Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124866

RESUMEN

The kinetics of amyloid aggregation was studied indirectly by monitoring the changes in the polydispersity of mixed dispersion of amyloid ß peptide (1-40) and composite liposomes. The liposomes were prepared from the 1,2-dioleoyl-sn-glicero-3-phoshocholine (DOPC) phospholipid and stabilised by the electrostatic adsorption of κ-carrageenan. The produced homotaurine-loaded and unloaded liposomes had a highly negative electrokinetic potential and remarkable stability in phosphate buffer (pH 4 and 7.4). For the first time, the appearance and evolution of the aggregation of Aß were presented through the variation in the standard percentile readings (D10, D50, and D90) obtained from the particle size distribution analysis. The kinetic experiments indicated the appearance of the first aggregates almost 30 min after mixing the liposomes and peptide solution. It was observed that by adding unloaded liposomes, the size of 90% of the particles in the dispersion (D90) increased. In contrast, the addition of homotaurine-loaded liposomes had almost minimal impact on the size of the fractions of larger particles during the kinetic experiments. Despite the specific bioactivity of homotaurine in the presence of natural cell membranes, this study reported an additional inhibitory effect of the compound on the amyloid peptide aggregation due to the charge effects and 'molecular crowding'.


Asunto(s)
Péptidos beta-Amiloides , Carragenina , Liposomas , Taurina , Liposomas/química , Carragenina/química , Péptidos beta-Amiloides/química , Taurina/química , Taurina/análogos & derivados , Cinética , Fragmentos de Péptidos/química , Tamaño de la Partícula , Agregado de Proteínas
2.
Bioorg Chem ; 151: 107699, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128242

RESUMEN

Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.


Asunto(s)
Antituberculosos , Productos Biológicos , Descubrimiento de Drogas , Mycobacterium tuberculosis , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/síntesis química , Antituberculosos/farmacología , Antituberculosos/química , Antituberculosos/síntesis química , Humanos , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Animales , Organismos Acuáticos/química , Tuberculosis/tratamiento farmacológico
3.
Drug Dev Ind Pharm ; : 1-14, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210691

RESUMEN

Introduction: Ayurvedic marine drugs derived from mollusc shells and coral are regularly used by Ayurvedic physicians to treat several disease conditions like acid peptic disease, irritable bowel syndrome, osteoporosis, etc. However, standard operating procedures for manufacturing these drugs and their complete characterization have not been published in the Ayurvedic Formulary and Ayurvedic Pharmacopeia of India to date. Methods: Present study describes the traditional manufacturing process and thorough characterization using classical and advanced analytical tools. The raw materials characters, in-process parameters, and finished product specifications have been elaborated to develop monographs. Especially, the identity and purity of raw coral and pearl were checked by Raman Spectroscopy and Energy Dispersive X-ray Fluorescence analysis. Results: In the finished product analysis, the X-Ray Diffraction study revealed that incineration after trituration with Aloe barbadensis leaf pulp or rose water converted the aragonite phase of calcium carbonate into calcite phase in mother pearl, cowry, and pearl while the calcite form of raw coral was retained. The prominent bands around 1390, 870, and 712 cm-1 detected by Fourier Transform-Infrared Spectroscopy and mass loss between 39-44% (w/w) revealed by thermogravimetric analysis confirmed the carbonate form of these calcium-based drugs. The finished products were very fine grayish-white powders constituted by irregularly shaped nano-micro particulate calcium carbonate exhibiting particle size between 600 nm (D10 value) to 1.2 µm (D90 value). Conclusion: The quality control and assurance achieved in this study may be further utilized by the pharmaceutical industries to manufacture quality marine drugs and conduct efficacy studies.

4.
Chemistry ; : e202402279, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041705

RESUMEN

Human 15-lipoxygenase-1 (15-LOX-1) is a key enzyme that possesses an important role in (neuro)inflammatory diseases. The pocket of the enzyme plays the role of a chiral catalyst, and therefore chirality could be an important component for the design of effective enzyme inhibitors. To advance our knowledge on this concept, we developed a library of the identified chiral 15-LOX-1 inhibitors and applied cheminformatic tools. Our analysis highlighted specific structural elements, which we integrated them in small molecules, and employed them as "smart" tools to effectively navigate the chemical space of previously unexplored regions. To this purpose, we utilized the marine derived natural product phosphoeleganin (PE) among with a small library of synthetic fragment derivatives, including a certain degree of stereochemical diversity. Enzyme inhibition/kinetic and molecular modelling studies has been performed in order to characterize structurally novel PE-based inhibitors, which proved to present a different type of inhibition with low micromolar potency, according to their structural features. We demonstrate that different warheads work as anchor, and either guide specific stereochemistry, or causing a time-depended inhibition. Finally, we prove that the positioning of the chiral substituents or/and the favorable stereochemistry can be crucial, as it can lead from active to completely inactive compounds.

5.
Mar Drugs ; 22(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38921564

RESUMEN

Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.


Asunto(s)
Organismos Acuáticos , Productos Biológicos , Elementos de Transición , Catálisis , Productos Biológicos/síntesis química , Productos Biológicos/química , Elementos de Transición/química , Descubrimiento de Drogas/métodos , Animales
6.
Chemosphere ; 359: 142278, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734249

RESUMEN

Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 µg mL-1 for embryos and from 0 to 200 µg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 µg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.


Asunto(s)
Supervivencia Celular , Neuroblastoma , Oxilipinas , Erizos de Mar , Animales , Supervivencia Celular/efectos de los fármacos , Erizos de Mar/efectos de los fármacos , Humanos , Oxilipinas/farmacología , Línea Celular Tumoral , Algas Marinas , Apoptosis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Phaeophyceae/química , Desarrollo Embrionario/efectos de los fármacos , Toxinas Marinas/toxicidad
7.
Eur J Med Chem ; 270: 116347, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552428

RESUMEN

The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 µg/mL) and Gram-negative (MIC = 1.56-12.5 µg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.


Asunto(s)
Carbolinas , Indoles , Indolizinas , Staphylococcus aureus Resistente a Meticilina , Compuestos de Amonio Cuaternario , Animales , Proteínas Bacterianas , Proteínas del Citoesqueleto , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Mamíferos/metabolismo
8.
Angew Chem Int Ed Engl ; 63(12): e202318784, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38291557

RESUMEN

Plitidepsin (or dehydrodidemnin B), an approved anticancer drug, belongs to the didemnin family of cyclic depsipeptides, which are found in limited quantities in marine tunicate extracts. Herein, we introduce a new approach that integrates microbial and chemical synthesis to generate plitidepsin and its analogues. We screened a Tistrella strain library to identify a potent didemnin B producer, and then introduced a second copy of the didemnin biosynthetic gene cluster into its genome, resulting in a didemnin B titer of approximately 75 mg/L. Next, we developed two straightforward chemical strategies to convert didemnin B into plitidepsin, one of which involved a one-step synthetic route giving over 90 % overall yield. Furthermore, we synthesized 13 new didemnin derivatives and three didemnin probes, enabling research into structure-activity relationships and interactions between didemnin and proteins. Our study highlights the synergistic potential of biosynthesis and chemical synthesis in overcoming the challenge of producing complex natural products sustainably and at scale.


Asunto(s)
Antineoplásicos , Depsipéptidos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Depsipéptidos/farmacología , Antineoplásicos/farmacología , Relación Estructura-Actividad
9.
Mar Drugs ; 21(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888459

RESUMEN

Inflammation is a defense mechanism of the body in response to harmful stimuli such as pathogens, damaged cells, toxic compounds or radiation. However, chronic inflammation plays an important role in the pathogenesis of a variety of diseases. Multiple anti-inflammatory drugs are currently available for the treatment of inflammation, but all exhibit less efficacy. This drives the search for new anti-inflammatory compounds focusing on natural resources. Marine organisms produce a broad spectrum of bioactive compounds with anti-inflammatory activities. Several are considered as lead compounds for development into drugs. Anti-inflammatory compounds have been extracted from algae, corals, seaweeds and other marine organisms. We previously reviewed anti-inflammatory compounds, as well as crude extracts isolated from echinoderms such as sea cucumbers, sea urchins and starfish. In the present review, we evaluate the anti-inflammatory effects of compounds from other marine organisms, including macroalgae (seaweeds), marine angiosperms (seagrasses), medusozoa (jellyfish), bryozoans (moss animals), mollusks (shellfish) and peanut worms. We also present a review of the molecular mechanisms of the anti-inflammatory activity of these compounds. Our objective in this review is to provide an overview of the current state of research on anti-inflammatory compounds from marine sources and the prospects for their translation into novel anti-inflammatory drugs.


Asunto(s)
Antozoos , Briozoos , Escifozoos , Algas Marinas , Animales , Arachis , Organismos Acuáticos , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Mariscos
10.
Nat Prod Bioprospect ; 13(1): 23, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37553481

RESUMEN

Marine biodiversity has emerged as a very promising resource of bioactive compounds and secondary metabolites from different sea organisms. The sponge's secondary metabolites demonstrated various bioactivities and potential pharmacological properties. This systematic review of the literature focuses on the advances achieved in the antioxidant potential of marine sponges in vitro. The review was performed in accordance with PRISMA guidelines. The main inclusion criterion for analysis was articles with identification of compounds from terpene classes that demonstrate antioxidant activity in vitro. Searching in three different databases, two hundred articles were selected. After screening abstracts, titles and evaluating for eligibility of manuscripts 14 articles were included. The most performed analyzes to detect antioxidant activity were scavenging activity 2,2-diphenyl-1-picrylhydrazyl (DPPH) and measurement of intracellular reactive oxygen species (ROS). It was possible to identify 17 compounds of the terpene class with pronounced antioxidant activity in vitro. Scientific evidence of the studies included in this review was accessed by the GRADE analysis. Terpenes play an important ecological role, moreover these molecules have a pharmaceutical and industrial application.

11.
Mar Drugs ; 21(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37504932

RESUMEN

In this perspective, we showcase the benefits of continuous flow chemistry and photochemistry and how these valuable tools have contributed to the synthesis of organic scaffolds from the marine environment. These technologies have not only facilitated previously described synthetic pathways, but also opened new opportunities in the preparation of novel organic molecules with remarkable pharmacological properties which can be used in drug discovery programs.


Asunto(s)
Descubrimiento de Drogas , Tecnología , Química Farmacéutica
12.
J Inorg Biochem ; 245: 112252, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207465

RESUMEN

Copper-related reactive oxygen species (ROS) formation can lead to neuropathologic degradation associated with Alzheimer's disease (AD) according to amyloid cascade hypothesis. A complexing agent that can selectively chelate with copper ions and capture copper ions from the complex formed by copper ions and amyloid-ß (Cu - Aß complex) may be available in reducing ROS formation. Herein, we described applications of guluronic acid (GA), a natural oligosaccharide complexing agent obtained from enzymatic hydrolysis of brown algae, in reducing copper-related ROS formation. UV-vis absorption spectra demonstrated the coordination between GA and Cu(II). Ascorbic acid consumption and coumarin-3-carboxylic acid fluorescence assays confirmed the viability of GA in reducing ROS formation in solutions containing other metal ions and Aß. Fluorescence kinetics, DPPH radical clearance and high resolution X - ray photoelectron spectroscopy results revealed the reductivity of GA. Human liver hepatocellular carcinoma (HepG2) cell viability demonstrated the biocompatibility of GA at concentrations lower than 320 µM. Cytotoxic results of human neuroblastoma (SH-SY5Y) cells verified that GA can inhibit copper-related ROS damage in neuronal cells. Our findings, combined with the advantages of marine drugs, make GA a promising candidate in reducing copper-related ROS formation associated with AD therapy.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Cobre/química , Especies Reactivas de Oxígeno/metabolismo , Ácido Ascórbico/química
13.
Eur J Med Chem ; 254: 115348, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37060755

RESUMEN

The increase in antibiotic resistance has made it particularly urgent to develop new antibiotics with novel antibacterial mechanisms. Inhibition of bacterial cell division by disrupting filamentous temperature-sensitive mutant Z (FtsZ) function is an effective and promising approach. A series of novel fascaplysin derivatives with tunable hydrophobicity were designed and synthesized here. The in vitro bioactivity assessment revealed that these compounds could inhibit the tested Gram-positive bacteria including methicillin-resistant S. aureus (MRSA) (MIC = 0.049-25 µg/mL), B. subtilis (MIC = 0.024-12.5 µg/mL) and S. pneumoniae (MIC = 0.049-50 µg/mL). Among them, compounds B3 (MIC = 0.098 µg/mL), B6 (MIC = 0.098 µg/mL), B8 (MIC = 0.049 µg/mL) and B16 (MIC = 0.098 µg/mL) showed the best bactericidal activities against MRSA and no significant tendency to trigger bacterial resistance as well as rapid bactericidal properties. The cell surface integrity of bacteria was significantly disrupted by hydrophobic tails of fascaplysin derivatives. Further studies revealed that these highly active amphiphilic compounds showed low hemolytic activity and cytotoxicity to mammalian cells. Preliminary mechanistic exploration suggests that B3, B6, B8 and B16 are potent FtsZ inhibitors to promote FtsZ polymerization and inhibit GTPase activity of FtsZ, leading to the death of bacterial cells by inhibiting bacterial division. Molecular docking simulations and structure-activity relationship (SAR) study reveal that appropriate increase in the hydrophobicity of fascaplysin derivatives and the addition of additional hydrogen bonds facilitated their binding to FtsZ proteins. These amphiphilic fascaplysin derivatives could serve as a novel class of FtsZ inhibitors, which not only gives new prospects for the application of compounds containing this skeleton but also provides new ideas for the discovery of new antibiotics.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Estructura Molecular , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Antibacterianos/química , Proteínas Bacterianas , Mamíferos
14.
Chembiochem ; 24(11): e202300161, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37043301

RESUMEN

Since the discovery of anticancer properties of a naturally occurring hexacyclic marine alkaloid Lamellarin D, the attempts have been made to prepare its synthetic analogues and elucidate the effects of each structural component on their activity profile. While F-ring-free, A-ring-free and B-ring-open lamellarins are known, E-ring-free analogues have never been investigated. In this work, we developed a facile and straightforward synthetic method toward E-ring-free lamellarin analogues based on the [3+2]-cycloaddition. For the first time, we prepared several pentacyclic lamellarin analogues without E-ring in their structure and assessed their cytotoxicity in a panel of cancer cell lines in comparison with several hexacyclic lamellarins. E-ring-free lamellarins were devoid of cytotoxicity due to their poor solubility in cellular environment.


Asunto(s)
Alcaloides , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Alcaloides/química , Línea Celular , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Cumarinas/química , Relación Estructura-Actividad
15.
Mar Drugs ; 21(3)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976242

RESUMEN

Cardiovascular diseases (CVDs) are among the most impactful illnesses globally. Currently, the available therapeutic option has several side effects, including hypotension, bradycardia, arrhythmia, and alteration in different ion concentrations. Recently, bioactive compounds from natural sources, including plants, microorganisms, and marine creatures, have gained a lot of interest. Marine sources serve as reservoirs for new bioactive metabolites with various pharmacological activities. The marine-derived compound such as omega-3 acid ethyl esters, xyloketal B, asperlin, and saringosterol showed promising results in several CVDs. The present review focuses on marine-derived compounds' cardioprotective potential for hypertension, ischemic heart disease, myocardial infarction, and atherosclerosis. In addition to therapeutic alternatives, the current use of marine-derived components, the future trajectory, and restrictions are also reviewed.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico
16.
Metabolites ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837773

RESUMEN

In response to Iron deprivation and in specific environmental conditions, the cyanobacteria Anabaena flos aquae produce siderophores, iron-chelating molecules that in virtue of their interesting environmental and clinical applications, are recently gaining the interest of the pharmaceutical industry. Yields of siderophore recovery from in vitro producing cyanobacterial cultures are, unfortunately, very low and reach most of the times only analytical quantities. We here propose a four-step experimental pipeline for a rapid and inexpensive identification and optimization of growth parameters influencing, at the transcriptional level, siderophore production in Anabaena flos aquae. The four-steps pipeline consists of: (1) identification of the promoter region of the operon of interest in the genome of Anabaena flos aquae; (2) cloning of the promoter in a recombinant DNA vector, upstream the cDNA coding for the Green Fluorescent Protein (GFP) followed by its stable transformation in Escherichia Coli; (3) identification of the environmental parameters affecting expression of the gene in Escherichia coli and their application to the cultivation of the Anabaena strain; (4) identification of siderophores by the combined use of high-resolution tandem mass spectrometry and molecular networking. This multidisciplinary, sustainable, and green pipeline is amenable to automation and is virtually applicable to any cyanobacteria, or more in general, to any microorganisms.

17.
Med Chem ; 19(6): 538-555, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476429

RESUMEN

Cancer is a deadly human disease on the rise due to changes in lifestyle, nutrition, and global warming. Cancer is characterized by uncontrolled, disordered, and undesired cell division. About 60% of cancer medicines approved by the FDA are made from natural ingredients. Intensive efforts over the last decade to better understand the vast chemical diversity provided by marine life have resulted in an intriguing "marine pipeline" of potential anticancer clinical and preclinical treatments. The molecular targets of marine products as anticancer drugs, as well as different reported compounds acting on distinct targets, are the topic of this review.


Asunto(s)
Antineoplásicos , Productos Biológicos , Neoplasias , Productos Biológicos/química , Productos Biológicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Organismos Acuáticos/química
18.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38201464

RESUMEN

Anticancer peptides are short and structurally heterogeneous aminoacidic chains, which display selective cytotoxicity mostly against tumor cells, but not healthy cells, based on their different cell surface properties. Their anti-tumoral activity is carried out through interference with intracellular homeostasis, such as plasmalemma integrity, cell cycle control, enzymatic activities and mitochondrial functions, ultimately acting as angiogenesis-, drug resistance- and metastasis-inhibiting agents, immune stimulators, differentiation inducers and necrosis or extrinsic/intrinsic apoptosis promoters. The marine environment features an ever-growing level of biodiversity, and seas and oceans are poorly exploited mines in terms of natural products of biomedical interest. Adaptation processes to extreme and competitive environmental conditions led marine species to produce unique metabolites as a chemical strategy to allow inter-individual signalization and ensure survival against predators, infectious agents or UV radiation. These natural metabolites have found broad use in various applications in healthcare management, due to their anticancer, anti-angiogenic, anti-inflammatory and regeneration abilities. The aim of this review is to pick selected studies that report on the isolation of marine animal-derived peptides and the identification of their anticancer activity in in vitro cultures of cancer cells, and list them with respect to the taxonomical hierarchy of the source organism.

19.
Mar Drugs ; 20(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36355016

RESUMEN

Chronic inflammation can extensively burden a healthcare system. Several synthetic anti-inflammatory drugs are currently available in clinical practice, but each has its own side effect profile. The planet is gifted with vast and diverse oceans, which provide a treasure of bioactive compounds, the chemical structures of which may provide valuable pharmaceutical agents. Marine organisms contain a variety of bioactive compounds, some of which have anti-inflammatory activity and have received considerable attention from the scientific community for the development of anti-inflammatory drugs. This review describes such bioactive compounds, as well as crude extracts (published during 2010-2022) from echinoderms: namely, sea cucumbers, sea urchins, and starfish. Moreover, we also include their chemical structures, evaluation models, and anti-inflammatory activities, including the molecular mechanism(s) of these compounds. This paper also highlights the potential applications of those marine-derived compounds in the pharmaceutical industry to develop leads for the clinical pipeline. In conclusion, this review can serve as a well-documented reference for the research progress on the development of potential anti-inflammatory drugs from echinoderms against various chronic inflammatory conditions.


Asunto(s)
Equinodermos , Pepinos de Mar , Animales , Erizos de Mar , Estrellas de Mar , Antiinflamatorios/farmacología
20.
Life (Basel) ; 12(9)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36143424

RESUMEN

With more than 17 clinically approved Drugs and over 20 prodrugs under clinical investigations, marine bacteria are believed to have a potential supply of innovative therapeutic bioactive compounds. In the current study, Kocuria sp. strain AG5 isolated from the Red Sea was identified and characterized by biochemical and physiological analysis, and examination of a phylogenetic 16S rRNA sequences. Innovative exopolysaccharide (EPS) was separated from the AG5 isolate as a major fraction of EPS (EPSR5, 6.84 g/L-1). The analysis of EPSR5 revealed that EPSR5 has a molecular weight (Mw) of 4.9 × 104 g/mol and number average molecular weight (Mn) of 5.4 × 104 g/mol and contains sulfate (25.6%) and uronic acid (21.77%). Analysis of the monosaccharide composition indicated that the EPSR5 fraction composes of glucose, galacturonic acid, arabinose, and xylose in a molar ratio of 2.0:0.5:0.25:1.0, respectively. Assessment of the pharmacological potency of EPSR5 was explored by examining its cytotoxicity, anti-inflammatory, antioxidant, and anti-acetylcholine esterase influences. The antioxidant effect of EPSR5 was dose- and time-dependently increased and the maximum antioxidant activity (98%) was observed at 2000 µg/mL after 120 min. Further, EPSR5 displayed a significant repressive effect regarding the proliferation of HepG-2, A-549, HCT-116, MCF7, HEP2, and PC3 cells with IC50 453.46 ± 21.8 µg/mL, 873.74 ± 15.4 µg/mL, 788.2 ± 32.6 µg/mL, 1691 ± 44.2 µg/mL, 913.1 ± 38.8 µg/mL, and 876.4 ± 39.8 µg/mL, respectively. Evaluation of the inhibitory activity of the anti-inflammatory activity of EPSR5 indicated that EPSR5 has a significant inhibitory activity toward lipoxygenase (5-LOX) and cyclooxygenase (COX-2) activities (IC50 15.39 ± 0.82 µg/mL and 28.06 ± 1.1 µg/mL, respectively). Finally, ESPR5 presented a substantial hemolysis suppressive action with an IC50 of 65.13 ± 0.89 µg /mL, and a considerable inhibitory activity toward acetylcholine esterase activity (IC50 797.02 µg/mL). Together, this study reveals that secondary metabolites produced by Kocuria sp. strain AG5 marine bacteria serve as an important source of pharmacologically active compounds, and their impact on human health is expected to grow with additional global work and research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA