Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e36048, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224332

RESUMEN

Marine cyanobacteria offer a rich source of varied natural products with both chemical and biological diversity. Oscillatoria salina (O. salina) is a filamentous non-heterocystous marine cyanobacterium from Oscillatoriaceae family. In this investigation, we have unveiled bioactive extracts from O. salina using two distinct solvent systems, revealing significant anticancer properties. Our assessment of the organic and aqueous extracts (MCE and AE) of O. salina demonstrated pronounced antiproliferative and antimetastatic effects. Notably, this study is the first to elucidate the anticancer and anti-metastatic potential of O. salina extracts in both 2D and 3D cell culture models. Both MCE and AE induced apoptosis, hindered cell proliferation, invasion, and migration in A549 non-small cell lung cancer cells, accompanied by alterations in cell morphology and cytoskeleton collapse. Moreover, MCE and AE induced spheroid disintegration in A549 cells. Transcriptomics analysis highlighted the significant involvement of Rap1 and p53 signaling pathways in mediating the observed antitumor effects. Mass spectroscopy characterization of these extracts identified 11 compounds, some known for their anticancer potential. HPLC analysis of AE revealed six peaks with UV absorption spectra resembling phycocyanin, a cyanobacterial pigment with well-known anticancer activity. Collectively, these findings underscore the anticancer potential of MCE and AE, containing bioactive metabolites with anticancer and antimetastatic properties.

2.
Bioresour Technol ; 411: 131209, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39181513

RESUMEN

The investigation aimed to augment carbohydrate accumulation in the marine cyanobacterium Leptolyngbya valderiana BDU 41001 to facilitate bioethanol production. Under the standardised physiochemical condition (SPC), i.e. 90 µmol photon m-2 s-1 light intensity, initial culture pH 8.5, 35 °C temperature and mixing at 150 rpm increased the carbohydrate productivity ∼70 % than the control, while a 47 % rise in content was obtained under the nitrate (N)-starved condition. Therefore, a two-stage cultivation strategy was implemented, combining SPC at the 1st stage and N starvation at the 2nd stage, resulting in 80 % augmentation of carbohydrate yield, which enhanced the bioethanol yield by ∼86 % as compared to the control employing immobilised yeast fermentation. Moreover, biomass utilisation was maximised by extracting C-phycocyanin, where a ∼77 % rise in productivity was recorded under the SPC. This study highlights the potential of L. valderiana for pilot-scale biorefinery applications, advancing the understanding of sustainable biofuel production.


Asunto(s)
Biocombustibles , Cianobacterias , Etanol , Ficocianina , Cianobacterias/metabolismo , Cianobacterias/crecimiento & desarrollo , Etanol/metabolismo , Ficocianina/metabolismo , Fermentación , Biomasa , Metabolismo de los Hidratos de Carbono , Nitratos/metabolismo
3.
Bioresour Technol ; 410: 131232, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117247

RESUMEN

Applying low-cost substrate is critical for sustainable bioproduction. Co-culture of phototrophic and heterotrophic microorganisms can be a promising solution as they can use CO2 and light as feedstock. This study aimed to create a light-driven consortium using a marine cyanobacterium Synechococcus sp. PCC 7002 and an industrial yeast Yarrowia lipolytica. First, the cyanobacterium was engineered to accumulate and secrete sucrose by regulating the expression of genes involved in sucrose biosynthesis and transport, resulting in 4.0 g/L of sucrose secretion. Then, Yarrowia lipolytica was engineered to efficiently use sucrose and produce ß-caryophyllene that has various industrial applications. Then, co- and sequential-culture were optimized with different induction conditions and media compositions. A maximum ß-caryophyllene yield of 14.1 mg/L was obtained from the co-culture. This study successfully established an artificial light-driven consortium based on a marine cyanobacterium and Y. lipolytica, and provides a foundation for sustainable bioproduction from CO2 and light through co-culture systems.


Asunto(s)
Técnicas de Cocultivo , Luz , Sesquiterpenos Policíclicos , Synechococcus , Yarrowia , Técnicas de Cocultivo/métodos , Sesquiterpenos Policíclicos/metabolismo , Synechococcus/metabolismo , Synechococcus/crecimiento & desarrollo , Yarrowia/metabolismo , Sacarosa/metabolismo , Sesquiterpenos/metabolismo , Procesos Heterotróficos , Procesos Autotróficos
4.
J Phycol ; 60(4): 908-927, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943258

RESUMEN

Cyanobacterial mats supplanting coral and spreading coral diseases in tropical reefs, intensified by environmental shifts caused by human-induced pressures, nutrient enrichment, and global climate change, pose grave risks to the survival of coral ecosystems. In this study, we characterized Okeanomitos corallinicola gen. and sp. nov., a newly discovered toxic marine heterocyte-forming cyanobacterium isolated from a coral reef ecosystem of the South China Sea. Phylogenetic analysis, based on the 16S rRNA gene and the secondary structure of the 16S-23S rRNA intergenic region, placed this species in a clade distinct from closely related genera, that is, Sphaerospermopsis stricto sensu, Raphidiopsis, and Amphiheterocytum. The O. corallinicola is a marine benthic species lacking gas vesicles, distinguishing it from other members of the Aphanizomenonaceae family. The genome of O. corallinicola is large and exhibits diverse functional capabilities, potentially contributing to the resilience and adaptability of coral reef ecosystems. In vitro assays revealed that O. corallinicola demonstrates notable cytotoxic activity against various cancer cell lines, suggesting its potential as a source of novel anticancer compounds. Furthermore, the identification of residual saxitoxin biosynthesis function in the genome of O. corallinicola, a marine cyanobacteria, supports the theory that saxitoxin genes in cyanobacteria and dinoflagellates may have been horizontally transferred between them or may have originated from a shared ancestor. Overall, the identification and characterization of O. corallinicola provides valuable contributions to cyanobacterial taxonomy, offering novel perspectives on complex interactions within coral reef ecosystems.


Asunto(s)
Arrecifes de Coral , Cianobacterias , Filogenia , ARN Ribosómico 16S , Cianobacterias/genética , Cianobacterias/fisiología , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , China , Antozoos/microbiología , Antozoos/fisiología
5.
N Biotechnol ; 82: 33-42, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38714292

RESUMEN

Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Biomasa , Biotecnología , Metales/metabolismo , Metales/química , Tecnología Química Verde
6.
Mar Drugs ; 21(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37999377

RESUMEN

The monounsaturated fatty acid 7(E)-9-keto-hexadec-7-enoic acid (1) and three structurally related analogues with different oxidation states and degrees of unsaturation (2-4) were discovered from a marine benthic cyanobacterial mat collected from Delta Shoal, Florida Keys. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The structure of 1 contained an α,ß-unsaturated carbonyl system, a key motif required for the activation of the Keap1/Nrf2-ARE pathway that is involved in the activation of antioxidant and phase II detoxification enzymes. Compounds 1-4 were screened in ARE-luciferase reporter gene assay using stably transfected HEK293 cells, and only 1 significantly induced Nrf2 activity at 32 and 10 µM, whereas 2-4 were inactive. As there is crosstalk between inflammation and oxidative stress, subsequent biological studies were focused on 1 to investigate its anti-inflammatory potential. Compound 1 induced Nqo1, a well-known target gene of Nrf2, and suppressed iNos transcript levels, which translated into reduced levels of nitric oxide in LPS-activated mouse macrophage RAW264.7 cells, a more relevant model for inflammation. RNA sequencing was performed to capture the effects of 1 on a global level and identified additional canonical pathways and upstream regulators involved in inflammation and immune response, particularly those related to multiple sclerosis. A targeted survey of marine cyanobacterial samples from other geographic locations, including Guam, suggested the widespread occurrence of 1. Furthermore, the previous isolation of 1 from marine diatoms and green algae implied a potentially important ecological role across marine algal eukaryotes and prokaryotes. The previous isolation from sea lettuce raises the possibility of dietary intervention to attenuate inflammation and related disease progression.


Asunto(s)
Ácidos Grasos , Factor 2 Relacionado con NF-E2 , Humanos , Ratones , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Ácidos Grasos/uso terapéutico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Células HEK293 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/metabolismo , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología
7.
Mar Drugs ; 21(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37623720

RESUMEN

Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant's yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation.


Asunto(s)
Cambio Climático , Cianobacterias , Animales , Dióxido de Carbono , Fijación del Nitrógeno , Agricultura
8.
Mar Drugs ; 21(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37504909

RESUMEN

Marine cyanobacteria are a rich source of bioactive natural products. Here, we report the isolation and structure elucidation of the previously reported iezoside (1) and its C-31 O-demethyl analogue, iezoside B (2), from a cyanobacterial assemblage collected at Loggerhead Key in the Dry Tortugas, Florida. The two compounds have a unique skeleton comprised of a peptide, a polyketide and a modified sugar unit. The compounds were tested for cytotoxicity and effects on intracellular calcium. Both compounds exhibited cytotoxic activity with an IC50 of 1.5 and 3.0 µΜ, respectively, against A549 lung carcinoma epithelial cells and 1.0 and 2.4 µΜ against HeLa cervical cancer cells, respectively. In the same cell lines, compounds 1 and 2 show an increase in cytosolic calcium with approximate EC50 values of 0.3 and 0.6 µΜ in A549 cells and 0.1 and 0.5 µΜ, respectively, in HeLa cells, near the IC50 for cell viability, suggesting that the increase in cytosolic calcium is functionally related to the cytotoxicity of the compounds and consistent with their activity as SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase) inhibitors. The structure-activity relationship provides evidence that structural changes in the sugar unit may be tolerated, and the activity is tunable. This finding has implications for future analogue synthesis and target interaction studies.


Asunto(s)
Antineoplásicos , Cianobacterias , Humanos , Células HeLa , Calcio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Cianobacterias/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Azúcares
9.
Life (Basel) ; 13(6)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37374193

RESUMEN

The ocean is a valuable natural resource that contains numerous biologically active compounds with various bioactivities. The marine environment comprises unexplored sources that can be utilized to isolate novel compounds with bioactive properties. Marine cyanobacteria are an excellent source of bioactive compounds that have applications in human health, biofuel, cosmetics, and bioremediation. These cyanobacteria exhibit bioactive properties such as anti-inflammatory, anti-cancer, anti-bacterial, anti-parasitic, anti-diabetic, anti-viral, antioxidant, anti-aging, and anti-obesity effects, making them promising candidates for drug development. In recent decades, researchers have focused on isolating novel bioactive compounds from different marine cyanobacteria species for the development of therapeutics for various diseases that affect human health. This review provides an update on recent studies that explore the bioactive properties of marine cyanobacteria, with a particular focus on their potential use in human health applications.

10.
Mar Drugs ; 21(5)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37233475

RESUMEN

This study aimed to elucidate the structural congeners of natural izenamides A, B, and C (1-3) responsible for cathepsin D (CTSD) inhibition. Structurally modified izenamides were synthesized and biologically evaluated, and their biologically important core structures were identified. We confirmed that the natural statine (Sta) unit (3S,4S)-γ-amino-ß-hydroxy acid is a requisite core structure of izenamides for inhibition of CTSD, which is closely related to the pathophysiological roles in numerous human diseases. Interestingly, the statine-incorporated izenamide C variant (7) and 18-epi-izenamide B variant (8) exhibited more potent CTSD-inhibitory activities than natural izenamides.


Asunto(s)
Catepsina D , Inhibidores de Proteasas , Humanos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
11.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36323406

RESUMEN

Prochlorococcus and Synechococcus are the two most abundant photosynthetic organisms on Earth, with a strong influence on the biogeochemical carbon and nitrogen cycles. Early reports demonstrated the streamlining of regulatory mechanisms in nitrogen metabolism and the removal of genes not strictly essential. The availability of a large series of genomes, and the utilization of latest generation molecular techniques have allowed elucidating the main mechanisms developed by marine picocyanobacteria to adapt to the environments where they thrive, with a particular interest in the strains inhabiting oligotrophic oceans. Given that nitrogen is often limited in those environments, a series of studies have explored the strategies utilized by Prochlorococcus and Synechococcus to exploit the low concentrations of nitrogen-containing molecules available in large areas of the oceans. These strategies include the reduction in the GC and the cellular protein contents; the utilization of truncated proteins; a reduced average amount of N in the proteome; the development of metabolic mechanisms to perceive and utilize nanomolar nitrate concentrations; and the reduced responsiveness of key molecular regulatory systems such as NtcA to 2-oxoglutarate. These findings are in sharp contrast with the large body of knowledge obtained in freshwater cyanobacteria. We will outline the main discoveries, stressing their relevance to the ecological success of these important microorganisms.


Asunto(s)
Nitrógeno , Synechococcus , Nitrógeno/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Océanos y Mares , Adaptación Fisiológica , Nitratos/química , Nitratos/metabolismo
12.
Appl Environ Microbiol ; 89(1): e0173222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533965

RESUMEN

Marine cyanobacteria contribute to approximately half of the ocean primary production, and their biomass is limited by low iron (Fe) bioavailability in many regions of the open seas. The mechanisms by which marine cyanobacteria overcome Fe limitation remain unclear. In this study, multiple Fe uptake pathways have been identified in a coastal strain of Synechococcus sp. strain PCC 7002. A total of 49 mutants were obtained by gene knockout methods, and 10 mutants were found to have significantly decreased growth rates compared to the wild type (WT). The genes related to active Fe transport pathways such as TonB-dependent transporters and the synthesis and secretion of siderophores are found to be essential for the adaptation of Fe limitation in Synechococcus sp. PCC 7002. By comparing the Fe uptake pathways of this coastal strain with other open-ocean cyanobacterial strains, it can be concluded that the Fe uptake strategies from different cyanobacteria have a strong relationship with the Fe bioavailability in their habitats. The evolution and adaptation of cyanobacterial iron acquisition strategies with the change of iron environments from ancient oceans to modern oceans are discussed. This study provides new insights into the diversified strategies of marine cyanobacteria in different habitats from temporal and spatial scales. IMPORTANCE Iron (Fe) is an important limiting factor of marine primary productivity. Cyanobacteria, the oldest photosynthetic oxygen-evolving organisms on the earth, play crucial roles in marine primary productivity, especially in the oligotrophic ocean. How they overcome Fe limitation during the long-term evolution process has not been fully revealed. Fe uptake mechanisms of cyanobacteria have been partially studied in freshwater cyanobacteria but are largely unknown in marine cyanobacterial species. In this paper, the characteristics of Fe uptake mechanisms in a coastal model cyanobacterium, Synechococcus sp. PCC 7002, were studied. Furthermore, the relationship between Fe uptake strategies and Fe environments of cyanobacterial habitats has been revealed from temporal and spatial scales, which provides a good case for marine microorganisms adapting to changes in the marine environment.


Asunto(s)
Hierro , Synechococcus , Hierro/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Transporte Biológico , Sideróforos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Mar Drugs ; 20(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36547915

RESUMEN

Cyanobacteria ascribed to the genus Lyngbya (Family Oscillatoriaceae) represent a potential therapeutic gold mine of chemically and biologically diverse natural products that exhibit a wide array of biological properties. Phylogenetic analyses have established the Lyngbya 'morpho-type' as a highly polyphyletic group and have resulted in taxonomic revision and description of an additional six new cyanobacterial genera in the same family to date. Among the most prolific marine cyanobacterial producers of biologically active compounds are the species Moorena producens (previously L. majuscula, then Moorea producens), M. bouillonii (previously L. bouillonii), and L. confervoides. Over the years, compounding evidence from in vitro and in vivo studies in support of the significant pharmaceutical potential of 'Lyngbya'-derived natural products has made the Lyngbya morphotype a significant target for biomedical research and novel drug leads development. This comprehensive review covers compounds with reported anti-infective activities through 2022 from the Lyngbya morphotype, including new genera arising from recent phylogenetic re-classification. So far, 72 anti-infective secondary metabolites have been isolated from various Dapis, Lyngbya, Moorea, and Okeania species. These compounds showed significant antibacterial, antiparasitic, antifungal, antiviral and molluscicidal effects. Herein, a comprehensive literature review covering the natural source, chemical structure, and biological/pharmacological properties will be presented.


Asunto(s)
Productos Biológicos , Cianobacterias , Lyngbya , Filogenia , Cianobacterias/química , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/metabolismo , Toxinas de Lyngbya
14.
mSystems ; 7(6): e0065622, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36468851

RESUMEN

Marine Synechococcus comprise a numerically and ecologically prominent phytoplankton group, playing a major role in both carbon cycling and trophic networks in all oceanic regions except in the polar oceans. Despite their high abundance in coastal areas, our knowledge of Synechococcus communities in these environments is based on only a few local studies. Here, we use the global metagenome data set of the Ocean Sampling Day (June 21st, 2014) to get a snapshot of the taxonomic composition of coastal Synechococcus communities worldwide, by recruitment on a reference database of 141 picocyanobacterial genomes, representative of the whole Prochlorococcus, Synechococcus, and Cyanobium diversity. This allowed us to unravel drastic community shifts over small to medium scale gradients of environmental factors, in particular along European coasts. The combined analysis of the phylogeography of natural populations and the thermophysiological characterization of eight strains, representative of the four major Synechococcus lineages (clades I to IV), also brought novel insights about the differential niche partitioning of clades I and IV, which most often co-dominate the Synechococcus community in cold and temperate coastal areas. Altogether, this study reveals several important characteristics and specificities of the coastal communities of Synechococcus worldwide. IMPORTANCE Synechococcus is the second most abundant phytoplanktonic organism on Earth, and its wide genetic diversity allowed it to colonize all the oceans except for polar waters, with different clades colonizing distinct oceanic niches. In recent years, the use of global metagenomics data sets has greatly improved our knowledge of "who is where" by describing the distribution of Synechococcus clades or ecotypes in the open ocean. However, little is known about the global distribution of Synechococcus ecotypes in coastal areas, where Synechococcus is often the dominant phytoplanktonic organism. Here, we leverage the global Ocean Sampling Day metagenomics data set to describe Synechococcus community composition in coastal areas worldwide, revealing striking community shifts, in particular along the coasts of Europe. As temperature appears as an important driver of the community composition, we also characterize the thermal preferenda of 8 Synechococcus strains, bringing new insights into the adaptation to temperature of the dominant Synechococcus clades.


Asunto(s)
Synechococcus , Synechococcus/genética , Filogeografía , Agua de Mar/microbiología , Filogenia , Océanos y Mares , Fitoplancton
15.
Front Microbiol ; 13: 912621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910604

RESUMEN

Tyrosinase, an important oxidase involved in the primary immune response in humans, can sometimes become problematic as it can catalyze undesirable oxidation reactions. Therefore, for decades there has been a strong pharmaceutical interest in the discovery of novel inhibitors of this enzyme. Recent studies have also indicated that tyrosinase inhibitors can potentially be used in the treatment of melanoma cancer. Over the years, many new tyrosinase inhibitors have been discovered from various natural sources; however, marine natural products (MNPs) have contributed only a small number of promising candidates. Therefore, in this study we focused on the discovery of new MNP tyrosinase inhibitors of marine cyanobacterial and algal origins. A colorimetric tyrosinase inhibitory assay was used to screen over 4,500 marine extracts against mushroom tyrosinase (A. bisporus). Our results revealed that scytonemin monomer (ScyM), a pure compound from our compound library and also the monomeric last-step precursor in the biosynthesis of the well-known cyanobacterial sunscreen pigment "scytonemin," consistently showed the highest tyrosinase inhibitory score. Determination of the half maximal inhibitory concentration (IC50) further indicated that ScyM is more potent than the commonly used commercial inhibitor standard "kojic acid" (KA; IC50 of ScyM: 4.90 µM vs. IC50 of KA: 11.31 µM). After a scaled-up chemical synthesis of ScyM as well as its O-methyl analog (ScyM-OMe), we conducted a series of follow-up studies on their structures, inhibitory properties, and mode of inhibition. Our results supported ScyM as the second case ever of a novel tyrosinase inhibitory compound based on a marine cyanobacterial natural product. The excellent in vitro performance of ScyM makes it a promising candidate for applications such as a skin-whitening agent or an adjuvant therapy for melanoma cancer treatment.

16.
Molecules ; 27(5)2022 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-35268819

RESUMEN

Dysidazirine carboxylic acid (1) was isolated from the lipophilic extract of a collection of the benthic marine cyanobacterium Caldora sp. from reefs near Fort Lauderdale, Florida. The planar structure of this new compound was determined by spectroscopic methods and comparisons between HRMS and NMR data with its reported methyl ester. The absolute configuration of the single chiral center was determined by the conversion of 1 to the methyl ester and the comparison of its specific rotation data with the two known methyl ester isomers, 2 and 3. Molecular sequencing with 16S rDNA indicated that this cyanobacterium differs from Caldora penicillata (Oscillatoriales) and represents a previously undocumented and novel Caldora species. Dysidazirine (2) showed weak cytotoxicity against HCT116 colorectal cancer cells (IC50 9.1 µM), while dysidazirine carboxylic acid (1) was non-cytotoxic. Similar cell viability patterns were observed in RAW264.7 cells with dysidazirine only (2), displaying cytotoxicity at the highest concentration tested (50 µM). The non-cytotoxic dysidazirine carboxylic acid (1) demonstrated anti-inflammatory activity in RAW264.7 cells stimulated with LPS. After 24 h, 1 inhibited the production of NO by almost 50% at 50 µM, without inducing cytotoxicity. Compound 1 rapidly decreased gene expression of the pro-inflammatory gene iNOS after 3 h post-LPS treatment and in a dose-dependent manner (IC50 ~1 µM); the downregulation of iNOS persisted at least until 12 h.


Asunto(s)
Azirinas , Ácidos Carboxílicos , Antiinflamatorios/farmacología , Ácidos Carboxílicos/farmacología , Florida , Humanos , Estructura Molecular
17.
Appl Environ Microbiol ; 88(7): e0237321, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35285240

RESUMEN

Siderophores are low molecular weight iron-chelating molecules that many organisms secrete to scavenge ferric iron from the environment. While cyanobacteria inhabit a wide range of environments with poor iron availability, only two siderophore families have been characterized from this phylum. Herein, we sought to investigate siderophore production in the marine genus, Leptolyngbya. A 12 open reading frame (14.5 kb) putative nonribosomal peptide synthetase-independent siderophore biosynthesis gene cluster, identified in the genome of Leptolyngbya sp. PCC 7376, was cloned and heterologously expressed in Escherichia coli. Under iron-limiting conditions, expression strains harboring the first seven genes (lidA to lidF), produced a potent siderophore, which was subsequently identified via UPLC-MS/MS and NMR as schizokinen. The enzymes encoded by the remaining genes (lidG1 to lidG5) did not appear to be active in E. coli, therefore their function could not be determined. Bioinformatic analysis revealed gene clusters with high homology to lidA to lidF in phylogenetically and biogeographically diverse cyanobacteria, suggesting that schizokinen-based siderophore production is widespread in this phylum. Siderophore yields in E. coli expression strains were significantly higher than those achieved by Leptolyngbya, highlighting the potential of this platform for producing siderophores of industrial value. IMPORTANCE Iron availability limits the growth of many microorganisms, particularly those residing in high nutrient-low chlorophyll aquatic environments. Therefore, characterizing iron acquisition pathways in phytoplankton is essential for understanding nutrient cycling in our oceans. The results of this study suggest that Leptolyngbya sp. PCC 7376, and many other cyanobacteria, use schizokinen-based iron chelators (siderophores) to scavenge iron from the environment. We have shown that these pathways are amenable to heterologous expression in E. coli, which expands the limited arsenal of known cyanobacterial siderophores and is advantageous for the downstream overproduction of relevant siderophores of ecological and industrial value.


Asunto(s)
Cianobacterias , Sideróforos , Cromatografía Liquida , Cianobacterias/genética , Cianobacterias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ácidos Hidroxámicos , Hierro/metabolismo , Sideróforos/metabolismo , Espectrometría de Masas en Tándem
18.
Microorganisms ; 9(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34683393

RESUMEN

Marine nitrogen (N2) fixation was historically considered to be absent or reduced in nitrate (NO3-) rich environments. This is commonly attributed to the lower energetic cost of NO3- uptake compared to diazotrophy in oxic environments. This paradigm often contributes to making inferences about diazotroph distribution and activity in the ocean, and is also often used in biogeochemical ocean models. To assess the general validity of this paradigm beyond the traditionally used model organism Trichodesmium spp., we grew cultures of the unicellular cyanobacterium Crocosphaera watsonii WH8501 long term in medium containing replete concentrations of NO3-. NO3- uptake was measured in comparison to N2 fixation to assess the cultures' nitrogen source preferences. We further measured culture growth rate, cell stoichiometry, and carbon fixation rate to determine if the presence of NO3- had any effect on cell metabolism. We found that uptake of NO3- by this strain of Crocosphaera was minimal in comparison to other N sources (~2-4% of total uptake). Furthermore, availability of NO3- did not statistically alter N2 fixation rate nor any aspect of cell physiology or metabolism measured (cellular growth rate, cell stoichiometry, cell size, nitrogen fixation rate, nitrogenase activity) in comparison to a NO3- free control culture. These results demonstrate the capability of a marine diazotroph to fix nitrogen and grow independently of NO3-. This lack of sensitivity of diazotrophy to NO3- suggests that assumptions often made about, and model formulations of, N2 fixation should be reconsidered.

19.
Environ Pollut ; 284: 117507, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34261218

RESUMEN

Wastewater containg proteinaceous ossein effluents are problematic to be treated. We studied the possibility to treat ossein effluents with the marine cyanobacterium strain Cylindrospermum stagnale. After optimizing the culture conditions of the bacterium, three different types of ossein effluents were tested: dicalcium phosphate (DCP), high total dissolved solids (HTDS) and low total dissolved (LTDS). The effluents were diluted with sea water at the following ratios 1:1, 2:1 and 3:2. The optimum operating conditions were at 3000 lux light intensity and 37 °C temperature. The highest degradation of ossein effluens by C. stagnale was attained for a dilution ratio of 1:1. However, less diluted ossein effluents reduced the growth of C. stagnale drastically. The degradation was shown by measuring the chlorophyll a content and the dry weight of bacterial cells during a seven-day incubation period degradation. Fourier Transform Infrared Spectroscopy (FT-IR) analysis verified the degradation showing the presence of the degradation products of ossein (i.e. calcium carbonate and calcite) in the culture medium. Lipid composition in fatty acids appeared to be suitable for biofuel production. The results showed that the marine cyanobacterium C. stagnale can be used to treat ossein effluents, and at the same time, to produce biofuel in a sustainable way.


Asunto(s)
Cianobacterias , Biodegradación Ambiental , Clorofila A , Espectroscopía Infrarroja por Transformada de Fourier
20.
Plants (Basel) ; 10(2)2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33672987

RESUMEN

Plant parasitic nematodes are annually responsible for the loss of 10%-25% of worldwide crop production, most of which is attributable to root-knot nematodes (RKNs) that infest a wide range of agricultural crops throughout the world. Current nematode control tools are not enough to ensure the effective management of these parasites, mainly due to the severe restrictions imposed on the use of chemical pesticides. Therefore, it is important to discover new potential nematicidal sources that are suitable for the development of additional safe and effective control strategies. In the last few decades, there has been an explosion of information about the use of seaweeds as plant growth stimulants and potential nematicides. Novel bioactive compounds have been isolated from marine cyanobacteria and sponges in an effort to find their application outside marine ecosystems and in the discovery of new drugs. Their potential as antihelmintics could also be exploited to find applicability against plant parasitic nematodes. The present review focuses on the activity of marine organisms on RKNs and their potential application as safe nematicidal agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA