microplastics. This paper aims to analyze the effectiveness, advantages, and drawbacks of each method to provide insights into their application for reducing microplastic pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Adsorción , Biodegradación Ambiental , Membranas Artificiales
9.
Ultrason Sonochem ; 108: 106974, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38954863

RESUMEN

Battery industry, one of the most crucial components of the modern world, relies heavily on lithium production, and brines from the spent battery materials is one of the most important sources to exploit lithium. A new ultrasonic assisted membrane processing is proposed for lithium separation simulated brine. The effects of membrane composition, feed concentration, and ultrasonic conditions on the lithium extraction efficiency have been explored. The composite membrane including polysulfone (PSF) as the support and 1-alkyl-3-methylimidazolium hexafluorophosphate and tributyl phosphate as ionic liquid membrane. A porous PVC membrane has been used for prevention of the ILM loss. The optimal ultrasonic frequency is approximately 250 kHz, which matches the bulk modulus of the membrane and enhances the separation efficiency. Higher frequencies and optimized amplitude and pulse cycle settings further improve the lithium flux and selectivity. Moreover, higher flux and selectivity are achieved when separating lithium from alkali metal chlorides at higher feed concentrations, ranging from 250 ppm to 1000 ppm. The mechanism of enhanced lithium extraction by ultrasonics is attributed to the combination of microbubble formation, cavitation, and heat generation, which disrupt the concentration gradient and facilitate lithium transport across the membrane.

10.
ACS Nano ; 18(28): 18673-18682, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38951732

RESUMEN

Separating xylene isomers is a challenging task due to their similar physical and chemical properties. In this study, we developed a molecular sieve incorporating a reduced graphene oxide (rGO) membrane for the precise differentiation of xylene isomers. We fabricated GO membranes using a vacuum filtration technique followed by thermal-induced reduction to produce rGO membranes with precisely controllable interlayer spacing. Notably, we could finely tune the interlayer spacing of the rGO membrane from 8.0 to 5.0 Å by simply varying the thermal reduction temperature. We investigated the reverse osmosis separation ability of the rGO membranes for xylene isomers and found that the rGO membrane with an interlayer spacing of 6.1 Å showed a high single component permeance of 0.17 and 0.04 L m-2 h-1 bar-1 for para- and ortho-xylene, respectively, exhibiting clear permselectivity. The separation factor reached 3.4 and 2.8 when 90:10 and 50:50 feed mixtures were used, respectively, with permeance 1 order of magnitude higher than that of current state-of-the-art reverse osmosis membranes. Additionally, the membrane showed negligible permeance and selectivity decay even after continuous operation for more than 5 days, suggesting commendable membrane resistance to solvent swelling and operating pressure.

11.
Polymers (Basel) ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891428

RESUMEN

Carbon dots (CDs) have aroused colossal attention in the fabrication of nanocomposite membranes ascribed to their ultra-small size, good dispersibility, biocompatibility, excellent fluorescence, facile synthesis, and ease of functionalization. Their unique properties could significantly improve membrane performance, including permeance, selectivity, and antifouling ability. In this review, we summarized the recent development of CDs-based nanocomposite membranes in many application areas. Specifically, we paid attention to the structural regulation and functionalization of CDs-based nanocomposite membranes by CDs. Thus, a detailed discussion about the relationship between the CDs' properties and microstructures and the separation performance of the prepared membranes was presented, highlighting the advantages of CDs in designing high-performance separation membranes. In addition, the excellent optical and electric properties of CDs enable the nanocomposite membranes with multiple functions, which was also presented in this review.

12.
Food Chem ; 456: 139963, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38896968

RESUMEN

Batch coupled enzymatic hydrolysis and membrane separation mode (BCEH-MSM) is efficient in preparing active peptides due to enzyme being more purposeful in hydrolysing macromolecular. Therefore, BCEH-MSM probably could be an alternative option to the traditional enzymatic hydrolysis and offline membrane separation mode (TEH-OMSM). This work aimed to explore the potential of BCEH-MSM in enhancing the enzymatic hydrolysis (EH) efficiency and the umami of the enzymatic hydrolysate. The EH efficiency was valuated based on product yields. Amino acid analyzer and HPLC were used to analyze tasting compounds. Electronic-tongue was used to determine umami intensity. The results showed that BCEH-MSM exhibited superior EH efficiency and higher umami intensity compared to TEH-OMSM. LC-MS/MS was used to identify peptides with higher umami intensity in the enzymatic hydrolysate. LGEETF, VNFDGEI, and QLSELLRAGSSPNL had umami profile verified by electronic-tongue. Molecular docking further showed that crucial amino acid residues involved in the binding to T1R1/T1R3 was His145.


Asunto(s)
Pollos , Péptidos , Gusto , Animales , Hidrólisis , Péptidos/química , Péptidos/aislamiento & purificación , Espectrometría de Masas en Tándem , Humanos , Carne/análisis , Simulación del Acoplamiento Molecular , Aromatizantes/química , Hidrolisados de Proteína/química , Biocatálisis , Cromatografía Líquida de Alta Presión
13.
Fetal Diagn Ther ; : 1-11, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824911

RESUMEN

INTRODUCTION: Suture tensile properties have only been tested in extrauterine environments. Amniotic fluid (AF) is a complex milieu of enzymes and inflammatory factors. This study tested the mechanical properties of sutures with a variety of inherent properties, after exposure to AF from patients with conditions prompting fetal intervention. METHODS: AF was obtained from 3 patients with twin-twin transfusion syndrome (TTTS), and 3 patients with neural tube defects. Six types of 2-0 sutures were placed on 1.2 N of tension to mimic placement in vivo, and incubated in AF at 37°C (98.6°F). These included ethylene terephthalate (Ethibond), glycomer 631 (V-Loc), poliglecaprone 25 (Monocryl), poly-4-hydroxybutyrate (Monomax), polydioxanone (PDS), and polyglactin 910 (Vicryl). Failure load, stress, strain, and initial modulus were tested after 24 h of incubation and after 4 weeks, and compared with control (unincubated) sutures using t tests, Kruskal-Wallis tests, and stress-strain curves. RESULTS: Poliglecaprone 25 and polyglactin 910 dissolve more quickly in AF compared to outside the uterus, disintegrating at 4 weeks. Ethylene terephthalate and PDS experienced little change across 4 weeks of incubation. Glycomer 631 and poly-4-hydroxybutyrate exhibited interesting behavior in AF: glycomer 631 became more deformable at 24 h but later regained toughness by 4 weeks, while poly-4-hydroxybutyrate became tougher and in some cases stronger with time in AF. As a class, braided sutures act more like rigid materials, and monofilaments act like deformable plastics. CONCLUSION: These findings along with other suture characteristics such as ease of handling and availability may inform fetal intervention teams as they optimize procedures in a relatively new surgical field.

14.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893513

RESUMEN

This work presents methods of obtaining polymeric hollow-fiber membranes produced via the dry-wet phase inversion method that were published in renowned specialized membrane publications in the years 2010-2020. Obtaining hollow-fiber membranes, unlike flat membranes, requires the use of a special installation for their production, the most important component of which is the hollow fiber forming spinneret. This method is most often used in obtaining membranes made of polysulfone, polyethersulfone, polyurethane, cellulose acetate, and its derivatives. Many factors affect the properties of the membranes obtained. By changing the parameters of the spinning process, we change the thickness of the membranes' walls and the diameter of the hollow fibers, which causes changes in the membranes' structure and, as a consequence, changes in their transport/separation parameters. The type of bore fluid affects the porosity of the inner epidermal layer or causes its atrophy. Porogenic compounds such as polyvinylpyrrolidones and polyethylene glycols and other substances that additionally increase the membrane porosity are often added to the polymer solution. Another example is a blend of two- or multi-component membranes and dual-layer membranes that are obtained using a three-nozzle spinneret. In dual-layer membranes, one layer is the membrane scaffolding, and the other is the separation layer. Also, the temperature during the process, the humidity, and the composition of the solution in the coagulating bath have impact on the parameters of the membranes obtained.

15.
J Colloid Interface Sci ; 674: 370-378, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941931

RESUMEN

Membrane technology holds great potential for separation applications and also finds critical needs in biomedical fields, such as blood oxygenation. However, the bottlenecks in gas permeation, plasma leakage, and especially hemocompatibility hamper the development of membrane oxygenation. It remains extremely challenging to design efficient membranes and elucidate underlying principles. In this study, we report biomimetic decoration of asymmetric nanoporous membranes by ultrathin FeIII-tannic acid metal-ligand networks to realize fast gas exchange with on plasma leakage and substantially enhance hemocompatibility. Because the intrinsic nanopores facilitate gas permeability and the FeIII-catechol layers enable superior hydrophilicity and electronegativity to original surfaces, the modified membranes exhibit high transport properties for gases and great resistances to protein adsorption, platelet activation, coagulation, thrombosis, and hemolysis. Molecular docking and density functional theory simulations indicate that more preferential adsorption of metal-ligand networks with water molecules than proteins is critical to anticoagulation. Moreover, benefiting from the better antiaging property gave by biomimetic decoration, the membranes after four-month aging present gas permeances similar to or even larger than those of pristine ones, despite the initial permeation decline. Importantly, for blood oxygenation, the designed membranes after aging show fast O2 and CO2 exchange processes with rates up to 28-17 and 97-47 mL m-2 min-1, respectively, accompanied with no detectable thrombus and plasma leakage. We envisage that the biomimetic decoration of nanoporous membranes provide a feasible route to achieve great biocompatibility and transport capability for various applications.


Asunto(s)
Materiales Biomiméticos , Membranas Artificiales , Nanoporos , Oxígeno , Materiales Biomiméticos/química , Oxígeno/química , Propiedades de Superficie , Humanos , Adsorción , Materiales Biocompatibles/química , Tamaño de la Partícula , Simulación del Acoplamiento Molecular , Dióxido de Carbono/química , Hemólisis/efectos de los fármacos , Animales
16.
Chemosphere ; 361: 142355, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38768787

RESUMEN

As global effects of water scarcity raise concerns and environmental regulations evolve, contemporary wastewater treatment plants (WWTPs) face the challenge of effectively removing a diverse range of contaminants of emerging concern (CECs) from municipal effluents. This study focuses on the assessment of advanced oxidation processes (AOPs), specifically UV-C/H2O2 and UV-C/Chlorine, for the removal of 14 target CECs in municipal secondary effluent (MSE, spiked with 10 µg L-1 of each CEC) or in the subsequent MSE nanofiltration retentate (NFR, no spiking). Phototreatments were carried out in continuous mode operation, with a hydraulic retention time of 3.4 min, using a tube-in-tube membrane photoreactor. For both wastewater matrices, UV-C photolysis (3.3 kJ L-1) exhibited high efficacy in removing CECs susceptible to photolysis, although lower treatment performance was observed for NFR. In MSE, adding 10 mg L-1 of H2O2 or Cl2 enhanced treatment efficiency, with UV-C/H2O2 outperforming UV-C/Chlorine. Both UV-C/AOPs eliminated the chronic toxicity of MSE toward Chlorella vulgaris. In the NFR, not only was the degradation of target CECs diminished, but chronic toxicity to C. vulgaris persisted after both UV-C/AOPs, with UV-C/Chlorine increasing toxicity due to potential toxic by-products. Nanofiltration permeate (NFP) exhibited low CECs and microbial content. A single chlorine addition effectively controlled Escherichia coli regrowth for 3 days, proving NFP potential for safe reuse in crop irrigation (<1 CFU/100 mL for E. coli; <1 mg L-1 for free chlorine). These findings provide valuable insights into the applications and limitations of UV-C/H2O2 and UV-C/Chlorine for distinct wastewater treatment scenarios.


Asunto(s)
Cloro , Filtración , Peróxido de Hidrógeno , Fotólisis , Rayos Ultravioleta , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Cloro/química , Filtración/métodos , Purificación del Agua/métodos , Chlorella vulgaris/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Oxidación-Reducción
17.
Chemosphere ; 362: 142117, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38670501

RESUMEN

The application of nano-catalysts in improving the ozonation removal efficiency for refractory organic compounds has been extensively investigated. However, cost-effective nano-catalysts separation remains a challenge. In this study, membrane separation processes were employed to separate nano-MgO catalysts from an ozonation system. A continuous nano-catalytic ozonation membrane separation (nCOMS) coupling system was successfully constructed for treating quinoline. The results showed that long hydraulic retention time (HRT) and high nano-MgO dosage could improve the quinolone removal efficiency but shorten operation cycles. At the optimal operation conditions of HRT = 4 h and nano-MgO dosage = 0.2 g/L, the nCOMS system achieved a stable quinoline removal efficiency of 85.2% for 240 min running with a transmembrane pressure lower than 10 kPa. The quinoline removal efficiency contribution for ozonation, catalysis and membrane separation was 57.1%, 24.9% and 18.0%, respectively. Compared to ozonation membrane separation system, the fouling rate index of the nCOMS system increased by 60% under optimal conditions, but the irreversible fouling was reduced to 28%. In addition, the nCOMS system exhibited reduced adverse effects of coexisting natural organic matter (NOM) on quinoline removal and membrane fouling. In conclusion, the nCOMS system demonstrated higher quinoline removal efficiency, lower irreversible fouling, and reduced adverse effect of coexisting NOM, thereby signifying its potential for practical applications in advanced treatment of industrial wastewater.


Asunto(s)
Membranas Artificiales , Ozono , Quinolinas , Contaminantes Químicos del Agua , Purificación del Agua , Ozono/química , Catálisis , Quinolinas/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Óxido de Magnesio/química , Aguas Residuales/química
18.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611772

RESUMEN

Developing high-efficiency membrane materials for the rapid removal of organic dyes is crucial but remains a challenge. Polyoxometalates (POMs) clusters with anionic structures are promising candidates for the removal of cationic dyes via electrostatic interactions. However, their shortcomings, such as their solubility and inability to be mass-produced, hinder their application in water pollution treatment. Here, we propose a simple and green strategy utilizing the room temperature stirring method to mass produce nanoscale polyoxometalate-based metal-organic frameworks (POMOFs) with porous rhomboid-shaped dodecahedral and hexagonal prism structures. The products were labeled as POMOF1 (POMOF-PW12) and POMOF2 (POMOF-PMo12). Subsequently, a series of x wt% POMOF1/PAN (x = 0, 3, 5, and 10) nanofiber membranes (NFMs) were prepared using electrospinning technology, where polyacrylonitrile (PAN) acts as a "glue" molecule facilitating the bonding of POMOF1 nanoparticles. The as-prepared samples were comprehensively characterized and exhibited obvious water stability, as well as rapid selective adsorption filtration performance towards cationic dyes. The 5 wt% POMOF1/PAN NFM possessed the highest removal efficiency of 96.7% for RhB, 95.8% for MB, and 86.4% for CV dyes, which realized the selective separation over 95% of positively charged dyes from the mixed solution. The adsorption mechanism was explained using FT-IR, SEM, Zeta potential, and adsorption kinetics model, which proved that separation was determined via electrostatic interaction, hydrogen bonding, and π-π interactions. Moreover, the POMOF1/PAN membrane presented an outstanding recoverable and stable removal rate after four cycles. This study provides a new direction for the systematic design and manufacture of membrane separation materials with outstanding properties for contaminant removal.

19.
Discov Nano ; 19(1): 66, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619656

RESUMEN

Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.

20.
Environ Technol ; : 1-12, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449387

RESUMEN

Incidents of mining dam failure have compromised the water quality, threatening the water supply. Different strategies are sought to restore the impacted area and to guarantee the water supply. One example is water treatment plants that treat high-polluted waters within the required limits for their multiple usages. The current study assesses the integration of reverse osmosis (RO) to a river water treatment plant (RWTP) installed in Brumadinho (Minas Gerais, Brazil) to treat the water from the Ferro-Carvão stream impacted by the B1 dam rupture in 2019. The RWTP started eleven months after the mining dam rupture and is equipped with eight coagulation-flocculation tanks followed by eight pressurised filters. A pilot RO plant was installed to polish the water treated by the RWTP. Water samples were collected at different points of the water treatment plant and were characterised by their physical, chemical, and biological parameters (160 in total). The results were compared with the historical data (1997-2022) to reveal the alterations in the water quality after the rupture event. The compliance with both parameters was only achieved after the RO treatment, which acted as an additional barrier to 30 contaminants. The water quality indexes (WQI) suggested that the raw surface water, even eleven months after the incident, was unfit for consumption (WQI: 133.9) whereas the reverse osmosis permeate was ranked as excellent in the rating grid (WQI: 23.7).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA