Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Antioxidants (Basel) ; 13(8)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39199246

RESUMEN

Parkinson's disease (PD), the second most common neurodegenerative disease in the elderly, is characterized by selective loss of dopaminergic neurons and accumulation of α-synuclein (α-syn), mitochondrial dysfunction, Ca2+ dyshomeostasis, and neuroinflammation. Since current treatments for PD merely address symptoms, there is an urgent need to identify the PD pathophysiological mechanisms to develop better therapies. Increasing evidence has identified KV3.4, a ROS-sensitive KV channel carrying fast-inactivating currents, as a potential therapeutic target against neurodegeneration. In fact, it has been hypothesized that KV3.4 channels could play a role in PD etiopathogenesis, controlling astrocytic activation and detrimental pathways in A53T mice, a well-known model of familial PD. Here, we showed that the A53T midbrain, primarily involved in the initial phase of PD pathogenesis, displayed an early upregulation of the KV3.4 channel at 4 months, followed by its reduction at 12 months, compared with age-matched WT. On the other hand, in the A53T striatum, the expression of KV3.4 remained high at 12 months, decreasing thereafter, in 16-month-old mice. The proteomic profile highlighted a different detrimental phenotype in A53T brain areas. In fact, the A53T striatum and midbrain differently expressed neuroprotective/detrimental pathways, with the variation of astrocytic p27kip1, XIAP, and Smac/DIABLO expression. Of note, a switch from protective to detrimental phenotype was characterized by the upregulation of Smac/DIABLO and downregulation of p27kip1 and XIAP. This occurred earlier in the A53T midbrain, at 12 months, compared with the striatum proteomic profile. In accordance, an upregulation of Smac/DIABLO and a downregulation of p27kip1 occurred in the A53T striatum only at 16 months, showing the slowest involvement of this brain area. Of interest, HIF-1α overexpression was associated with the detrimental profile in midbrain and its major vulnerability. At the cellular level, patch-clamp recordings revealed that primary A53T striatum astrocytes showed hyperpolarized resting membrane potentials and lower firing frequency associated with KV3.4 ROS-dependent hyperactivity, whereas primary A53T midbrain astrocytes displayed a depolarized resting membrane potential accompanied by a slight increase of KV3.4 currents. Accordingly, intracellular Ca2+ homeostasis was significantly altered in A53T midbrain astrocytes, in which the ER Ca2+ level was lower than in A53T striatum astrocytes and the respective littermate controls. Collectively, these results suggest that the early KV3.4 overexpression and ROS-dependent hyperactivation in astrocytes could take part in the different vulnerabilities of midbrain and striatum, highlighting astrocytic KV3.4 as a possible new therapeutic target in PD.

2.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201380

RESUMEN

Based on the pathophysiological changes observed in schizophrenia, the gamma-aminobutyric acid (GABA) hypothesis may facilitate the development of targeted treatments for this disease. This hypothesis, mainly derived from postmortem brain results, postulates dysfunctions in a subset of GABAergic neurons, particularly parvalbumin-containing interneurons. In the cerebral cortex, the fast spike firing of parvalbumin-positive GABAergic interneurons is regulated by the Kv3.1 and Kv3.2 channels, which belong to a potassium channel subfamily. Decreased Kv3.1 levels have been observed in the prefrontal cortex of patients with schizophrenia, prompting the investigation of Kv3 channel modulators for the treatment of schizophrenia. However, biomarkers that capture the dysfunction of parvalbumin neurons are required for these modulators to be effective in the pharmacotherapy of schizophrenia. Electroencephalography and magnetoencephalography studies have demonstrated impairments in evoked gamma oscillations in patients with schizophrenia, which may reflect the dysfunction of cortical parvalbumin neurons. This review summarizes these topics and provides an overview of how the development of therapeutics that incorporate biomarkers could innovate the treatment of schizophrenia and potentially change the targets of pharmacotherapy.


Asunto(s)
Parvalbúminas , Esquizofrenia , Canales de Potasio Shaw , Esquizofrenia/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/fisiopatología , Humanos , Parvalbúminas/metabolismo , Canales de Potasio Shaw/metabolismo , Animales , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Interneuronas/metabolismo
3.
Mol Neurobiol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865078

RESUMEN

Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.

4.
Aging Cell ; 23(8): e14185, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38725150

RESUMEN

The voltage-gated Kv3.1/KCNC1 channel is abundantly expressed in fast-spiking principal neurons and GABAergic inhibitory interneurons throughout the ascending auditory pathway and in various brain regions. Inactivating mutations in the KCNC1 gene lead to forms of epilepsy and a decline in the expression of the Kv3.1 channel is involved in age-related hearing loss. As oxidative stress plays a fundamental role in the pathogenesis of epilepsy and age-related hearing loss, we hypothesized that an oxidative insult might affect the function of this channel. To verify this hypothesis, the activity and expression of endogenous and ectopic Kv3.1 were measured in models of oxidative stress-related aging represented by cell lines exposed to 100 mM d-galactose. In these models, intracellular reactive oxygen species, thiobarbituric acid reactive substances, sulfhydryl groups of cellular proteins, and the activity of catalase and superoxide dismutase were dysregulated, while the current density of Kv3.1 was significantly reduced. Importantly, the antioxidant melatonin reverted all these effects. The reduction of function of Kv3.1 was not determined by direct oxidation of amino acid side chains of the protein channel or reduction of transcript or total protein levels but was linked to reduced trafficking to the cell surface associated with Src phosphorylation as well as metabolic and endoplasmic reticulum stress. The data presented here specify Kv3.1 as a novel target of oxidative stress and suggest that Kv3.1 dysfunction might contribute to age-related hearing loss and increased prevalence of epilepsy during aging. The pharmacological use of the antioxidant melatonin can be protective in this setting.


Asunto(s)
Senescencia Celular , Melatonina , Estrés Oxidativo , Estrés Oxidativo/efectos de los fármacos , Humanos , Melatonina/farmacología , Melatonina/metabolismo , Senescencia Celular/efectos de los fármacos , Canales de Potasio Shaw/metabolismo , Canales de Potasio Shaw/genética , Animales , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratones
5.
Cell Rep Med ; 5(2): 101389, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38266642

RESUMEN

The recurrent variant KCNC1-p.Arg320His causes progressive myoclonus epilepsy (EPM) type 7, defined by progressive myoclonus, epilepsy, and ataxia, and is without effective treatment. KCNC1 encodes the voltage-gated potassium channel subunit Kv3.1, specifically expressed in high-frequency-firing neurons. Variant subunits act via loss of function; hence, EPM7 pathogenesis may involve impaired excitability of Kv3.1-expressing neurons, while enhancing Kv3 activity could represent a viable therapeutic strategy. We generate a mouse model, Kcnc1-p.Arg320His/+, which recapitulates the core features of EPM7, including progressive ataxia and seizure susceptibility. Kv3.1-expressing cerebellar granule cells and neocortical parvalbumin-positive GABAergic interneurons exhibit abnormalities consistent with Kv3 channel dysfunction. A Kv3-specific positive modulator (AUT00206) selectively enhances the firing frequency of Kv3.1-expressing neurons and improves motor function and seizure susceptibility in Kcnc1-Arg320His/+ mice. This work identifies a cellular and circuit basis of dysfunction in EPM7 and demonstrates that Kv3 positive modulators such as AUT00206 have therapeutic potential for the treatment of EPM7.


Asunto(s)
Epilepsias Mioclónicas Progresivas , Ratones , Animales , Epilepsias Mioclónicas Progresivas/genética , Ataxia/genética , Convulsiones/genética , Neuronas , Encéfalo
6.
Proc Natl Acad Sci U S A ; 121(3): e2307776121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194456

RESUMEN

De novo heterozygous variants in KCNC2 encoding the voltage-gated potassium (K+) channel subunit Kv3.2 are a recently described cause of developmental and epileptic encephalopathy (DEE). A de novo variant in KCNC2 c.374G > A (p.Cys125Tyr) was identified via exome sequencing in a patient with DEE. Relative to wild-type Kv3.2, Kv3.2-p.Cys125Tyr induces K+ currents exhibiting a large hyperpolarizing shift in the voltage dependence of activation, accelerated activation, and delayed deactivation consistent with a relative stabilization of the open conformation, along with increased current density. Leveraging the cryogenic electron microscopy (cryo-EM) structure of Kv3.1, molecular dynamic simulations suggest that a strong π-π stacking interaction between the variant Tyr125 and Tyr156 in the α-6 helix of the T1 domain promotes a relative stabilization of the open conformation of the channel, which underlies the observed gain of function. A multicompartment computational model of a Kv3-expressing parvalbumin-positive cerebral cortex fast-spiking γ-aminobutyric acidergic (GABAergic) interneuron (PV-IN) demonstrates how the Kv3.2-Cys125Tyr variant impairs neuronal excitability and dysregulates inhibition in cerebral cortex circuits to explain the resulting epilepsy.


Asunto(s)
Epilepsia , Canales de Potasio Shaw , Humanos , Canales de Potasio Shaw/genética , Interneuronas , Corteza Cerebral , Epilepsia/genética , Mutación
7.
Adv Sci (Weinh) ; 11(9): e2305939, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38102998

RESUMEN

Impaired extinction of fear memory is one of the most common symptoms in post-traumatic stress disorder (PTSD), with limited therapeutic strategies due to the poor understanding of its underlying neural substrates. In this study, functional screening is performed and identified hyperactivity in the mediodorsal thalamic nucleus (MD) during fear extinction. Furthermore, the encoding patterns of the hyperactivated MD is investigated during persistent fear responses using multiple machine learning algorithms. The anterior cingulate cortex (ACC) is also identified as a functional downstream region of the MD that mediates the extinction of fear memory. The thalamocortical circuit is comprehensively analyzed and found that the MD-ACC parvalbumin interneurons circuit is preferentially enhanced in PTSD mice, disrupting the local excitatory and inhibitory balance. It is found that decreased phosphorylation of the Kv3.2 channel contributed to the hyperactivated MD, primarily to the malfunctioning thalamocortical circuit. Using a lipid nanoparticle-based RNA therapy strategy, channelopathy is corrected via a methoxylated siRNA targeting the protein phosphatase 6 catalytic subunit and restored fear memory extinction in PTSD mice. These findings highlight the function of the thalamocortical circuit in PTSD-related impaired extinction of fear memory and provide therapeutic insights into Kv3.2-targeted RNA therapy for PTSD.


Asunto(s)
Canalopatías , Trastornos por Estrés Postraumático , Ratones , Animales , Miedo/fisiología , Extinción Psicológica/fisiología , ARN Interferente Pequeño
8.
Adv Neurobiol ; 33: 305-331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37615872

RESUMEN

K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl-, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.


Asunto(s)
Caenorhabditis elegans , Transmisión Sináptica , Humanos , Animales , Transporte Biológico , Sinapsis , Neurotransmisores
9.
Neuron ; 111(18): 2863-2880.e6, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37451263

RESUMEN

Changes in the function of inhibitory interneurons (INs) during cortical development could contribute to the pathophysiology of neurodevelopmental disorders. Using all-optical in vivo approaches, we find that parvalbumin (PV) INs and their immature precursors are hypoactive and transiently decoupled from excitatory neurons in postnatal mouse somatosensory cortex (S1) of Fmr1 KO mice, a model of fragile X syndrome (FXS). This leads to a loss of parvalbumin INs (PV-INs) in both mice and humans with FXS. Increasing the activity of future PV-INs in neonatal Fmr1 KO mice restores PV-IN density and ameliorates transcriptional dysregulation in S1, but not circuit dysfunction. Critically, administering an allosteric modulator of Kv3.1 channels after the S1 critical period does rescue circuit dynamics and tactile defensiveness. Symptoms in FXS and related disorders could be mitigated by targeting PV-INs.


Asunto(s)
Síndrome del Cromosoma X Frágil , Parvalbúminas , Humanos , Ratones , Animales , Parvalbúminas/genética , Parvalbúminas/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Interneuronas/fisiología , Neuronas/metabolismo , Tacto , Síndrome del Cromosoma X Frágil/genética , Ratones Noqueados , Modelos Animales de Enfermedad
10.
Front Mol Neurosci ; 15: 950255, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090251

RESUMEN

Developmental and epileptic encephalopathies (DEEs) have high genetic heterogeneity, and DEE due to the potassium voltage-gated channel subfamily C member 2 (KCNC2) variant remains poorly understood, given the scarcity of related case studies. We report on two unrelated Chinese patients, an 11-year-old boy and a 5-year-old girl, diagnosed with global developmental delay (GDD), intellectual disability (ID), and focal impaired awareness seizure characterized by generalized spike and wave complexes on electroencephalogram (EEG) in the absence of significant brain lesions. Whole-exome sequencing (WES) and electrophysiological analysis were performed to detect genetic variants and evaluate functional changes of the mutant KCNC2, respectively. Importantly, we identified a novel gain-of-function KCNC2 variant, R405G, in both patients. Previously reported variants, V471L, R351K, T437A, and T437N, and novel R405G were found in multiple unrelated patients with DEE, showing consistent genotype-phenotype associations. These findings emphasize that the KCNC2 gene is causative for DEE and facilitates treatment and prognosis in patients with DEE due to KCNC2 mutations.

11.
J Psychopharmacol ; 36(9): 1061-1069, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36164687

RESUMEN

BACKGROUND: Current treatments for schizophrenia act directly on dopamine (DA) receptors but are ineffective for many patients, highlighting the need to develop new treatment approaches. Striatal DA dysfunction, indexed using [18F]-FDOPA imaging, is linked to the pathoetiology of schizophrenia. We evaluated the effect of a novel drug, AUT00206, a Kv3.1/3.2 potassium channel modulator, on dopaminergic function in schizophrenia and its relationship with symptom change. Additionally, we investigated the test-retest reliability of [18F]-FDOPA PET in schizophrenia to determine its potential as a biomarker for drug discovery. METHODS: Twenty patients with schizophrenia received symptom measures and [18F]-FDOPA PET scans, before and after being randomised to AUT00206 or placebo groups for up to 28 days treatment. RESULTS: AUT00206 had no significant effect on DA synthesis capacity. However, there was a correlation between reduction in striatal dopamine synthesis capacity (indexed as Kicer) and reduction in symptoms, in the AUT00206 group (r = 0.58, p = 0.03). This was not observed in the placebo group (r = -0.15, p = 0.75), although the placebo group may have been underpowered to detect an effect. The intraclass correlation coefficients of [18F]-FDOPA indices in the placebo group ranged from 0.83 to 0.93 across striatal regions. CONCLUSIONS: The relationship between reduction in DA synthesis capacity and improvement in symptoms in the AUT00206 group provides evidence for a pharmacodynamic effect of the Kv3 channel modulator. The lack of a significant overall reduction in DA synthesis capacity in the AUT00206 group could be due to variability and the low number of subjects in this study. These findings support further investigation of Kv3 channel modulators for schizophrenia treatment. [18F]-FDOPA PET imaging showed very good test-retest reliability in patients with schizophrenia.


Asunto(s)
Dopamina , Esquizofrenia , Biomarcadores , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina/farmacología , Dihidroxifenilalanina/uso terapéutico , Dopamina/farmacología , Humanos , Tomografía de Emisión de Positrones/métodos , Canales de Potasio/farmacología , Canales de Potasio/uso terapéutico , Reproducibilidad de los Resultados , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico , Canales de Potasio Shaw
12.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727131

RESUMEN

In Alzheimer's disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability as they display altered action potential (AP) firing before neighboring excitatory neurons in prodromal AD. Here, we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of Kv3 channels, but not changes in their mRNA or protein expression, were responsible for dampened excitability in young 5xFAD mice. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency-specific network hyperexcitability. Thus, biophysical ion channel alterations alone may reshape cortical network activity prior to changes in their expression levels. Our findings demonstrate an opportunity to design a novel class of targeted therapies to ameliorate cortical circuit hyperexcitability in early AD.


Asunto(s)
Enfermedad de Alzheimer , Parvalbúminas , Canales de Potasio Shaw/metabolismo , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Fenómenos Biofísicos , Interneuronas/fisiología , Ratones , Neuronas/metabolismo , Parvalbúminas/metabolismo
13.
Arch Insect Biochem Physiol ; 110(2): e21884, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313039

RESUMEN

The functioning of voltage-dependent K channels (Kv) may correlate with the physiological state of brain in organisms, including the sleep in Drosophila. Apparently, all major types of K currents are expressed in CNS of this model organism. These are the Shab-Kv2, Shaker-Kv1, Shal-Kv4, and Shaw-Kv3 α subunits and can be deciphered by patch-clamp technique. Although it is plausible that some of these channels may play a prevailing role in sleep or wakefulness, several of recent data are not conclusive. It needs to be defined that indeed the frequency of action potentials in large ventral lateral pacemaker neurons is either higher or lower during the morning or night because of an increased Kv3 and Kv4 currents, respectively. The outcomes of dynamic-clamp approach in combination with electrophysiology in insects are unreliable in contrast to those in mammalian neurons. Since the addition of virtual Kv conductance during any Zeitgeber time should not significantly alter the resting membrane potential. This review explains the Drosophila sleep behavior based on neural activity with respect to K current-driven action potential rate.


Asunto(s)
Drosophila , Neuronas , Animales , Mamíferos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Sueño
14.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35058310

RESUMEN

Autonomic parasympathetic preganglionic neurons (PGNs) drive contraction of the bladder during micturition but remain quiescent during bladder filling. This quiescence is postulated to be because of recurrent inhibition of PGN by fast-firing adjoining interneurons. Here, we defined four distinct neuronal types within Lamina VII, where PGN are situated, by combining whole cell patch clamp recordings with k-means clustering of a range of electrophysiological parameters. Additional morphologic analysis separated these neuronal classes into parasympathetic preganglionic populations (PGN) and a fast-firing interneuronal population. Kv3 channels are voltage-gated potassium channels (Kv) that allow fast and precise firing of neurons. We found that blockade of Kv3 channels by tetraethylammonium (TEA) reduced neuronal firing frequency and isolated high-voltage-activated Kv currents in the fast-firing population but had no effect in PGN populations. Furthermore, Kv3 blockade potentiated the local and descending inhibitory inputs to PGN indicating that Kv3-expressing inhibitory neurons are synaptically connected to PGN. Taken together, our data reveal that Kv3 channels are crucial for fast and regulated neuronal output of a defined population that may be involved in intrinsic spinal bladder circuits that underpin recurrent inhibition of PGN.


Asunto(s)
Neuronas , Canales de Potasio Shaw , Potenciales de Acción/fisiología , Neuronas/fisiología , Técnicas de Placa-Clamp , Médula Espinal/fisiología
15.
PNAS Nexus ; 1(3): pgac083, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36741467

RESUMEN

Kv3 ion-channels constitute a class of functionally distinct voltage-gated ion channels characterized by their ability to fire at a high frequency. Several disease relevant mutants, together with biological data, suggest the importance of this class of ion channels as drug targets for CNS disorders, and several drug discovery efforts have been reported. Despite the increasing interest for this class of ion channels, no structure of a Kv3 channel has been reported yet. We have determined the cryo-EM structure of Kv3.1 at 2.6 Å resolution using full-length wild type protein. When compared to known structures for potassium channels from other classes, a novel domain organization is observed with the cytoplasmic T1 domain, containing a well-resolved Zinc site and displaying a rotation by 35°. This suggests a distinct cytoplasmic regulation mechanism for the Kv3.1 channel. A high resolution structure was obtained for Kv3.1 in complex with a novel positive modulator Lu AG00563. The structure reveals a novel ligand binding site for the Kv class of ion channels located between the voltage sensory domain and the channel pore, a region which constitutes a hotspot for disease causing mutations. The discovery of a novel binding site for a positive modulator of a voltage-gated potassium channel could shed light on the mechanism of action for these small molecule potentiators. This finding could enable structure-based drug design on these targets with high therapeutic potential for the treatment of multiple CNS disorders.

16.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830172

RESUMEN

The voltage-gated K+ channels Kv3.1 display fast activation and deactivation kinetics and are known to have a crucial contribution to the fast-spiking phenotype of certain neurons. AahG50, as a natural product extracted from Androctonus australis hector venom, inhibits selectively Kv3.1 channels. In the present study, we focused on the biochemical and pharmacological characterization of the component in AahG50 scorpion venom that potently and selectively blocks the Kv3.1 channels. We used a combined optimization through advanced biochemical purification and patch-clamp screening steps to characterize the peptide in AahG50 active on Kv3.1 channels. We described the inhibitory effect of a toxin on Kv3.1 unitary current in black lipid bilayers. In silico, docking experiments are used to study the molecular details of the binding. We identified the first scorpion venom peptide inhibiting Kv3.1 current at 170 nM. This toxin is the alpha-KTx 15.1, which occludes the Kv3.1 channel pore by means of the lysine 27 lateral chain. This study highlights, for the first time, the modulation of the Kv3.1 by alpha-KTx 15.1, which could be an interesting starting compound for developing therapeutic biomolecules against Kv3.1-associated diseases.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Canales de Potasio Shaw , Animales , Humanos , Escorpiones/química , Canales de Potasio Shaw/antagonistas & inhibidores , Canales de Potasio Shaw/química , Xenopus laevis
17.
Front Cell Neurosci ; 15: 721371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539351

RESUMEN

Spontaneous subthreshold activity in the central nervous system is fundamental to information processing and transmission, as it amplifies and optimizes sub-threshold signals, thereby improving action potential initiation and maintaining reliable firing. This form of spontaneous activity, which is frequently considered noise, is particularly important at auditory synapses where acoustic information is encoded by rapid and temporally precise firing rates. In contrast, when present in excess, this form of noise becomes detrimental to acoustic information as it contributes to the generation and maintenance of auditory disorders such as tinnitus. The most prominent contribution to subthreshold noise is spontaneous synaptic transmission (synaptic noise). Although numerous studies have examined the role of synaptic noise on single cell excitability, little is known about its pre-synaptic modulation owing in part to the difficulties of combining noise modulation with monitoring synaptic release. Here we study synaptic noise in the auditory brainstem dorsal cochlear nucleus (DCN) of mice and show that pharmacological potentiation of Kv3 K+ currents reduces the level of synaptic bombardment onto DCN principal fusiform cells. Using a transgenic mouse line (SyG37) expressing SyGCaMP2-mCherry, a calcium sensor that targets pre-synaptic terminals, we show that positive Kv3 K+ current modulation decreases calcium influx in a fifth of pre-synaptic boutons. Furthermore, while maintaining rapid and precise spike timing, positive Kv3 K+ current modulation increases the synchronization of local circuit neurons by reducing spontaneous activity. In conclusion, our study identifies a unique pre-synaptic mechanism which reduces synaptic noise at auditory synapses and contributes to the coherent activation of neurons in a local auditory brainstem circuit. This form of modulation highlights a new therapeutic target, namely the pre-synaptic bouton, for ameliorating the effects of hearing disorders which are dependent on aberrant spontaneous activity within the central auditory system.

18.
Behav Brain Res ; 413: 113468, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34274375

RESUMEN

Parvalbumin (PV)-expressing neurons have been implicated in the pathology of autism spectrum disorders (ASD). Loss of PV expression and/or reduced number of PV-expressing neurons have been reported not only in genetic and environmental rodent models of ASD, but also in post-mortem analyses of brain tissues from ASD vs. healthy control human subjects. PV-expressing neurons play a pivotal role in the maintenance of the balance between excitation and inhibition within neural circuits in part because of their fast-spiking properties. Their high firing rate is mostly regulated by the voltage-gated potassium channel Kv3.1. It is yet unknown whether disturbances in the electrophysiological properties of PV-expressing neurons per se can lead to behavioral disturbances. We assessed locomotor activity, social interaction, recognition and memory, and stereotypic behaviors in Kv3.1 wild-type (WT) and knockout (KO) mice. We then used Western Blot analyses to measure the impact of Kv3.1 deficiency on markers of GABA transmission (PV and GAD67) and neural circuit activity (Egr1). Deficiency in Kv3.1 channel is sufficient to induce social deficits, hyperactivity and stereotypic behaviors. These behavioral changes were independent of changes in GAD67 levels and associated with increased levels of PV protein in the prefrontal cortex and striatum. These findings reveal that a loss of PV expression is not a necessary factor to induce an ASD-like phenotype in mice and support the need for further investigation to fully understand the contribution of PV-expressing neurons to ASD pathology.


Asunto(s)
Trastorno del Espectro Autista , Conducta Animal/fisiología , Síntomas Conductuales , Cuerpo Estriado , Parvalbúminas/metabolismo , Corteza Prefrontal , Agitación Psicomotora , Canales de Potasio Shaw/deficiencia , Conducta Social , Conducta Estereotipada/fisiología , Animales , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Síntomas Conductuales/metabolismo , Síntomas Conductuales/fisiopatología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiopatología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Agitación Psicomotora/metabolismo , Agitación Psicomotora/fisiopatología
19.
J Neurophysiol ; 126(2): 532-539, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34232791

RESUMEN

Channelopathies caused by mutations in genes encoding ion channels generally produce a clear change in channel function. Accordingly, mutations in KCNC1, which encodes the voltage-dependent Kv3.1 potassium channel, result in progressive myoclonus epilepsy as well as other developmental and epileptic encephalopathies, and these have been shown to reduce or fully abolish current amplitude. One exception to this is the mutation A513V Kv3.1b, located in the cytoplasmic C-terminal domain of the channel protein. This de novo variant was detected in a patient with epilepsy of infancy with focal migrating seizures (EIFMS), but no difference could be detected between A513V Kv3.1 current and that of wild-type Kv3.1. Using both biochemical and electrophysiological approaches, we have now confirmed that this variant produces functional channels but find that the A513V mutation renders the channel completely insensitive to regulation by phosphorylation at S503, a nearby regulatory site in the C-terminus. In this respect, the mutation resembles those in another channel, KCNT1, which are the major cause of EIFMS. Because the amplitude of Kv3.1 current is constantly adjusted by phosphorylation in vivo, our findings suggest that loss of such regulation contributes to EIFMS phenotype and emphasize the role of channel modulation for normal neuronal function.NEW & NOTEWORTHY Ion channel mutations that cause serious human diseases generally alter the biophysical properties or expression of the channel. We describe a de novo mutation in the Kv3.1 potassium channel that causes severe intellectual disability with early-onset epilepsy. The properties of this channel appear identical to those of wild-type channels, but the mutation prevents phosphorylation of the channel by protein kinase C. Our findings emphasize the role of channel modulation in normal brain function.


Asunto(s)
Epilepsia/genética , Mutación , Canales de Potasio Shaw/metabolismo , Sialiltransferasas/deficiencia , Animales , Células CHO , Cricetinae , Cricetulus , Epilepsia/metabolismo , Fosforilación , Proteína Quinasa C/metabolismo , Canales de Potasio Shaw/química , Canales de Potasio Shaw/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
20.
Biology (Basel) ; 10(6)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070741

RESUMEN

Neurological difficulties commonly accompany individuals suffering from congenital disorders of glycosylation, resulting from defects in the N-glycosylation pathway. Vacant N-glycosylation sites (N220 and N229) of Kv3, voltage-gated K+ channels of high-firing neurons, deeply perturb channel activity in neuroblastoma (NB) cells. Here we examined neuron development, localization, and activity of Kv3 channels in wildtype AB zebrafish and CRISPR/Cas9 engineered NB cells, due to perturbations in N-glycosylation processing of Kv3.1b. We showed that caudal primary (CaP) motor neurons of zebrafish spinal cord transiently expressing fully glycosylated (WT) Kv3.1b have stereotypical morphology, while CaP neurons expressing partially glycosylated (N220Q) Kv3.1b showed severe maldevelopment with incomplete axonal branching and extension around the ventral musculature. Consequently, larvae expressing N220Q in CaP neurons had impaired swimming locomotor activity. We showed that replacement of complex N-glycans with oligomannose attached to Kv3.1b and at cell surface lessened Kv3.1b dispersal to outgrowths by altering the number, size, and density of Kv3.1b-containing particles in membranes of rat neuroblastoma cells. Opening and closing rates were slowed in Kv3 channels containing Kv3.1b with oligomannose, instead of complex N-glycans, which suggested a reduction in the intrinsic dynamics of the Kv3.1b α-subunit. Thus, N-glycosylation processing of Kv3.1b regulates neuronal development and excitability, thereby controlling motor activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA