Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
Int Immunopharmacol ; 140: 112894, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39126736

RESUMEN

Cardiac fibrosis is characterized by the over-proliferation, over-transdifferentiation and over-deposition of extracellular matrix (ECM) of cardiac fibroblasts (CFs). Cardiac sympathetic activation is one of the leading causes of myocardial fibrosis. Meanwhile, cardiac fibrosis is often together with cardiac inflammation, which accelerates fibrosis by mediating inflammatory cytokines secretion. Recently, the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) signaling pathway has been confirmed by its vital role during the progression of cardiac fibrosis. Thus, JAK/STAT3 signaling pathway is thought to be a potential therapeutic target for cardiac fibrosis. Baricitinib (BR), a novel JAK1/2 inhibitor, has been reported excellent effects of anti-fibrosis in multiple fibrotic diseases. However, little is known about whether and how BR ameliorates cardiac fibrosis caused by chronic sympathetic activation. Isoproterenol (ISO), a ß-Adrenergic receptor (ß-AR) nonselective agonist, was used to modulate chronic sympathetic activation in mice. As expected, our results proved that BR ameliorated ISO-induced cardiac dysfunction. Meanwhile, BR attenuated ISO-induced cardiac fibrosis and cardiac inflammation in mice. Moreover, BR also inhibited ISO-induced cardiac fibroblasts activation and macrophages pro-inflammatory secretion. As for mechanism studies, BR reduced ISO-induced cardiac fibroblasts by JAK2/STAT3 and PI3K/Akt signaling, while reduced ISO-induced macrophages pro-inflammatory secretion by JAK1/STAT3 and NF-κB signaling. In summary, BR alleviates cardiac fibrosis and inflammation caused by chronic sympathetic activation. The underlying mechanism involves BR-mediated suppression of JAK1/2/STAT3, PI3K/Akt and NF-κB signaling.


Asunto(s)
Azetidinas , Fibroblastos , Fibrosis , Ratones Endogámicos C57BL , Purinas , Pirazoles , Sulfonamidas , Animales , Fibrosis/tratamiento farmacológico , Azetidinas/farmacología , Azetidinas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Masculino , Fibroblastos/efectos de los fármacos , Purinas/farmacología , Purinas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Ratones , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Miocardio/patología , Isoproterenol , Células Cultivadas , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Humanos , Sistema Nervioso Simpático/efectos de los fármacos
2.
Int Immunopharmacol ; 140: 112904, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39116489

RESUMEN

One of the best antipsychotics for treating schizophrenia and bipolar disorders is olanzapine (OLA). However, its use is restricted owing to unfavorable adverse effects as liver damage, dyslipidemia, and weight gain. The primary objective of the present investigation was to examine the signaling mechanisms that underlie the metabolic disruption generated by OLA. Besides, the potential protective effect of sulforaphane (SFN) and ß-sitosterol (ßSS) against obesity and metabolic toxicity induced by OLA were inspected as well. A total of five groups of male Wistar rats were established, including the control, OLA, SFN+OLA, ßSS+OLA, and the combination + OLA groups. Hepatic histopathology, biochemical analyses, ultimate body weights, liver function, oxidative stress, and pro-inflammatory cytokines were evaluated. In addition to the relative expression of FOXO, the signaling pathways for PI3K/AKT, JAK/STAT3, and MAPK were assessed as well. All biochemical and hepatic histopathological abnormalities caused by OLA were alleviated by SFN and/or ßSS. A substantial decrease in systolic blood pressure (SBP), proinflammatory cytokines, serum lipid profile parameters, hepatic MDA, TBIL, AST, and ALT were reduced through SFN or/and ßSS. To sum up, the detrimental effects of OLA are mediated by alterations in the Akt/FOXO3a/ATG12, Ras/SOS2/Raf-1/MEK/ERK1/2, and Smad3,4/TGF-ß signaling pathways. The administration of SFN and/or ßSS has the potential to mitigate the metabolic deficit, biochemical imbalances, hepatic histological abnormalities, and the overall unfavorable consequences induced by OLA by modulating the abovementioned signaling pathways.


Asunto(s)
Isotiocianatos , Hígado , Olanzapina , Transducción de Señal , Sitoesteroles , Sulfóxidos , Animales , Masculino , Ratas , Antipsicóticos , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Quinasas Janus/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/inducido químicamente , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Sitoesteroles/farmacología , Sitoesteroles/uso terapéutico , Sitoesteroles/administración & dosificación , Factor de Transcripción STAT3/metabolismo
3.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065818

RESUMEN

Drug-induced liver injury (DILI) represents a significant clinical challenge characterized by hepatic dysfunction following exposure to diverse medications. Methotrexate (MTX) is a cornerstone in treating various cancers and autoimmune disorders. However, the clinical utility of MTX is overshadowed by its ability to induce hepatotoxicity. The current study aims to elucidate the hepatoprotective effect of the alcoholic extract of Egyptian Araucaria heterophylla resin (AHR) on MTX-induced liver injury in rats. AHR (100 and 200 mg/kg) significantly decreased hepatic markers (AST, ALT, and ALP), accompanied by an elevation in the antioxidant's markers (SOD, HO-1, and NQO1). AHR extract also significantly inhibited the TGF-ß/NF-κB signaling pathway as well as the downstream cascade (IL-6, JAK, STAT-3, and cyclin D). The extract significantly reduced the expression of VEGF and p38 with an elevation in the BCL2 levels, in addition to a significant decrease in the IL-1ß and TNF-α levels, with a prominent effect at a high dose (200 mg/kg). Using LC-HRMS/MS analysis, a total of 43 metabolites were tentatively identified, and diterpenes were the major class. This study presents AHR as a promising hepatoprotective agent through inhibition of the TGF-ß/NF-κB and JAK/STAT3 pathways, besides its antioxidant and anti-inflammatory effects.

4.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992688

RESUMEN

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Asunto(s)
Neoplasias Colorrectales , Células Supresoras de Origen Mieloide , ARN Interferente Pequeño , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Factor de Transcripción STAT3 , Animales , Células Supresoras de Origen Mieloide/metabolismo , Ratones , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Humanos , Transducción de Señal/efectos de los fármacos , Receptor de Muerte Celular Programada 1/metabolismo , Femenino , Ratones Endogámicos BALB C , Quinasas Janus/metabolismo , Inmunomodulación/efectos de los fármacos , Receptor de Factor Estimulante de Colonias de Macrófagos
5.
Arthritis Res Ther ; 26(1): 121, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879555

RESUMEN

BACKGROUND: Janus kinase (JAK) inhibitors, such as baricitinib, are widely used to treat rheumatoid arthritis (RA). Clinical studies show that baricitinib is more effective at reducing pain than other similar drugs. Here, we aimed to elucidate the molecular mechanisms underlying the pain relief conferred by baricitinib, using a mouse model of arthritis. METHODS: We treated collagen antibody-induced arthritis (CAIA) model mice with baricitinib, celecoxib, or vehicle, and evaluated the severity of arthritis, histological findings of the spinal cord, and pain-related behaviours. We also conducted RNA sequencing (RNA-seq) to identify alterations in gene expression in the dorsal root ganglion (DRG) following baricitinib treatment. Finally, we conducted in vitro experiments to investigate the direct effects of baricitinib on neuronal cells. RESULTS: Both baricitinib and celecoxib significantly decreased CAIA and improved arthritis-dependent grip-strength deficit, while only baricitinib notably suppressed residual tactile allodynia as determined by the von Frey test. CAIA induction of inflammatory cytokines in ankle synovium, including interleukin (IL)-1ß and IL-6, was suppressed by treatment with either baricitinib or celecoxib. In contrast, RNA-seq analysis of the DRG revealed that baricitinib, but not celecoxib, restored gene expression alterations induced by CAIA to the control condition. Among many pathways changed by CAIA and baricitinib treatment, the interferon-alpha/gamma, JAK-signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways were considerably decreased in the baricitinib group compared with the celecoxib group. Notably, only baricitinib decreased the expression of colony-stimulating factor 1 (CSF-1), a potent cytokine that causes neuropathic pain through activation of the microglia-astrocyte axis in the spinal cord. Accordingly, baricitinib prevented increases in microglia and astrocytes caused by CAIA. Baricitinib also suppressed JAK/STAT3 pathway activity and Csf1 expression in cultured neuronal cells. CONCLUSIONS: Our findings demonstrate the effects baricitinib has on the DRG in relation to ameliorating both inflammatory and neuropathic pain.


Asunto(s)
Artritis Experimental , Ganglios Espinales , Interleucina-6 , Neuralgia , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Masculino , Ratones , Artritis Experimental/metabolismo , Artritis Experimental/tratamiento farmacológico , Azetidinas/farmacología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Interleucina-6/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Ratones Endogámicos DBA , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Purinas/farmacología , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Sulfonamidas/farmacología
6.
Phytomedicine ; 132: 155832, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924928

RESUMEN

BACKGROUND: Lung cancer has been considered as a serious problem for the public health system. NSCLC is the main type of lung cancer, and finding improved treatments for NSCLC is a pressing concern. In this study, we have explored the efficacy of isotoosendanin (ITSN) for the treatment of NSCLC, and also explored the potential underlying mechanisms. METHODS: NSCLC cells were cultured, and colony formation, cell cycle as well as apoptosis assays have been conducted for investigating the biological functions of ITSN on NSCLC cells. Furthermore, target genes of ITSN have been predicted via PharmMapper and SuperPred database, subsequently validated using the drug affinity responsive target stability (DARTS) approach, a cellular thermal shift assay (CETSA) as well as surface plasmon resonance (SPR) analysis. Additionally, ubiquitination experiments have been conducted for the level of ubiquitination of the NSCLC cells. Finally, a nude mouse xenograft model has been established for evaluating the anti-tumor effects of ITSN in vivo. RESULTS: ITSN has shown anti-NSCLC activities both in vitro and in vivo. Mechanistically, ITSN interacts with SHP-2 through enhancing its stability and decreases the level of ubiquitination. Notably, ITSN may regulate the behaviors of NSCLC cells via affecting the JAK/STAT3 signaling, and finally, the anti-tumor effects of ITSN was partially reversed by the application of SHP-2 inhibitor or siRNA of SHP-2. CONCLUSIONS: ITSN may exert its anti-tumor effects by directly targeting SHP-2, increasing its stability and minimizing its ubiquitination. These results imply that ITSN could be a revolutionary component for treating NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones Desnudos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos BALB C , Quinasas Janus/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ubiquitinación/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38822868

RESUMEN

Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.

8.
Biomedicines ; 12(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927348

RESUMEN

Idiopathic multicentric Castleman disease (iMCD) and TAFRO syndrome present a variety of symptoms thought to be caused by excessive inflammatory cytokines and chemokines, but the underlying mechanisms are unknown. iMCD is broadly classified into two types: iMCD-NOS and iMCD-TAFRO, which have distinct laboratory findings, pathological features, and responses to treatments. It is thought that iMCD-NOS, particularly the IPL type, responds favorably to IL-6 inhibitors due to its IL-6-centric profile. iMCD-TAFRO frequently progresses acutely and seriously, similar to TAFRO syndrome. Elevated levels of cytokines, including IL-1ß, TNF-α, IL-10, and IL-23, as well as chemokines like CXCL13 and CXCL-10 (especially in iMCD-TAFRO), SAA, and VEGF, have been linked to the disease's pathology. Recent research has identified key signaling pathways including PI3K/Akt/mTOR and JAK-STAT3, as well as those regulated by type I IFN, as crucial in iMCD-TAFRO. These results suggest that dominant pathways may vary between subtypes. Further research into the peripheral blood and lymph nodes is required to determine the disease spectrum of iMCD-NOS/iMCD-TAFRO/TAFRO syndrome.

9.
J Bioenerg Biomembr ; 56(4): 419-431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38720136

RESUMEN

Vesicle-associated membrane protein 8 (VAMP8), a soluble n-ethylmaleimide-sensitive factor receptor protein, acts as an oncogenic gene in the progression of several malignancies. Nevertheless, the roles and mechanisms of VAMP8 in colorectal cancer (CRC) progression remain unknown. The expression and prognostic significance of VAMP8 in CRC samples were analyzed through bioinformatics analyses. Cell proliferation was detected using CCK-8 and EdU incorporation assays and apoptosis was evaluated via flow cytometry. Western blot analysis was conducted to examine the protein expression. Ferroptosis was evaluated by measurement of iron metabolism, lipid peroxidation, and glutathione (GSH) content. VAMP8 was increased in CRC samples relative to normal samples on the basis of GEPIA and HPA databases. CRC patients with high level of VAMP8 had a worse overall survival. VAMP8 depletion led to a suppression of proliferation and promotion of apoptosis in CRC cells. Additionally, VAMP8 knockdown suppressed beclin1 expression and LC3-II/LC3-I ratio, elevated p62 expression, increased Fe2+, labile iron pool, lipid reactive oxygen species, and malondialdehyde levels, and repressed GSH content and glutathione peroxidase activity. Moreover, VAMP8 knockdown inhibited the activation of janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathway in CRC cells. Mechanistically, activation of the JAK/STAT3 pathway by JAK1 or JAK2 overexpression attenuated VAMP8 silencing-mediated anti-proliferative, pro-apoptotic, anti-autophagic, and pro-ferroptotic effects on CRC cells. In conclusion, VAMP8 knockdown affects the proliferation, apoptosis, autophagy, and ferroptosis by the JAK/STAT3 pathway in CRC cells.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Neoplasias Colorrectales , Ferroptosis , Factor de Transcripción STAT3 , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Técnicas de Silenciamiento del Gen , Quinasas Janus/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas R-SNARE/genética , Transducción de Señal , Factor de Transcripción STAT3/metabolismo
10.
Arthritis Res Ther ; 26(1): 111, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812033

RESUMEN

BACKGROUND: Due to the unclear pathogenesis of osteoarthritis (OA), effective treatment for this ailment is presently unavailable. Accumulating evidence points to chondrocyte senescence as a key driver in OA development. This study aims to identify OA-specific microRNAs (miRNAs) targeting chondrocyte senescence to alleviate OA progression. METHODS: We screened and identified miRNAs differentially expressed in OA and normal cartilage, then confirmed the impact of miR-653-5p on chondrocyte functions and senescence phenotypes through in vitro experiments with overexpression/silencing. We identified interleukin 6 (IL-6) as the target gene of miR-653-5p and confirmed the regulatory influence of miR-653-5p on the IL-6/JAK/STAT3 signaling pathway through gain/loss-of-function studies. Finally, we assessed the therapeutic efficacy of miR-653-5p on OA using a mouse model with destabilization of the medial meniscus. RESULTS: MiR-653-5p was significantly downregulated in cartilage tissues and chondrocytes from OA patients. Overexpression of miR-653-5p promoted chondrocyte matrix synthesis and proliferation while inhibiting chondrocyte senescence. Furthermore, bioinformatics target prediction and the luciferase reporter assays identified IL-6 as a target of miR-653-5p. Western blot assays demonstrated that miR-653-5p overexpression inhibited the protein expression of IL-6, the phosphorylation of JAK1 and STAT3, and the expression of chondrocyte senescence phenotypes by regulating the IL-6/JAK/STAT3 signaling pathway. More importantly, the cartilage destruction was significantly alleviated and chondrocyte senescence phenotypes were remarkably decreased in the OA mouse model treated by agomiR-653-5p compared to the control mice. CONCLUSIONS: MiR-653-5p showed a significant decrease in cartilage tissues of individuals with OA, leading to an upregulation of chondrocyte senescence phenotypes in the articular cartilage. AgomiR-653-5p emerges as a potential treatment approach for OA. These findings provide further insight into the role of miR-653-5p in chondrocyte senescence and the pathogenesis of OA.


Asunto(s)
Senescencia Celular , Condrocitos , MicroARNs , Osteoartritis , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Cartílago Articular/metabolismo , Cartílago Articular/patología , Células Cultivadas , Senescencia Celular/genética , Senescencia Celular/fisiología , Condrocitos/metabolismo , Condrocitos/patología , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
11.
Int Immunopharmacol ; 136: 112335, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815349

RESUMEN

Chlorpyrifos (CPF) is a widely used organophosphate insecticide in agriculture and homes. Exposure to organophosphates is associated with neurotoxicity. Fluoxetine (FLX) is a selective serotonin reuptake inhibitor (SSRI) that is widely prescribed for depression and anxiety disorders. Studies have shown that FLX has neuroprotective, anti-inflammatory, antioxidant, and antiapoptotic effects. The molecular mechanisms underlying FLX are not fully understood. This work aimed to investigate the potential neuroprotective effect of FLX on CPF-induced neurotoxicity and the underlying molecular mechanisms involved. Thirty-two rats were randomly divided into four groups: (I) the vehicle control group; (II) the FLX-treated group (10 mg/kg/day for 28 days, p.o); (III) the CPF-treated group (10 mg/kg for 28 days); and (IV) the FLX+CPF group. FLX attenuated CPF-induced neuronal injury, as evidenced by a significant decrease in Aß and p-Tau levels and attenuation of cerebral and hippocampal histological abrasion injury induced by CPF. FLX ameliorated neuronal oxidative stress, effectively reduced MDA production, and restored SOD and GSH levels through the coactivation of the PPARγ and SIRT1 proteins. FLX counteracted the neuronal inflammation induced by CPF by decreasing MPO, NO, TNF-α, IL-1ß, and IL-6 levels by suppressing NF-κB and JAK1/STAT3 activation. The antioxidant and anti-inflammatory properties of FLX help to prevent CPF-induced neuronal intoxication.


Asunto(s)
Cloropirifos , Fluoxetina , Janus Quinasa 1 , FN-kappa B , Fármacos Neuroprotectores , PPAR gamma , Factor de Transcripción STAT3 , Transducción de Señal , Sirtuina 1 , Animales , Factor de Transcripción STAT3/metabolismo , Sirtuina 1/metabolismo , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Janus Quinasa 1/metabolismo , Masculino , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Transducción de Señal/efectos de los fármacos , Cloropirifos/toxicidad , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Insecticidas/toxicidad , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Ratas Sprague-Dawley , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología
12.
Am J Reprod Immunol ; 91(5): e13863, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796740

RESUMEN

PROBLEM: Hypertensive disorders of pregnancy (HDP) are a common pregnancy disease. NANOG and Cyclin-dependent kinase 1 (CDK1) are essential for regulating the function of cell proliferation and apoptosis. However, the mechanism of action in HDP is yet unclear. METHOD: The microarray dataset GSE6573 was downloaded from the GEO database. Emt-related gene set was downloaded from Epithelial-Mesenchymal Transition gene database 2.0 were screened differentially expressed genes by bioinformatics analysis. Pathway Commons and Scansite 4.0 databases were used to predict the interaction between proteins. Placental tissue samples were collected from HDP patients and patients with uneventful pregnancies. RT-qPCR, Western blot and immunohistochemistry were used to detect the expression of NANOG, CDK1, MMP-2, MMP-9, EMT markers and the JAK/STAT3 pathway proteins. Transfection NANOG overexpression/knockdown, and CDK1 knockdown into the human chorionic trophoblast cells (HTR-8/Svneo). CCK-8, Transwell and Wound-healing assay were used to evaluate cell proliferation, invasion and migration. CO-IP and GST pull-down assays were used to confirm the protein interaction. RESULTS: A total obtained seven EMT-related differentially expressed genes, wherein NANOG, NODAL and LIN28A had protein interaction. In the HDP patients' tissue found that NANOG and CDK1 had lower expression. NANOG overexpression promoted HTR-8/Svneo proliferation, migration and EMT, while NANOG knockdown had the opposite effect. Further a protein interaction between STAT3 and CDK1 with NANOG. NANOG overexpression downregulated the JAK/STAT3 pathway to promote HTR-8/Svneo proliferation, migration and EMT, which was reversed by CDK1 knockdown. CONCLUSIONS: NANOG downregulated the JAK/STAT3 pathway to promote trophoblast cell proliferation, migration and EMT through protein interaction with CDK1.


Asunto(s)
Proteína Quinasa CDC2 , Movimiento Celular , Transición Epitelial-Mesenquimal , Quinasas Janus , Proteína Homeótica Nanog , Factor de Transcripción STAT3 , Transducción de Señal , Trofoblastos , Humanos , Femenino , Factor de Transcripción STAT3/metabolismo , Transición Epitelial-Mesenquimal/genética , Trofoblastos/metabolismo , Embarazo , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Quinasas Janus/metabolismo , Hipertensión Inducida en el Embarazo/metabolismo , Hipertensión Inducida en el Embarazo/patología , Hipertensión Inducida en el Embarazo/genética , Adulto , Proliferación Celular , Línea Celular
13.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636689

RESUMEN

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Asunto(s)
Proliferación Celular , Glioma , Interleucina-6 , Proteínas de Transferencia de Fosfolípidos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Glioma/metabolismo , Glioma/patología , Glioma/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Línea Celular Tumoral , Animales , Interleucina-6/metabolismo , Ratones , Ratones Desnudos , Quinasas Janus/metabolismo , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Glucólisis , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Movimiento Celular
14.
Poult Sci ; 103(6): 103641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626692

RESUMEN

Bisphenol A (BPA), which is commonly found in the environment due to its release from the use of plastics and food overpacks, has become a major stressor for environmental sustainability and livestock and poultry farming health. Selenium (Se) deficiency causes structural damage and inflammatory responses to the digestive system and muscle tissue, and there is a potential for concurrent space-time exposure to nutritional deficiency diseases and environmental toxicants in livestock and poultry. The mechanisms of damage to chicken muscular stomach from BPA or/and Se deficiency treatment are still not known. Here, we established a chicken model of BPA (20 mg/kg) or/and Se deficiency (0.039 mg/kg) exposure, and detected histopathological changes in the muscular stomach tissue, the levels of iNOS/NO pathway, IL-6/JAK/STAT3 pathway, pyroptosis, and myogenic differentiation by H&E staining, immunofluorescence staining, real-time quantitative PCR, and western blot methods. The data revealed that BPA or Se deficiency exposure caused gaps between muscle fibers with inflammatory cell infiltration; up-regulation of the iNOS/NO pathway and IL-6/JAK/STAT3 pathway; up-regulation of NLRP3/Caspase-1-dependent pyroptosis related genes; down-regulation of muscle-forming differentiation (MyoD, MyoG, and MyHC) genes. The combination of BPA and Se deficiency was associated with higher toxic impairment than alone exposure. In conclusion, we discovered that BPA and Se deficiency caused myogastric pyroptosis and myogenic differentiation disorder. These findings provide a theoretical basis for the co-occurrence of animal nutritional deficiency diseases and environmental toxicant exposures in livestock and poultry farming, and may provide important insights into limiting the production of harmful substances.


Asunto(s)
Compuestos de Bencidrilo , Pollos , Fenoles , Piroptosis , Selenio , Animales , Pollos/fisiología , Selenio/deficiencia , Compuestos de Bencidrilo/toxicidad , Fenoles/toxicidad , Piroptosis/efectos de los fármacos , Enfermedades de las Aves de Corral/inducido químicamente , Estómago/efectos de los fármacos , Estómago/patología , Desarrollo de Músculos/efectos de los fármacos , Masculino , Diferenciación Celular/efectos de los fármacos
15.
Cell Rep Med ; 5(4): 101498, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569555

RESUMEN

Progressive weakness and muscle loss are associated with multiple chronic conditions, including muscular dystrophy and cancer. Cancer-associated cachexia, characterized by dramatic weight loss and fatigue, leads to reduced quality of life and poor survival. Inflammatory cytokines have been implicated in muscle atrophy; however, available anticytokine therapies failed to prevent muscle wasting in cancer patients. Here, we show that oncostatin M (OSM) is a potent inducer of muscle atrophy. OSM triggers cellular atrophy in primary myotubes using the JAK/STAT3 pathway. Identification of OSM targets by RNA sequencing reveals the induction of various muscle atrophy-related genes, including Atrogin1. OSM overexpression in mice causes muscle wasting, whereas muscle-specific deletion of the OSM receptor (OSMR) and the neutralization of circulating OSM preserves muscle mass and function in tumor-bearing mice. Our results indicate that activated OSM/OSMR signaling drives muscle atrophy, and the therapeutic targeting of this pathway may be useful in preventing muscle wasting.


Asunto(s)
Neoplasias , Oncostatina M , Calidad de Vida , Animales , Humanos , Ratones , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neoplasias/patología , Oncostatina M/genética , Oncostatina M/metabolismo , Oncostatina M/farmacología
16.
Adv Sci (Weinh) ; 11(24): e2308945, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38627980

RESUMEN

Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, has a poor prognosis and lacks effective treatment strategies. Here, the study discovered that TNBC shows a decreased expression of epithelial transcription factor ovo-like 2 (OVOL2). The loss of OVOL2 promotes fatty acid oxidation (FAO), providing additional energy and NADPH to sustain stemness characteristics, including sphere-forming capacity and tumor initiation. Mechanistically, OVOL2 not only suppressed STAT3 phosphorylation by directly inhibiting JAK transcription but also recruited histone deacetylase 1 (HDAC1) to STAT3, thereby reducing the transcriptional activation of downstream genes carnitine palmitoyltransferase1 (CPT1A and CPT1B). PyVT-Ovol2 knockout mice develop a higher number of primary breast tumors with accelerated growth and increased lung-metastases. Furthermore, treatment with FAO inhibitors effectively reduces stemness characteristics of tumor cells, breast tumor initiation, and metastasis, especially in OVOL2-deficient breast tumors. The findings suggest that targeting JAK/STAT3 pathway and FAO is a promising therapeutic strategy for OVOL2-deficient TNBC.


Asunto(s)
Ácidos Grasos , Oxidación-Reducción , Factor de Transcripción STAT3 , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Ratones , Femenino , Ácidos Grasos/metabolismo , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Ratones Noqueados , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
17.
Front Pharmacol ; 15: 1336102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495094

RESUMEN

Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.

18.
Ecotoxicol Environ Saf ; 273: 116116, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387140

RESUMEN

Enniatin B1 (ENN B1) is a mycotoxin that can be found in various foods. However, whether ENN B1 is hazardous to the reproductive system is still elusive. Leydig cells are testosterone-generating cells that reside in the interstitial compartment between seminiferous tubules. Dysfunction of Leydig cells could result in male infertility. This study aimed to examine the toxicological effects of ENN B1 against TM3 Leydig cells. ENN B1 significantly inhibited cell viability in a dose-dependent manner. ENN B1 treatment also decreased the expression of functional genes in Leydig cells. Moreover, ENN B1 induced Leydig cells apoptosis and oxidative stress. Mechanistically, ENN B1 leads to the upregulation of Bax and downregulation of Bcl-2 in Leydig cells. In addition, ENN B1 inhibited the Nrf2/HO-1 pathway, which is critical for the induction of oxidative stress. Additionally, ENN B1 treatment repressed the JAK/STAT3 signaling pathway in Leydig cells. Rescue experiments showed that activation of STAT3 resulted in alleviation of ENN B1-induced damage in Leydig cells. Collectively, our study demonstrated that ENN B1 induced Leydig cell dysfunction via multiple mechanisms.


Asunto(s)
Depsipéptidos , Células Intersticiales del Testículo , Micotoxinas , Masculino , Humanos , Factor 2 Relacionado con NF-E2/genética , Micotoxinas/farmacología , Estrés Oxidativo , Apoptosis , Transducción de Señal
19.
J Exp Clin Cancer Res ; 43(1): 64, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38424636

RESUMEN

Colorectal cancer (CRC) is a heterogenous malignancy underpinned by dysregulation of cellular signaling pathways. Previous literature has implicated aberrant JAK/STAT3 signal transduction in the development and progression of solid tumors. In this study we investigate the effectiveness of inhibiting JAK/STAT3 in diverse CRC models, establish in which contexts high pathway expression is prognostic and perform in depth analysis underlying phenotypes. In this study we investigated the use of JAK inhibitors for anti-cancer activity in CRC cell lines, mouse model organoids and patient-derived organoids. Immunohistochemical staining of the TransSCOT clinical trial cohort, and 2 independent large retrospective CRC patient cohorts was performed to assess the prognostic value of JAK/STAT3 expression. We performed mutational profiling, bulk RNASeq and NanoString GeoMx® spatial transcriptomics to unravel the underlying biology of aberrant signaling. Inhibition of signal transduction with JAK1/2 but not JAK2/3 inhibitors reduced cell viability in CRC cell lines, mouse, and patient derived organoids (PDOs). In PDOs, reduced Ki67 expression was observed post-treatment. A highly significant association between high JAK/STAT3 expression within tumor cells and reduced cancer-specific survival in patients with high stromal invasion (TSPhigh) was identified across 3 independent CRC patient cohorts, including the TrasnSCOT clinical trial cohort. Patients with high phosphorylated STAT3 (pSTAT3) within the TSPhigh group had higher influx of CD66b + cells and higher tumoral expression of PDL1. Bulk RNAseq of full section tumors showed enrichment of NFκB signaling and hypoxia in these cases. Spatial deconvolution through GeoMx® demonstrated higher expression of checkpoint and hypoxia-associated genes in the tumor (pan-cytokeratin positive) regions, and reduced lymphocyte receptor signaling in the TME (pan-cytokeratin- and αSMA-) and αSMA (pan-cytokeratin- and αSMA +) areas. Non-classical fibroblast signatures were detected across αSMA + regions in cases with high pSTAT3. Therefore, in this study we have shown that inhibition of JAK/STAT3 represents a promising therapeutic strategy for patients with stromal-rich CRC tumors. High expression of JAK/STAT3 proteins within both tumor and stromal cells predicts poor outcomes in CRC, and aberrant signaling is associated with distinct spatially-dependant differential gene expression.


Asunto(s)
Neoplasias Colorrectales , Humanos , Animales , Ratones , Estudios Retrospectivos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Transducción de Señal , Hipoxia , Queratinas/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral
20.
Int J Biol Macromol ; 263(Pt 1): 130355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395281

RESUMEN

The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.


Asunto(s)
Basidiomycota , Proteómica , Animales , Ratones , Ciclofosfamida/farmacología , Polisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA