Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37175042

RESUMEN

The segmentation of lungs from medical images is a critical step in the diagnosis and treatment of lung diseases. Deep learning techniques have shown great promise in automating this task, eliminating the need for manual annotation by radiologists. In this research, a convolution neural network architecture is proposed for lung segmentation using chest X-ray images. In the proposed model, concatenate block is embedded to learn a series of filters or features used to extract meaningful information from the image. Moreover, a transpose layer is employed in the concatenate block to improve the spatial resolution of feature maps generated by a prior convolutional layer. The proposed model is trained using k-fold validation as it is a powerful and flexible tool for evaluating the performance of deep learning models. The proposed model is evaluated on five different subsets of the data by taking the value of k as 5 to obtain the optimized model to obtain more accurate results. The performance of the proposed model is analyzed for different hyper-parameters such as the batch size as 32, optimizer as Adam and 40 epochs. The dataset used for the segmentation of disease is taken from the Kaggle repository. The various performance parameters such as accuracy, IoU, and dice coefficient are calculated, and the values obtained are 0.97, 0.93, and 0.96, respectively.

2.
World J Gastroenterol ; 28(5): 602-604, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35316961

RESUMEN

The process of selecting an artificial intelligence (AI) model to assist clinical diagnosis of a particular pathology and its validation tests is relevant since the values of accuracy, sensitivity and specificity may not reflect the behavior of the method in a real environment. Here, we provide helpful considerations to increase the success of using an AI model in clinical practice.


Asunto(s)
Inteligencia Artificial , Humanos , Sensibilidad y Especificidad
3.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803265

RESUMEN

Diverse computer-aided diagnosis systems based on convolutional neural networks were applied to automate the detection of myocardial infarction (MI) found in electrocardiogram (ECG) for early diagnosis and prevention. However, issues, particularly overfitting and underfitting, were not being taken into account. In other words, it is unclear whether the network structure is too simple or complex. Toward this end, the proposed models were developed by starting with the simplest structure: a multi-lead features-concatenate narrow network (N-Net) in which only two convolutional layers were included in each lead branch. Additionally, multi-scale features-concatenate networks (MSN-Net) were also implemented where larger features were being extracted through pooling the signals. The best structure was obtained via tuning both the number of filters in the convolutional layers and the number of inputting signal scales. As a result, the N-Net reached a 95.76% accuracy in the MI detection task, whereas the MSN-Net reached an accuracy of 61.82% in the MI locating task. Both networks give a higher average accuracy and a significant difference of p < 0.001 evaluated by the U test compared with the state-of-the-art. The models are also smaller in size thus are suitable to fit in wearable devices for offline monitoring. In conclusion, testing throughout the simple and complex network structure is indispensable. However, the way of dealing with the class imbalance problem and the quality of the extracted features are yet to be discussed.


Asunto(s)
Algoritmos , Infarto del Miocardio , Diagnóstico por Computador , Electrocardiografía , Humanos , Infarto del Miocardio/diagnóstico , Redes Neurales de la Computación
4.
Comput Methods Programs Biomed ; 200: 105941, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486340

RESUMEN

BACKGROUND AND OBJECTIVES: Attention deficit hyperactivity disorder (ADHD) is often presented with conduct disorder (CD). There is currently no objective laboratory test or diagnostic method to discern between ADHD and CD, and diagnosis is further made difficult as ADHD is a common neuro-developmental disorder often presenting with other co-morbid difficulties; and in particular with conduct disorder which has a high degree of associated behavioural challenges. A novel automated system (AS) is proposed as a convenient supplementary tool to support clinicians in their diagnostic decisions. To the best of our knowledge, we are the first group to develop an automated classification system to classify ADHD, CD and ADHD+CD classes using brain signals. METHODS: The empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods were employed to decompose the electroencephalogram (EEG) signals. Autoregressive modelling coefficients and relative wavelet energy were then computed on the signals. Various nonlinear features were extracted from the decomposed coefficients. Adaptive synthetic sampling (ADASYN) was then employed to balance the dataset. The significant features were selected using sequential forward selection method. The highly discriminatory features were subsequently fed to an array of classifiers. RESULTS: The highest accuracy of 97.88% was achieved with the K-Nearest Neighbour (KNN) classifier. The proposed system was developed using ten-fold validation strategy on EEG data from 123 children. To the best of our knowledge this is the first study to develop an AS for the classification of ADHD, CD and ADHD+CD classes using EEG signals. POTENTIAL APPLICATION: Our AS can potentially be used as a web-based application with cloud system to aid the clinical diagnosis of ADHD and/or CD, thus supporting faster and accurate treatment for the children. It is important to note that testing with larger data is required before the AS can be employed for clinical applications.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno de la Conducta , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Encéfalo , Niño , Trastorno de la Conducta/diagnóstico , Electroencefalografía , Humanos , Análisis de Ondículas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA