Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Brain Res ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292248

RESUMEN

We explored in 75 s long trials the effects of visually induced self-rotation and displacement (SR&D) on the horizontally extended right arm of standing subjects (N = 12). A "tool condition" was included in which subjects held a long rod. The extent of arm movement was contingent on whether the arm was extended out Freely or Pointing at a briefly proprioceptively specified target position. The results were nearly identical when subjects held the rod. Subjects in the Free conditions showed significant unintentional arm deviations, averaging 55° in the direction opposite the induced illusory self-motion. Deviations in the Pointing conditions were on average a fifth of those in the Free condition. Deviations of head and torso positions also occurred in all conditions. Total arm and head deviations were the sum of deviations of the arm and head with respect to the torso and deviations of the torso with respect to space. Pointing subjects were able to detect and correct for arm and head deviations with respect to the torso but not for the arm and head deviations with respect to space due to deviations of the torso. In all conditions, arm, head, and torso deviations began before subjects experienced SR&D. We relate our findings to being an extension of the manual following response (MFR) mechanism to influence passive arm control and arm target maintenance as well. Visual-vestibular convergence at vestibular nuclei cells and multiple cortical movement related areas can explain our results, MFR results, and classical Pass Pointing. We distinguish two Phases in the induction of SR&D. In Phase 1, the visual stimulation period prior to SR&D onset, the arm, head, and torso deviations are first apparent, circa < 1 s after stimulus begins. They are augmented at the onset of Phase 2 that starts when SR&D is first sensed. In Phase 2, reaching movements first show curved paths that are compensatory for the Coriolis forces that would be generated on the reaching arm were subjects actually physically rotating. These movement deviations are in the opposite direction to the MFR and the arm, head, and torso deviations reported here. Our results have implications for vehicle control in environments that can induce illusory self motion and displacement.

2.
Front Sports Act Living ; 6: 1370621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510523

RESUMEN

The acquisition of new motor skills from scratch, also known as de novo learning, is an essential aspect of motor development. In de novo learning, the ability to generalize skills acquired under one condition to others is crucial because of the inherently limited range of motor experiences available for learning. However, the presence of generalization in de novo learning and its influencing factors remain unclear. This study aimed to elucidate the generalization of de novo motor learning by examining the motor exploration process, which is the accumulation of motor experiences. To this end, we manipulated the exploration process during practice by changing the target shape using either a small circular target or a bar-shaped target. Our findings demonstrated that the amount of learning during practice was generalized across different conditions. Furthermore, the extent of generalization is influenced by movement variability in the control space, which is irrelevant to the task, rather than the target shapes themselves. These results confirmed the occurrence of generalization in de novo learning and suggest that the exploration process within the control space plays a significant role in facilitating this generalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA