Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cureus ; 15(8): e43584, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719589

RESUMEN

We describe a rare case of concurrent eosinophilic granulomatosis with polyangiitis and mixed connective tissue disease in a 27-year-old man who presented with pulmonary, renal, cardiac, and skin manifestations. We confirmed the diagnosis based on clinical, histopathological, and serological criteria. We treated the patient with corticosteroids, methotrexate, cyclophosphamide, and hydroxychloroquine, achieving early remission. The coexistence of both conditions in the same patient is extremely rare and has only been reported in a few cases worldwide. We also review the literature on these two rare autoimmune diseases' coexistence, pathogenesis, diagnosis, and management. Our case emphasizes recognizing overlapping autoimmune conditions in patients with complex clinical features and employing a comprehensive diagnostic approach and tailored treatment strategies. Further research is needed to understand these patients' epidemiology, prognosis, and optimal therapy. Early diagnosis and aggressive immunosuppression are crucial for achieving remission and preventing organ damage. We also identified the knowledge gaps and research needs in this field.

2.
Cureus ; 15(2): e35263, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36968860

RESUMEN

Cyclophosphamide (CYC) is an immunosuppressive medication used to treat life-threatening complications of various rheumatic diseases like vasculitis and systemic lupus erythematosus. A rare side effect of this medication is pneumonitis, which occurs in less than 1% of patients. We describe a case of an 83-year-old woman with a past medical history of microscopic polyangiitis, who presented with progressive dyspnea at rest, exacerbated on exertion, and associated with orthopnea that was attributed to CYC-induced pneumonitis. Three months before this presentation, the patient was diagnosed with antineutrophil cytoplasmic antibodies (ANCA)-positive pauci-immune crescentic and necrotizing glomerulonephritis and started on CYC. On admission, a computed tomography (CT) chest showed worsening bilateral ground-glass opacities in a mosaic distribution and inter and intralobular septal thickening, not present on the CT performed three months prior. The patient underwent an extensive workup, which included an echocardiogram, bronchoscopy with bronchoalveolar lavage, and viral respiratory panel to rule out infectious and cardiac pathologies. She was started on empiric treatment with antibiotics and diuretics, however, despite these interventions, she continued with respiratory distress. A multidisciplinary team convened, and the diagnosis of CYC-induced lung injury was entertained. The CYC was discontinued, and the patient was started on prednisone with significant improvement in symptoms. This case highlights the importance of recognizing CYC as a rare cause of interstitial pneumonitis. When considering CYC-induced lung toxicity, other etiologies, such as opportunistic infections, cardiac etiologies, and diffuse alveolar hemorrhage, should be ruled out.

3.
JHEP Rep ; 5(4): 100683, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36950091

RESUMEN

Background & Aims: Although extensive experimental evidence on the process of liver regeneration exists, in humans, validation is largely missing. However, liver regeneration is critically affected by underlying liver disease. Within this project, we aimed to systematically assess early transcriptional changes during liver regeneration in humans and further assess how these processes differ in people with dysfunctional liver regeneration. Methods: Blood samples of 154 patients and intraoperative tissue samples of 46 patients undergoing liver resection were collected and classified with regard to dysfunctional postoperative liver regeneration. Of those, a matched cohort of 21 patients were used for RNA sequencing. Samples were assessed for circulating cytokines, gene expression dynamics, intrahepatic neutrophil accumulation, and spatial transcriptomics. Results: Individuals with dysfunctional liver regeneration demonstrated an aggravated transcriptional inflammatory response with higher intracellular adhesion molecule-1 induction. Increased induction of this critical leukocyte adhesion molecule was associated with increased intrahepatic neutrophil accumulation and activation upon induction of liver regeneration in individuals with dysfunctional liver regeneration. Comparing baseline gene expression profiles in individuals with and without dysfunctional liver regeneration, we found that dual-specificity phosphatase 4 (DUSP4) expression, a known critical regulator of intracellular adhesion molecule-1 expression in endothelial cells, was markedly reduced in patients with dysfunctional liver regeneration. Mimicking clinical risk factors for dysfunctional liver regeneration, we found liver sinusoidal endothelial cells of two liver disease models to have significantly reduced baseline levels of DUSP4. Conclusions: Exploring the landscape of early transcriptional changes of human liver regeneration, we observed that people with dysfunctional regeneration experience overwhelming intrahepatic inflammation. Subclinical liver disease might account for DUSP4 reduction in liver sinusoidal endothelial cells, which ultimately primes the liver for an aggravated inflammatory response. Impact and implications: Using a unique human biorepository, focused on liver regeneration (LR), we explored the landscape of circulating and tissue-level alterations associated with both functional and dysfunctional LR. In contrast to experimental animal models, people with dysfunctional LR demonstrated an aggravated transcriptional inflammatory response, higher intracellular adhesion molecule-1 (ICAM-1) induction, intrahepatic neutrophil accumulation and activation upon induction of LR. Although inflammatory responses appear rapidly after liver resection, people with dysfunctional LR have exaggerated inflammatory responses that appear to be related to decreased levels of LSEC DUSP4, challenging existing concepts of post-resectional LR.

4.
Radiol Case Rep ; 18(3): 1005-1009, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36684621

RESUMEN

Adverse reaction to metal debris (ARMD) is a known complication of metal-on-metal hip arthroplasty. There has been one previously reported case of ARMD with concomitant gout in the setting of a hip arthroplasty. We report a case of ARMD with accompanying monosodium urate crystals as well as amyloid deposition in the hip of a patient who had undergone a metal-on-metal hip arthroplasty. This is the only published case to date of these 3 conditions co-existing, although it is possible that the incidence is higher since these require special diagnostic tests that are not routinely performed. It is postulated that these entities are biochemically associated with each other rather than being purely coincidental.

5.
Saudi J Biol Sci ; 30(1): 103495, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36439959

RESUMEN

Background: There is need to investigate whether phytochemicals along with surgical detorsion could serve as better managements options in TT patients rather than surgical detorsion (SD) alone. Methods: The descriptive cross-sectional part of this study is questionnaire-based addressing sociodemographic characteristics of participants and their experience in management of TT. In the experimental part, male rats (n = 32) were grouped into: sham, Ischemia-reperfusion injury (IRI), dichloromethane (DCM) and ethanol fraction (100 mg/kg) of CO. Evaluation of tissue GPx, total thiol, SOD, MDA and H2O2 was done. Serum estimations of nitrite, TNF-α and IL-6, MPO, sperm motility, count and viability was also carried out. Tissue expression of bax and caspase 3 was assessed. Results: 68.9 % respondents agreed that SD alone is non-effective in the management of TT while 83.6 % reported a need to augment surgery with medications. Oxidative stress markers like H2O2, MDA and nitrite increased by IRI were decreased in post-treatment groups, along with a significant increase in the tissue level of GSH, GST, SOD, GPx, and total thiol. Inflammatory mediators were elevated in IRI while post-treatment rats showed significant decrease. IRI decreased sperm count significantly this was reversed by post-treatment. Bax and caspase 3 was increased in IRI rats and post-treatment with CO fractions reduced them. Conclusions: Quantitative cross-sectional study has revealed through experience of clinicians that surgical detorsion alone is not effective in managing TT. Augmented treatment with CO leaf fractions suppressed testicular IRI through inhibition of pro-apoptotic proteins expression, oxidative stress and inflammation.

6.
Bioact Mater ; 22: 404-422, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36311047

RESUMEN

Osseointegration seems to be a foreign body reaction equilibrium due to the complicated interactions between the immune and skeletal systems. The heterogeneity of the osteoimmune microenvironment in the osseointegration of implant materials remains elusive. Here, a single-cell study involving 40043 cells is conducted, and a total of 10 distinct cell clusters are identified from five different groups. A preliminary description of the osteoimmune microenvironment revealed the diverse cellular heterogeneity and dynamic changes modulated by implant properties. The increased immature neutrophils, Ly6C + CCR2hi monocytes, and S100a8hi macrophages induce an aggressive inflammatory response and eventually lead to the formation of fibrous capsule around the stainless steel implant. The enrichment of mature neutrophils, FcgR1hi and differentiated immunomodulatory macrophages around the titanium implant indicates favorable osseointegration under moderate immune response. Neutrophil-depletion mice are conducted to explore the role of neutrophils in osseointegration. Neutrophils may improve bone formation by enhancing the recruitment of BMSCs via the CXCL12/CXCR3 signal axis. These findings contribute to a better knowledge of osteoimmunology and are valuable for the design and modification of 'osteoimmune-smart' biomaterials in the bone regeneration field.

7.
JID Innov ; 3(1): 100154, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36561914

RESUMEN

Inflammatory edema formation and polymorphonuclear leukocyte (neutrophil) accumulation are common components of cutaneous vascular inflammation, and their assessment is a powerful investigative and drug development tool but typically requires independent cohorts of animals to assess each. We have established the use of a mathematical formula to estimate the ellipsoidal-shaped volume of the edematous wheal or bleb after intradermal injections of substances in mice pretreated intravenously with Evans blue dye (which binds to plasma albumin) to act as an edema marker. Whereas previous extraction of Evans blue dye with formamide is suitable for all strains of mice, we report this quicker and more reliable assessment of edema volume in situ. This therefore allows neutrophil accumulation to be assessed from the same mouse using the myeloperoxidase assay. Importantly, we examined the influence of Evans blue dye on the spectrometry readout at the wavelength at which myeloperoxidase activity is measured. The results indicate that it is feasible to quantify edema formation and neutrophil accumulation in the same mouse skin site. Thus, we show techniques that can assess edema formation and neutrophil accumulation at the same site in the same mouse, allowing paired measurements and reducing the total use of mice by 50%.

8.
J Med Life ; 16(11): 1639-1645, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38406775

RESUMEN

Sepsis, often resulting from an immune response overreaction to microorganisms and their products, can lead to acute lung injury through inflammation mediated by excessive cytokines. This study aimed to investigate the effects of regorafenib on lung injury in mice following the induction of sepsis. We divided mice into four groups (n=6 each): a sham group (undergoing laparotomy without cecal ligation and puncture [CLP]), a CLP group, a vehicle group, and a regorafenib-treated group (30 mg/kg IP, administered one hour before CLP). TNF-α, IL-1ß, VEGF, MPO, caspase-11, and Ang-2 levels were significantly increased (p<0.05) in the CLP group compared to the sham group, while the regorafenib group showed significant reductions in these markers versus the CLP group (p< 0.05). In contrast, Ang-1 levels, which were reduced in the CLP group (p<0.05) compared to the sham group, were elevated in the regorafenib group compared to the CLP group. Quantitative real-time PCR revealed a significant decrease in TIE2 and VE-cadherin mRNA expression in the lung tissue of the CLP group compared to the sham group. There were no significant differences in mRNA expression of the TIE2 gene between the regorafenib and CLP group. However, VE-cadherin significantly increased after regorafenib treatment. Regorafenib demonstrated lung-protective effects through its anti-inflammatory and antiangiogenic activities and its influence on lung tissue mRNA expression of the cadherin gene.


Asunto(s)
Lesión Pulmonar Aguda , Compuestos de Fenilurea , Piridinas , Sepsis , Ratones , Animales , Angiopoyetinas , Pulmón , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , ARN Mensajero , Factor de Necrosis Tumoral alfa
9.
JACC Basic Transl Sci ; 7(7): 627-638, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35958696

RESUMEN

Transfusion is a specific cause of acute kidney injury (AKI) after cardiac surgery. Whether there is an association between the composition of blood products and the onset of AKI is unknown. The present study suggests that the transfusion of packed red blood cells containing a high amount of myeloid-related protein 14 (MRP_14) could increase the incidence of AKI after cardiac surgery. In a mouse model, MRP_14 increased the influx of neutrophils in the kidney after ischemia-reperfusion and their ability to damage tubular cells. Higher concentrations of MRP_14 were found in packed red blood cells from female donors or prepared by whole blood filtration.

10.
Regen Ther ; 21: 157-165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35891710

RESUMEN

Introduction: Endoscopic submucosal dissection (ESD) is a minimally invasive treatment for early esophageal cancer. However, large mucosal defects after esophageal ESD result in refractory strictures. In the present study, we histologically evaluated the endoscopic transplantation of allogeneic epidermal cell sheets (ECSs) as a feasible therapy for preventing esophageal stricture after circumferential ESD in a porcine model. Methods: Epidermal cells were isolated from the skin tissue of allogeneic pigs and cultured on temperature-responsive cell culture inserts for 2 weeks. Transplantable ECSs were harvested by reducing the temperature and endoscopically transplanting the sheets to ulcer sites immediately after esophageal ESD. The engraftment of transplanted ECSs was then evaluated in two pigs at 7 days after transplantation. Next, ten pigs were divided into two groups to evaluate the endoscopic transplantation of allogeneic ECSs for the prevention of esophageal strictures after ESD. Allogeneic ECSs were transplanted immediately after esophageal ESD in the transplantation group (n = 5), whereas the control group (n = 5) did not undergo transplantation. Results: Most of the transplanted allogeneic ECSs were successfully engrafted at the ulcer sites in the early phase. Fluorescence in situ hybridization analysis revealed that several allogeneic cells were present in the transplanted area at 7 days after ESD. At 14 days after ESD, significant differences in body weight loss, dysphagia scores, and mucosal strictures were observed between the control and transplantation groups. Transplanting allogeneic ECSs after esophageal ESD promotes mucosal healing and angiogenesis and prevents excessive inflammation and granulation tissue formation. Conclusions: Endoscopic and histological analyses revealed that allogeneic ECSs promoted artificial ulcer healing after ESD, preventing esophageal strictures after ESD.

11.
Respir Med Case Rep ; 38: 101705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864977

RESUMEN

An 80-year-old woman with myelofibrosis sought evaluation for progressive dyspnea. Her past medical history included essential thrombocytosis, which transformed to myelofibrosis. Inspiratory computed tomography of chest showed diffuse mosaic attenuation with lymphadenopathy. Flexible bronchoscopy with lymph node and pulmonary parenchymal cryo biopsy revealed nodular deposits of extramedullary hematopoiesis in lung parenchyma and moderate to severe vascular medial and intimal thickening of pulmonary vasculature consistent with pulmonary parenchymal extramedullary hematopoiesis associated with pulmonary hypertension (a rare compensatory mechanism in myeloproliferative disorders). In this report, we explore the manifestations, pathogenesis, treatment, and prognosis of pulmonary extramedullary hematopoiesis reported in the literature.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35602337

RESUMEN

Cerebral ischemia-reperfusion injury induces multi-dimensional damage to neuronal cells through exacerbation of critical protective mechanisms. Targeting more than one mechanism simultaneously namely, inflammatory responses and metabolic energy homeostasis could provide additional benefits to restrict or manage cerebral injury. Being proven neuroprotective agents both, progesterone (PG) and trimetazidine (TMZ) has the potential to add on the individual therapeutic outcomes. We hypothesized the simultaneous administration of PG and TMZ could complement each other to synergize, or at least enhance neuroprotection in reperfusion injury. We investigated the combination of PG and TMZ on middle cerebral artery occlusion (MCAO) induced cerebral reperfusion injury in rats. Molecular docking on targets of energy homeostasis and apoptosis assessed the initial viability of PG and TMZ for neuroprotection. Animal experimentation with MCA induced ischemia-reperfusion (I/R) injury in rats was performed on five randomized groups. Sham operated control group received vehicle (saline) while the other four I-R groups were pre-treated with vehicle (saline), PG (8 â€‹mg/kg), TMZ treated (25 â€‹mg/kg), and PG â€‹+ â€‹TMZ (8 and 25 â€‹mg/kg) for 7 days by intraperitoneal route. Neurological deficit, infarct volume, and oxidative stress were evaluated to assess the extent of injury in rats. Inflammatory reactivity and apoptotic activity were determined with alterations in myeloperoxidase (MPO) activity, blood-brain barrier (BBB) permeability, and DNA fragments. Reperfusion injury inflicted cerebral infarct, neurological deficit, and shattered BBB integrity. The combination treatment of PG and TMZ restricted cellular damage indicated by significant (p â€‹< â€‹0.05) decrease in infarct volume and improvement in free radical scavenging ability (SOD activity and GSH level). MPO activity and LPO decreased which contributed in improved BBB integrity in treated rats. We speculate that inhibition of inflammatory and optimum energy utilization would critically contribute to observed neuroprotection with combined PG and TMZ treatment. Further exploration of this neuroprotective approach for post-recovery cognitive improvement is worth investigating.

14.
JACC Basic Transl Sci ; 7(2): 146-161, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35257042

RESUMEN

Neutrophil extracellular traps (NETs) contribute to inflammatory pathogenesis in numerous conditions, including infectious and cardiovascular diseases, and have attracted attention as potential therapeutic targets. H2 acts as an antioxidant and has been clinically and experimentally proven to ameliorate inflammation. This study was performed to investigate whether H2 could inhibit NET formation and excessive neutrophil activation. Neutrophils isolated from the blood of healthy volunteers were stimulated with phorbol-12-myristate-13-acetate (PMA) or the calcium ionophore A23187 in H2-exposed or control media. Compared with control neutrophils, PMA- or A23187-stimulated human neutrophils exposed to H2 exhibited reduced neutrophil aggregation, citrullination of histones, membrane disruption by chromatin complexes, and release of NET components. CXCR4high neutrophils are highly prone to NETs, and H2 suppressed Ser-139 phosphorylation in H2AX, a marker of DNA damage, thereby suppressing the induction of CXCR4 expression. H2 suppressed both myeloperoxidase chlorination activity and production of reactive oxygen species to the same degree as N-acetylcysteine and ascorbic acid, while showing a more potent ability to inhibit NET formation than these antioxidants do in PMA-stimulated neutrophils. Although A23187 formed NETs in a reactive oxygen species-independent manner, H2 inhibited A23187-induced NET formation, probably via direct inhibition of peptidyl arginine deiminase 4-mediated histone citrullination. Inhalation of H2 inhibited the formation and release of NET components in the blood and bronchoalveolar lavage fluid in animal models of lipopolysaccharide-induced sepsis (mice and aged mini pigs). Thus, H2 therapy can be a novel therapeutic strategy for NETs associated with excessive neutrophil activation.

15.
J Pediatr Surg Case Rep ; 75: 102103, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34729348

RESUMEN

We present the case of an acute onset ANCA positive vasculitis in an asymptomatic COVID-19 infected teenager, resulting in significant colonic damage. The patient was initially diagnosed with Henoch-Schönlein purpura and presented with worsening symptoms with significant necrosis of her perineum and rectum requiring surgical debridement and diverting colostomy. As a part of her work-up, she tested positive for COVID-19 total IgG/IgM antibodies and ANCA antibodies. This case complements previously reported cases of COVID-19 induced autoimmune disease in children but is novel in describing extensive intestinal disease as a result of an autoimmune vasculitis in a child.

16.
Biochem Biophys Rep ; 28: 101168, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825068

RESUMEN

PURPOSE: This current study investigated the effect of metformin treatment on hepatic oxidative stress and inflammation associated with nonalcoholic fatty liver disease (NADLD) in high fat diet (HFD) fed rats. METHOD: Wistar rats were fed with a HFD or laboratory chow diet for 8 weeks. Metformin was administered orally at a dose of 200 mg/kg. Body weight, food and water intake were recorded on daily basis. Oral glucose tolerance test (OGTT), biochemical analysis and histological examinations were conducted on plasma and tissue samples. Antioxidant and anti-inflammatory mRNA expression was analyzed using reverse transcription polymeric chain reaction (RT-PCR). RESULTS: Metformin treatment for 8 weeks prevented HFD-induced weight gain and decreased fat deposition in HFD fed rats. Biochemical analysis revealed that metformin treatment significantly attenuated nitro-oxidative stress markers malondialdehyde (MDA), advanced protein oxidation product (APOP), and excessive nitric oxide (NO) levels in the liver of HFD fed rats. Gene expression analysis demonestrated that metformin treatment was associated with an enhanced expression of antioxidant genes such as Nrf-2, HO-1, SOD and catalase in liver of HFD fed rats. Metformin treatment also found to modulate the expression of fat metabolizing and anti-inflammatory genes including PPAR--γ, C/EBP-α, SREBP1c, FAS, AMPK and GLUT-4. Consistent with the biochemical and gene expression data, the histopathological examination unveiled that metformin treatment attenuated inflammatory cells infiltration, steatosis, hepatocyte necrosis, collagen deposition, and fibrosis in the liver of HFD fed rats. CONCLUSION: In conclusion, this study suggests that metformin might be effective in the prevention and treatment of HFD-induced steatosis by reducing hepatic oxidative stress and inflammation in the liver.

18.
Acta Pharm Sin B ; 11(9): 2798-2818, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589398

RESUMEN

Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.

19.
Acta Pharm Sin B ; 11(9): 2880-2899, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589402

RESUMEN

Aberrant activation of NLRP3 inflammasome in colonic macrophages strongly associates with the occurrence and progression of ulcerative colitis. Although targeting NLRP3 inflammasome has been considered to be a potential therapy, the underlying mechanism through which pathway the intestinal inflammation is modulated remains controversial. By focusing on the flavonoid lonicerin, one of the most abundant constituents existed in a long historical anti-inflammatory and anti-infectious herb Lonicera japonica Thunb., here we report its therapeutic effect on intestinal inflammation by binding directly to enhancer of zeste homolog 2 (EZH2) histone methyltransferase. EZH2-mediated modification of H3K27me3 promotes the expression of autophagy-related protein 5, which in turn leads to enhanced autophagy and accelerates autolysosome-mediated NLRP3 degradation. Mutations of EZH2 residues (His129 and Arg685) indicated by the dynamic simulation study have found to greatly diminish the protective effect of lonicerin. More importantly, in vivo studies verify that lonicerin dose-dependently disrupts the NLRP3-ASC-pro-caspase-1 complex assembly and alleviates colitis, which is compromised by administration of EZH2 overexpression plasmid. Thus, these findings together put forth the stage for further considering lonicerin as an anti-inflammatory epigenetic agent and suggesting EZH2/ATG5/NLRP3 axis may serve as a novel strategy to prevent ulcerative colitis as well as other inflammatory diseases.

20.
JACC Basic Transl Sci ; 6(8): 631-646, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34466750

RESUMEN

The bacterial C-type lectin domain family 4 member E (CLEC4E) has an important role in sterile inflammation, but its role in myocardial repair is unknown. Using complementary approaches in porcine, murine, and human samples, we show that CLEC4E expression levels in the myocardium and in blood correlate with the extent of myocardial injury and left ventricular (LV) functional impairment. CLEC4E expression is markedly increased in the vasculature, cardiac myocytes, and infiltrating leukocytes in the ischemic heart. Loss of Clec4e signaling is associated with reduced acute cardiac injury, neutrophil infiltration, and infarct size. Reduced myocardial injury in Clec4e -/- translates into significantly improved LV structural and functional remodeling at 4 weeks' follow-up. The early transcriptome of LV tissue from Clec4e -/- mice versus wild-type mice reveals significant upregulation of transcripts involved in myocardial metabolism, radical scavenging, angiogenesis, and extracellular matrix organization. Therefore, targeting CLEC4E in the early phase of ischemia-reperfusion injury is a promising therapeutic strategy to modulate myocardial inflammation and enhance repair after ischemia-reperfusion injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA