Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Pharm Biol ; 62(1): 1-12, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38084911

RESUMEN

CONTEXT: Shenxiang Suhe pill (SXSH), a traditional Chinese medicine, is clinically effective against coronary heart disease, but the mechanism of cardiac-protective function is unclear. OBJECTIVE: We investigated the cardiac-protective mechanism of SXSH via modulating gut microbiota and metabolite profiles. MATERIALS AND METHODS: Sprague-Dawley (SD) male rats were randomly divided into 6 groups (n = 8): Sham, Model, SXSH (Low, 0.063 g/kg; Medium, 0.126 g/kg; High, 0.252 g/kg), and Ato (atorvastatin, 20 mg/kg). Besides the Sham group, rats were modelled with acute myocardial infarction (AMI) by ligating the anterior descending branch of the left coronary artery (LAD). After 3, 7, 14 days' administration, ultrasound, H&E staining, serum enzymic assay, 16S rRNA sequencing were conducted to investigate the SXSH efficacy. Afterwards, five groups of rats: Sham, Model, Model-ABX (AMI with antibiotics-feeding), SXSH (0.126 g/kg), SXSH-ABX were administrated for 14 days to evaluate the gut microbiota-dependent SXSH efficacy, and serum untargeted metabolomics test was performed. RESULTS: 0.126 g/kg of SXSH intervention for 14 days increased ejection fraction (EF, 78.22%), fractional shortening (FS, 109.07%), and aortic valve flow velocities (AV, 21.62%), reduced lesion area, and decreased serum LDH (8.49%) and CK-MB (10.79%). Meanwhile, SXSH upregulated the abundance of Muribaculaceae (199.71%), Allobaculum (1744.09%), and downregulated Lactobacillus (65.51%). The cardiac-protective effect of SXSH was disrupted by antibiotics administration. SXSH altered serum metabolites levels, such as downregulation of 2-n-tetrahydrothiophenecarboxylic acid (THTC, 1.73%), and lysophosphatidylcholine (lysoPC, 4.61%). DISCUSSION AND CONCLUSION: The cardiac-protective effect and suggested mechanism of SXSH could provide a theoretical basis for expanding its application in clinic.


Asunto(s)
Microbioma Gastrointestinal , Infarto del Miocardio , Ratas , Masculino , Animales , Ratas Sprague-Dawley , ARN Ribosómico 16S , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Antibacterianos/farmacología
2.
Cell Mol Life Sci ; 80(9): 243, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37555936

RESUMEN

Both adipose tissue and skeletal muscle are highly dynamic tissues and interact at the metabolic and hormonal levels in response to internal and external stress, and they coordinate in maintaining whole-body metabolic homeostasis. In our previous study, we revealed that adipocyte-specific Rnf20 knockout mice (ASKO mice) exhibited lower fat mass but higher lean mass, providing a good model for investigating the adipose-muscle crosstalk and exploring the effect of the adipocyte Rnf20 gene on the physiology and metabolism of skeletal muscle. Here, we confirmed that ASKO mice exhibited the significantly increased body weight and gastrocnemius muscle weight. Fiber-type switching in the soleus muscle of ASKO mice was observed, as evidenced by the increased number of fast-twitch fibers and decreased number of slow-twitch fibers. Serum metabolites with significant alteration in abundance were identified by metabolomic analysis and the elevated lysophosphatidylcholine 16:0 [LysoPC (16:0)] was observed in ASKO mice. In addition, lipidome analysis of gonadal white adipose tissue revealed a significant increase in LysoPCs and LysoPC (16:0) in ASKO mice. Furthermore, knockdown of Rnf20 gene in 3T3-L1 cells significantly increased the secretion of LysoPC, suggesting that LysoPC might be a critical metabolite in the adipose-muscle crosstalk of ASKO mice. Furthermore, in vitro study demonstrated that LysoPC (16:0) could induce the expression of fast-twitch muscle fibers related genes in differentiated C2C12 cells, indicating its potential role in adipose-muscle crosstalk. Taken together, these findings not only expand our understanding of the biological functions of Rnf20 gene in systemic lipid metabolism, but also provide insight into adipose tissue dysfunction-induced physiological alterations in skeletal muscle.


Asunto(s)
Lisofosfatidilcolinas , Enfermedades Musculares , Ubiquitina-Proteína Ligasas , Animales , Ratones , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Obesidad/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37373399

RESUMEN

Abdominal aortic aneurysm (AAA) is hallmarked by irreversible dilation of the infrarenal aorta. Lipid deposition in the aortic wall and the potential importance of a lipid disorder in AAA etiology highlight the need to explore lipid variation during AAA development. This study aimed to systematically characterize the lipidomics associated with AAA size and progression. Plasma lipids from 106 subjects (36 non-AAA controls and 70 AAA patients) were comprehensively analyzed using untargeted lipidomics. An AAA animal model was established by embedding angiotensin-II pump in ApoE-/- mice for four weeks and blood was collected at 0, 2 and 4 weeks for lipidomic analysis. Using a false-discovery rate (FDR) < 0.05, a group of lysophosphatidylcholines (lysoPCs) were specifically decreased in AAA patients and mice. LysoPCs were principally lower in the AAA patients with larger diameter (diameter > 50 mm) than those with a smaller size (30 mm < diameter < 50 mm), and levels of lysoPCs were also found to be decreased with modelling time and aneurysm formation in AAA mice. Correlation matrices between lipids and clinical characteristics identified that the positive correlation between lysoPCs and HDL-c was reduced and negative correlations between lysoPCs and CAD rate, lysoPCs and hsCRP were converted to positive correlations in AAA compared to control. Weakened positive correlations between plasma lysoPCs and circulating HDL-c in AAA suggested that HDL-lysoPCs may elicit instinctive physiological effects in AAA. This study provides evidence that reduced lysoPCs essentially underlie the pathogenesis of AAA and that lysoPCs are promising biomarkers for AAA development.


Asunto(s)
Aneurisma de la Aorta Abdominal , Lipidómica , Ratones , Animales , Lisofosfatidilcolinas , Aneurisma de la Aorta Abdominal/patología , Aorta Abdominal , Biomarcadores , Angiotensina II , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Adv Microb Physiol ; 82: 129-154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36948653

RESUMEN

Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.


Asunto(s)
Fenómenos Biológicos , Lisofosfolípidos , Lisofosfolípidos/metabolismo , Transducción de Señal , Metabolismo de los Lípidos , Bacterias/metabolismo
5.
Clin Transl Med ; 13(1): e1180, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639836

RESUMEN

Lung cancer is a widespread malignancy with a high death rate and disorder of lipid metabolism. Lysophosphatidylcholine (lysoPC) has anti-tumour effects, although the underlying mechanism is not entirely known. The purpose of this study aims at defining changes in lysoPC in lung cancer patients, the effects of lysoPC on lung cancer cells and molecular mechanisms. Lung cancer cell sensitivity to lysoPC was evaluated and decisive roles of long-chain acyl-coenzyme A synthase 5 (ACSL5) in lysoPC regulation were defined by comprehensively evaluating transcriptomic changes of ACSL5-downregulated epithelia. ACSL5 over-expressed in ciliated, club and Goblet cells in lung cancer patients, different from other lung diseases. LysoPC inhibited lung cancer cell proliferation, by inducing mitochondrial dysfunction, altering lipid metabolisms, increasing fatty acid oxidation and reprograming ACSL5/phosphoinositide 3-kinase/extracellular signal-regulated kinase-regulated triacylglycerol-lysoPC balance. Thus, this study provides a general new basis for the discovery of reprogramming metabolisms and metabolites as a new strategy of lung cancer precision medicine.


Asunto(s)
Coenzima A Ligasas , Neoplasias Pulmonares , Lisofosfatidilcolinas , Humanos , Proliferación Celular , Ácidos Grasos/metabolismo , Neoplasias Pulmonares/genética , Lisofosfatidilcolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Coenzima A Ligasas/metabolismo
6.
Comput Struct Biotechnol J ; 20: 6458-6466, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467587

RESUMEN

Various groups of antihypertensive drugs targeting different pathways have been developed; however, the pharmacometabolic responses to these drugs have rarely been compared to elucidate the common pathway of blood pressure regulation. Here, we performed a comparative multi-dimensional pharmacometabolic study on the four major lines of antihypertensive drugs, namely angiotensin-converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs), calcium channel blockers (CCBs), and diuretics (DIURs), through ultra-performance liquid chromatography coupled to quantum time-of-flight mass spectrometry. Two hundred fifty patients with young-onset hypertension, who were equally divided among five study groups: non-medicated, ACEi, ARB, CCB, and DIUR groups, were recruited. In a metabolome-wide association study conducted through analysis of covariance, 37 molecular features significantly associated with pharmacometabolic responses to antihypertensive drugs were identified. One-third of these features were shared by multiple medications. ACEis, ARBs, and DIURs shared more features than CCB, partially reflecting that ACEis, ARBs, and DIURs affect the renin-angiotensin-aldosterone system. Thirteen molecular features were consistently identified by all four models of the analysis of covariance. A tandem mass spectrometry (or MS/MS) experiment was performed to decipher the chemical structure of these 13 molecular features, including ARB-associated lysophosphatidylcholine (P4135), CCB-associated diacylglycerol(15:0/18:2) (P1175), and DIUR-associated oleamide (P1516). In addition, diacylglycerol(15:0/14:2) (P408) was significantly associated with the pharmacometabolic response to all four antihypertensive drugs. The identified metabolites provide insights into the mechanisms of blood pressure regulation and potential predictive markers of pharmacometabolic responses to antihypertensive drugs.

7.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887324

RESUMEN

Radiation-induced thrombocytopenia is a common and life-threatening side effect of ionizing radiation (IR) therapy. However, the underlying pathological mechanisms remain unclear. In the present study, irradiation was demonstrated to significantly reduce platelet levels, inhibit megakaryocyte differentiation, and promote the apoptosis of bone marrow (BM) cells. A metabolomics approach and a UHPLC-QTOF MS system were subsequently employed for the comprehensive analysis of serum metabolic profiles of normal and irradiated mice. A total of 66 metabolites were significantly altered, of which 56 were up-regulated and 10 were down-regulated in irradiated mice compared to normal mice on day 11 after irradiation. Pathway analysis revealed that disorders in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, inositol phosphate metabolism, and tryptophan metabolism were involved in radiation-induced thrombocytopenia. In addition, three important differential metabolites, namely L-tryptophan, LysoPC (17:0), and D-sphinganine, which were up-regulated in irradiated mice, significantly induced the apoptosis of K562 cells. L-tryptophan inhibited megakaryocyte differentiation of K562 cells. Finally, serum metabolomics was performed on day 30 (i.e., when the platelet levels in irradiated mice recovered to normal levels). The contents of L-tryptophan, LysoPC (17:0), and D-sphinganine in normal and irradiated mice did not significantly differ on day 30 after irradiation. In conclusion, radiation can cause metabolic disorders, which are highly correlated with the apoptosis of hematopoietic cells and inhibition of megakaryocyte differentiation, ultimately resulting in thrombocytopenia. Further, the metabolites, L-tryptophan, LysoPC (17:0), and D-sphinganine can serve as biomarkers for radiation-induced thrombocytopenia.


Asunto(s)
Trombocitopenia , Triptófano , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Metaboloma , Metabolómica/métodos , Ratones , Trombocitopenia/etiología
8.
Biotechnol Biofuels Bioprod ; 15(1): 66, 2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717237

RESUMEN

BACKGROUND: Castor (Ricinus communis L.) seeds contain unusual fatty acid, hydroxy fatty acid (HFA) used as a chemical feedstock for numerous industrial products. Castor cultivation is limited by the potent toxin ricin in its seeds and other poor agronomic traits, so it is advantageous to develop a suitable HFA-producing crop. Significant research efforts have been made to produce HFA in model Arabidopsis, but the level of HFA produced in transgenic Arabidopsis is much less than the level found in castor seeds which produce 90% HFA in seed oil. RESULTS: We designed a transformation construct that allowed co-expression of five essential castor genes (named pCam5) involved in HFA biosynthesis, including an oleate [Formula: see text] 12-hydroxylase (FAH12), diacylglycerol (DAG) acyltransferase 2 (DGAT2), phospholipid: DAG acyltransferase 1-2 (PDAT1-2), phosphatidylcholine (PC): DAG cholinephosphotransferase (PDCT) and Lyso-PC acyltransferase (LPCAT). Transgenic Arabidopsis pCam5 lines produced HFA counting for 25% in seed oil. By knocking out Arabidopsis Fatty acid elongase 1 (AtFAE1) in pCam5 using CRISPR/Cas9 technology, the resulted pCam5-atfae1 lines produced over 31% of HFA. Astonishingly, the pCam5-atfae1 line increased seed size, weight, and total oil per seed exceeding wild type by 40%. Seed germination, seedling growth and seed mucilage content of pCam5-atfae1 lines were not affected by the genetic modification. CONCLUSIONS: Our results provide not only insights for future research uncovering mechanisms of HFA synthesis in seed, but also metabolic engineering strategies for generating safe HFA-producing crops.

9.
Acta Pharm Sin B ; 11(11): 3665-3677, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34900545

RESUMEN

Detailed knowledge on tissue-specific metabolic reprogramming in diabetic nephropathy (DN) is vital for more accurate understanding the molecular pathological signature and developing novel therapeutic strategies. In the present study, a spatial-resolved metabolomics approach based on air flow-assisted desorption electrospray ionization (AFADESI) and matrix-assisted laser desorption ionization (MALDI) integrated mass spectrometry imaging (MSI) was proposed to investigate tissue-specific metabolic alterations in the kidneys of high-fat diet-fed and streptozotocin (STZ)-treated DN rats and the therapeutic effect of astragaloside IV, a potential anti-diabetic drug, against DN. As a result, a wide range of functional metabolites including sugars, amino acids, nucleotides and their derivatives, fatty acids, phospholipids, sphingolipids, glycerides, carnitine and its derivatives, vitamins, peptides, and metal ions associated with DN were identified and their unique distribution patterns in the rat kidney were visualized with high chemical specificity and high spatial resolution. These region-specific metabolic disturbances were ameliorated by repeated oral administration of astragaloside IV (100 mg/kg) for 12 weeks. This study provided more comprehensive and detailed information about the tissue-specific metabolic reprogramming and molecular pathological signature in the kidney of diabetic rats. These findings highlighted the promising potential of AFADESI and MALDI integrated MSI based metabolomics approach for application in metabolic kidney diseases.

10.
Biomedicines ; 9(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201176

RESUMEN

Oxidative modification of lipoproteins is implicated in the occurrence and development of atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic; however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular diseases. A modified structure of oxLDL, which was increased in the plasma of patients with acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of oxLDL and oxHDL in circulation.

11.
JACC Basic Transl Sci ; 5(9): 888-897, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015412

RESUMEN

Our objectives were to determine whether autotaxin (ATX) is transported by lipoprotein(a) [Lp(a)] in human plasma and if could be used as a biomarker of calcific aortic valve stenosis (CAVS). We first found that ATX activity was higher in Lp(a) compared to low-density lipoprotein fractions in isolated fractions of 10 healthy participants. We developed a specific assay to measure ATX-Lp(a) in 88 patients with CAVS and 144 controls without CAVS. In a multivariable model corrected for CAVS risk factors, ATX-Lp(a) was associated with CAVS (p = 0.003). We concluded that ATX is preferentially transported by Lp(a) and might represent a novel biomarker for CAVS.

12.
Pharmacol Res ; 160: 105201, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32942017

RESUMEN

BACKGROUND AND PURPOSE: The pathogenesis of cardiomyopathy in metabolically unhealthy obesity (MUO) has been well studied. However, the pathogenesis of cardiomyopathy typically associated with high cholesterol levels in metabolically unhealthy nonobesity (MUNO) remains unclear. We investigated whether cholesterol-generated LysoPCs contribute to cardiomyopathy and the role of cytosolic phospholipase A2 (cPLA2) inhibitor in cholesterol-induced MUNO. EXPERIMENTAL APPROACH: Cholesterol diet was performed in Sprague-Dawley rats that were fed either regular chow (C), or high cholesterol chow (HC), or HC diet with 10 % fructose in drinking water (HCF) for 12 weeks. LysoPCs levels were subsequently measured in rats and in MUNO human patients. The effects of cholesterol-mediated LysoPCs on cardiac injury, and the action of cPLA2 inhibitor, AACOCF3, were further assessed in H9C2 cardiomyocytes. KEY RESULTS: HC and HCF rats fed cholesterol diets demonstrated a MUNO-phenotype and cholesterol-induced dilated cardiomyopathy (DCM). Upregulated levels of LysoPCs were found in rat myocardium and the plasma in MUNO human patients. Further testing in H9C2 cardiomyocytes revealed that cholesterol-induced atrophy and death of cardiomyocytes was due to mitochondrial dysfunction and conditions favoring DCM (i.e. reduced mRNA expression of ANF, BNP, DSP, and atrogin-1), and that AACOCF3 counteracted the cholesterol-induced DCM phenotype. CONCLUSION AND IMPLICATIONS: Cholesterol-induced MUNO-DCM phenotype was counteracted by cPLA2 inhibitor, which is potentially useful for the treatment of LysoPCs-associated DCM in MUNO.


Asunto(s)
Cardiomiopatía Dilatada/tratamiento farmacológico , Colesterol en la Dieta/toxicidad , Enfermedades Metabólicas/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Inhibidores de Fosfolipasa A2/uso terapéutico , Animales , Línea Celular , Dieta , Electrocardiografía , Fructosa/toxicidad , Hemodinámica/efectos de los fármacos , Humanos , Lisofosfatidilcolinas/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
13.
Nutrients ; 12(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708260

RESUMEN

(1) Background: Little is known on impacts of ready-to-use therapeutic food (RUTF) treatment on lipid metabolism in children with severe acute malnutrition (SAM). (2) Methods: We analyzed glycerophospholipid fatty acids (FA) and polar lipids in plasma of 41 Pakistani children with SAM before and after 3 months of RUTF treatment using gas chromatography and flow-injection analysis tandem mass spectrometry, respectively. Statistical analysis was performed using univariate, multivariate tests and evaluated for the impact of age, sex, breastfeeding status, hemoglobin, and anthropometry. (3) Results: Essential fatty acid (EFA) depletion at baseline was corrected by RUTF treatment which increased EFA. In addition, long-chain polyunsaturated fatty acids (LC-PUFA) and the ratio of arachidonic acid (AA)/linoleic acid increased reflecting greater EFA conversion to LC-PUFA, whereas Mead acid/AA decreased. Among phospholipids, lysophosphatidylcholines (lyso.PC) were most impacted by treatment; in particular, saturated lyso.PC decreased. Higher child age and breastfeeding were associated with great decrease in total saturated FA (ΣSFA) and lesser decrease in monounsaturated FA and total phosphatidylcholines (ΣPC). Conclusions: RUTF treatment improves EFA deficiency in SAM, appears to enhance EFA conversion to biologically active LC-PUFA, and reduces lipolysis reflected in decreased ΣSFA and saturated lyso.PC. Child age and breastfeeding modify treatment-induced changes in ΣSFA and ΣPC.


Asunto(s)
Trastornos de la Nutrición del Niño/sangre , Trastornos de la Nutrición del Niño/dietoterapia , Fenómenos Fisiológicos Nutricionales Infantiles/fisiología , Comida Rápida , Alimentos Especializados , Fenómenos Fisiológicos Nutricionales del Lactante/fisiología , Metabolismo de los Lípidos , Lípidos/sangre , Factores de Edad , Lactancia Materna , Niño , Trastornos de la Nutrición del Niño/metabolismo , Preescolar , Ácidos Grasos Esenciales/sangre , Ácidos Grasos Insaturados , Femenino , Glicerofosfolípidos/sangre , Glicerofosfolípidos/metabolismo , Humanos , Lactante , Lisofosfatidilcolinas/sangre , Lisofosfatidilcolinas/metabolismo , Masculino , Pakistán , Índice de Severidad de la Enfermedad
14.
J Appl Genet ; 61(1): 87-91, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31628608

RESUMEN

Zellweger spectrum disorders (ZSD) constitute a group of rare autosomal recessive disorders characterized by a defect in peroxisome biogenesis due to mutations in one of 13 PEX genes. The broad clinical heterogeneity especially in late-onset presenting patients and a mild phenotype complicates and delays the diagnostic process. Here, we report a case of mild ZSD, due to novel PEX1 variants. The patient presented with an early hearing loss, bilateral cataracts, and leukodystrophy on magnetic resonance (MR) images. Normal results of serum very-long-chain fatty acids (VLCFA) and phytanic acid were found. Molecular diagnostics were performed to uncover the etiology of the clinical phenotype. Using whole exome sequencing, there have been found two variants in the PEX1 gene-c.3450T>A (p.Cys1150*) and c.1769T>C (p.Leu590Pro). VLCFA measurement in skin fibroblasts and C26:0-lysoPC in dried blood spot therefore was performed. Both results were in line with the diagnosis of ZSD. To conclude, normal results of routine serum VLCFA and branched-chain fatty acid measurement do not exclude mild forms of ZSD. The investigation of C26:0-lysoPC should be included in the diagnostic work-up in patients with cataract, hearing loss, and leukodystrophy on MR images suspected to suffer from ZSD.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Proteínas de la Membrana/genética , Fenotipo , Síndrome de Zellweger/diagnóstico , Síndrome de Zellweger/genética , Adolescente , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Índice de Severidad de la Enfermedad , Evaluación de Síntomas , Adulto Joven , Síndrome de Zellweger/metabolismo
15.
JACC Basic Transl Sci ; 5(12): 1163-1177, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426374

RESUMEN

This study outlines the first step toward creating the metabolite atlas of human calcified aortic valves by identifying the expression of metabolites and metabolic pathways involved at various stages of calcific aortic valve stenosis progression. Untargeted analysis identified 72 metabolites and lipids that were significantly altered (p < 0.01) across different stages of disease progression. Of these metabolites and lipids, the levels of lysophosphatidic acid were shown to correlate with faster hemodynamic progression and could select patients at risk for faster progression rate.

16.
Food Chem ; 266: 161-169, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381171

RESUMEN

Untargeted metabolomics unraveled the effects of varying substrates (soybean, wheat, and rice) and inocula (Aspergillus oryzae and Bacillus amyloliquefaciens) on metabolite compositions of koji, a starter ingredient in various Asian fermented foods. Multivariate analyses of the hyphenated mass spectrometry datasets for different koji extracts highlighted 61 significantly discriminant primary metabolites (sugars and sugar alcohols, organic acids, amino acids, fatty acids, nucleosides, phenolic acids, and vitamins) according to varying substrates and inocula combinations. However, 59 significantly discriminant secondary metabolites were evident for koji-types with varying substrates only, viz., soybean (flavonoids, soyasaponins, and lysophospholipids), wheat (flavones and lysophospholipids), and rice (flavonoids, fatty acids derivatives, and lysophospholipids). Independently, the substrates influenced primary metabolite compositions in koji (soybean > wheat, rice). The inocula choice of A. oryzae engendered higher carbohydrates, organic acids, and lipid derivative levels commensurate with high α-amylase and ß-glucosidase activities, while B. amyloliquefaciens affected higher amino acids levels, in respective koji types.


Asunto(s)
Aspergillus oryzae/metabolismo , Bacillus amyloliquefaciens/metabolismo , Glycine max/metabolismo , Metabolómica , Oryza/metabolismo , Triticum/metabolismo , Aminoácidos/análisis , Carbohidratos/análisis , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/análisis , Análisis de Componente Principal , Vitaminas/análisis , alfa-Amilasas/metabolismo , beta-Glucosidasa/metabolismo
17.
Biol Pharm Bull ; 41(10): 1581-1585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30270327

RESUMEN

The objective of this study was to confirm the effect of maternal genistein exposure on body weight of male offspring and the metabolic alterations associated with maternal genistein-induced obesity. Pregnant female Sprague-Dawley (SD) rats were supplemented with 300 mg/kg diet of genistein (GEN) or no genistein (CON) throughout pregnancy and lactation. The growth of male offspring was investigated until 12 week age and the mechanism of obesity was studied using metabonomics by ultra performance liquid chromatography and quadrupole time-of-flight (UPLC Q-TOF) MS with electrospray ionization in positive ESI mode (ESI+). Compared with the CON group, body weight, fat pad and food intake of male offspring in GEN group were increased significantly at the age of weeks 10 to 12 (p<0.05). Ten urine principal metabolites contributing to the clusters were identified, including increased 8-Isoprostaglandin F2a, and decreased L-Proline, Betaine, L-Acetylcarnitine, Norsalsolinol, Indoleacrylic acid, L-Tryptophan, Lysophosphatidylcholines (LysoPC) (20 : 4), Lysophosphatidylethanolamines (LysoPE) (18 : 1) and LysoPC (O-18 : 0). Our results confirmed weight-increasing effects of maternal genistein exposure, accompanied by favorable changes in metabolites in the male offspring' urine. Therefore, this research enables us to better understand obesity and predict risk of obesity-related disease by studying metabolites present in the urine.


Asunto(s)
Genisteína/efectos adversos , Lactancia , Fenómenos Fisiologicos Nutricionales Maternos , Metaboloma , Obesidad/etiología , Fitoestrógenos/efectos adversos , Efectos Tardíos de la Exposición Prenatal , Tejido Adiposo/metabolismo , Animales , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Dieta , Suplementos Dietéticos , Ingestión de Alimentos , Femenino , Masculino , Metabolómica/métodos , Obesidad/orina , Embarazo , Ratas Sprague-Dawley , Espectrometría de Masa por Ionización de Electrospray , Aumento de Peso
18.
Front Hum Neurosci ; 12: 226, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29915533

RESUMEN

Primary progressive multiple sclerosis (PPMS) shows a highly variable disease progression with poor prognosis and a characteristic accumulation of disabilities in patients. These hallmarks of PPMS make it difficult to diagnose and currently impossible to efficiently treat. This study aimed to identify plasma metabolite profiles that allow diagnosis of PPMS and its differentiation from the relapsing-remitting subtype (RRMS), primary neurodegenerative disease (Parkinson's disease, PD), and healthy controls (HCs) and that significantly change during the disease course and could serve as surrogate markers of multiple sclerosis (MS)-associated neurodegeneration over time. We applied untargeted high-resolution metabolomics to plasma samples to identify PPMS-specific signatures, validated our findings in independent sex- and age-matched PPMS and HC cohorts and built discriminatory models by partial least square discriminant analysis (PLS-DA). This signature was compared to sex- and age-matched RRMS patients, to patients with PD and HC. Finally, we investigated these metabolites in a longitudinal cohort of PPMS patients over a 24-month period. PLS-DA yielded predictive models for classification along with a set of 20 PPMS-specific informative metabolite markers. These metabolites suggest disease-specific alterations in glycerophospholipid and linoleic acid pathways. Notably, the glycerophospholipid LysoPC(20:0) significantly decreased during the observation period. These findings show potential for diagnosis and disease course monitoring, and might serve as biomarkers to assess treatment efficacy in future clinical trials for neuroprotective MS therapies.

19.
Lipids Health Dis ; 17(1): 22, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29394939

RESUMEN

BACKGROUND: Migraine is a prevalent, disabling type of primary headache disorder associated with a high socioeconomic burden. The clinical management of migraine is challenging. This study was to identify potential serum lipidomic biomarkers of migraine. METHODS: The serum lipidomic profile of migraine sufferers was compared with healthy individuals using Liquid Chromatography coupled to Mass Spectrometry (LC-MS). Volcano plot analysis by Student's t-test was performed to identify the differential metabolites. Receiver operating characteristic (ROC) curves were constructed and the area under ROC curves (AUC) was calculated to evaluate whether the metabolites could be efficiently exploited for constructing a sensitive biomarker of migraine. RESULTS: A total of 29 serum metabolites from 4 classes of lipids including acylcarnitines, non-alpha-hydroxy-sphingosine ceramides (Cer_NSs), lysophosphatidylcholines (lysoPCs) and lysophosphatidylethanolamines (lysoPEs) were significantly different in migraine patients and controls. Of note, Cer_NSs were significantly elevated and lysoPEs were significantly decreased in migraine patients. LysoPE 18:1, lysoPE 18:2 and lysoPE 22:5 were found to be decreased in both positive and negative ion mode. Moreover, except for lysoPC 20:0, other lysoPCs were decreased in migraine patients. ROC curve analysis indicated that lysoPC 16:0 and lysoPC 20:0 are potential sensitive and specific biomarkers for migraine. CONCLUSION: LysoPC 16:0 and lysoPC 20:0 may be potential biomarkers for migraine. We suggest therapeutic management of these metabolites may be helpful in the prevention and treatment of migraine.


Asunto(s)
Biomarcadores/sangre , Carnitina/análogos & derivados , Lípidos/sangre , Trastornos Migrañosos/sangre , Adulto , Carnitina/sangre , Ceramidas/sangre , Cromatografía Liquida , Femenino , Humanos , Lisofosfatidilcolinas/sangre , Lisofosfolípidos/sangre , Masculino , Espectrometría de Masas , Trastornos Migrañosos/patología
20.
Plant Divers ; 40(6): 292-298, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30740576

RESUMEN

Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. 1-Butanol, a specific inhibitor of phospholipase D (PLD)-dependent production of the signalling molecule phosphatidic acid (PA), inhibited Arabidopsis seed germination. N-Acylethanolamines (NAEs), which have been shown to inhibits PLDα1 activity, have no effect on seed germination. However, mobilization profile of triacylglycerols (TAG) that induced by each compound has not been reported. To gain deeper insights into the mode of mobilization of TAG during NAE 12:0 or 1-butanol treatment, we conducted a detailed comparative analysis of the effect of NAE 12:0, DMSO, 1-butanol and tert-butanol on Arabidopsis seed germination and fatty acid composition, tert-butanol and DMSO served as the corresponding controls treatment respectively. Our data show that 1-butanol, but not the inactive tert-butanol isomer, inhibited Arabidopsis seed germination, which is accompanied by a with retardation of the mobilization of triacylglycerols (TAG). In contrast, NAE 12:0 did not affect mobilization of TAG, nor did it significantly delay seed germination as monitored by radicle and cotyledon emergence. 1-Butanol induced RNA degradation in seeds and seedlings. We speculate that the large-scale degradation of RNA under the induction of 1-butanol may lead to abnormal gene expression in genes necessary for seed germination, including the genes needed for the mobilization of oil bodies, and thus cause a delay of seed germination. To the best of our knowledge, we report for the first time that 1-butanol delays the mobilization of TAG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA