Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Gerontol ; 196: 112574, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236870

RESUMEN

PURPOSE: Muscle quality is explained by the ratio between muscle size and strength. Conventionally, muscle size is evaluated without considering the composition of contractile and non-contractile tissues in muscle, hence the influence of non-contractile tissues on muscle quality is not fully understood, especially within aging muscle. This study investigated the differences in intramuscular non-contractile tissues between different age and sex groups, and investigated their influence on muscle quality. METHODS: Eighty-two older and 64 young females and males participated. Muscle cross-sectional area (quadriceps and hamstrings), separating contractile and non-contractile areas, was calculated from the magnetic resonance image of the right mid-thigh. Maximal voluntary isometric knee extension and flexion torque was measured. Torque/muscle area and torque/contractile area were calculated for each age and sex group. RESULTS: Non-contractile/muscle area was higher in older than in young individuals in both muscle groups (p < 0.05), and it was greater in the hamstrings than in the quadriceps. For the hamstrings, torque/muscle area was lower in older than in young individuals in both sexes (p < 0.05). However, torque/contractile area did not show the differences between age groups, only between sexes (males>females) (p < 0.05). CONCLUSIONS: The results indicate that 1) the presence of non-contractile tissues varies by age and muscle groups, 2) the extensive presence of non-contractile tissues can contribute to the underestimation of its muscle quality, and 3) the sex differences in muscle quality are influenced by factors other than muscle composition.

2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201630

RESUMEN

Peripheral nerve injury (PNI) is a complex clinical challenge resulting in functional disability. Neurological recovery does not always ensure functional recovery, as extracellular matrix (ECM) alterations affect muscle function. This study evaluates hyaluronan (HA) and collagen concentration in the gastrocnemius muscle and thoracolumbar fascia (TLF) in unilateral lower limb PNI rats to explore systemic ECM alterations following PNI and their impacts on functional recovery. Eighteen 8-week-old male Sprague-Dawley rats were divided into experimental (n = 12 left sciatic nerve injury) and control (n = 6) groups. After six weeks, motor function was evaluated. Muscle and TLF samples were analysed for HA and collagen distribution and concentrations. SFI and gait analysis confirmed a functional deficit in PNI rats 6 weeks after surgery. HA concentration in both sides of the muscles decreased by approximately one-third; both sides showed significantly higher collagen concentration than healthy rats (12.74 ± 4.83 µg/g), with the left (32.92 ± 11.34 µg/g) significantly higher than the right (20.15 ± 7.03 µg/g). PNI rats also showed significantly lower HA (left: 66.95 ± 20.08 µg/g; right: 112.66 ± 30.53 µg/g) and higher collagen (left: 115.89 ± 28.18 µg/g; right: 90.43 ± 20.83 µg/g) concentrations in both TLF samples compared to healthy rats (HA: 167.18 ± 31.13 µg/g; collagen: 47.51 ± 7.82 µg/g), with the left TLF more affected. Unilateral lower limb PNI induced HA reduction and collagen accumulation in both the lower limb muscles and the TLF, potentially exacerbating motor function impairment and increasing the risk of low back dysfunctions.


Asunto(s)
Colágeno , Matriz Extracelular , Fascia , Ácido Hialurónico , Extremidad Inferior , Músculo Esquelético , Ratas Sprague-Dawley , Nervio Ciático , Animales , Matriz Extracelular/metabolismo , Ratas , Masculino , Músculo Esquelético/metabolismo , Fascia/metabolismo , Fascia/patología , Colágeno/metabolismo , Nervio Ciático/lesiones , Nervio Ciático/metabolismo , Nervio Ciático/patología , Ácido Hialurónico/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología
3.
Sci Rep ; 14(1): 3808, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360989

RESUMEN

This study aimed to validate the concept of spatial gain sonography for quantifying texture-related echo intensity in B-mode ultrasound of skeletal muscle. Fifty-one bovine muscles were scanned postmortem using B-mode ultrasonography at varying fascicle probe angles (FPA). The relationship between mean gray values (MGV) and FPA was fitted with a sinusoidal and a linear function, the slope of which was defined as tilt echo gain (TEG). Macroscopic muscle cross sections were optically analyzed for intramuscular connective tissue (IMCT) content which was plotted against MGV at 0° FPA (MGV_00). MGV peaked at FPA 0°. Sine fits were superior to linear fits (adjusted r2-values 0.647 vs. 0.613), especially for larger FPAs. In mixed models, the pennation angle was related to TEG (P < 0.001) and MGV_00 (P = 0.035). Age was relevant for MGV_00 (P < 0.001), but not TEG (P > 0.10). The correlation between the IMCT percentage and MGV_00 was significant but weak (P = 0.026; adjusted r2 = 0.103). The relationship between fascicle probe angle and echo intensity in B-mode ultrasound can be modeled more accurately with a sinusoidal but more practically for clinical use with a linear fit. The peak mean gray value MGV_00 can be used to compare echo intensity across muscles without the bias of pennation angle.


Asunto(s)
Músculo Esquelético , Bovinos , Animales , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Ultrasonografía
4.
Foods ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38397484

RESUMEN

This study aimed to investigate the effect of wooden breast (WB) myopathy on chemical composition, meat quality attributes and physiochemical characteristics of intramuscular connective tissue (IMCT) of broiler pectoralis major (PM) muscle. Thirty-six fillets were classified into varying degrees of WB condition, including normal, moderate and severe. Results show that WB myopathy altered the collagen profile in PM muscle by increasing total collagen content and decreasing collagen solubility. The composition of macromolecules in IMCT, including hydroxylysyl pyridoxine cross-linking, decorin and glycosaminoglycans, were increased with the severity of WB myopathy. Differential scanning calorimetry analysis indicated higher denaturation temperatures and lower denaturation enthalpy of IMCT for WB. Secondary structures of α-helix and ß-sheet in the IMCT of WB were changed to ß-turn and random coil. In addition, chemical composition and meat quality attributes showed a correlation with collagen profile and IMCT characteristics. Overall, this study emphasizes the effect of WB myopathy on IMCT and their contributions to meat quality variation.

5.
Foods ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761226

RESUMEN

To investigate the possible degradation of the intramuscular connective tissue (IMCT) with cathepsin L, isolated IMCTs were incubated with purified cathepsin L in vitro. Here, we prepared purified cathepsin L from bovine pancreas by using DEAE Sephacel, Sephacryl S-100 HR, SP Sepharose FF, and con A-Sepharose affinity chromatography in sequence. An SDS-PAGE analysis of CNBr-digested peptides showed that the degradation of collagen in IMCT could take place on terminal non-helical peptides rather than the triple helix region. Decorin (DCN) was clearly degraded at a pH of 5.0. The TP and TO of intramuscular connective tissue decreased to 41.41 °C and 43.79 °C, respectively. In the cathepsin L treatment of pH 5.0, the decreases in the TP and TO of IMCT were more sensitive than they were at pH 5.5~6.5.

6.
Crit Rev Food Sci Nutr ; : 1-31, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37194652

RESUMEN

The tenderness of meat influences consumers' perceptions of its quality. Meat tenderness is a key quality characteristic that influences consumer satisfaction, repeat purchases, and willingness to pay higher prices for meat. Muscle fibers, connective tissues, and adipocytes are the main structural components of meat that contribute to its tenderness and texture. In the present review, we have focused on the role of connective tissue and its components in meat tenderness, specifically perimysial intramuscular connective tissue (IMCT) and its concept as an immutable "background toughness." The collagen contribution to cooked meat toughness can be altered by animal diet, compensatory growth, slaughter age, aging, and cooking. As well, progressive thickening of the perimysium leads to a progressive increase in shear force values in beef, pork, chicken, and this may occur prior to adipocyte formation as cattle finish in feedlots. Conversely, adipocyte accumulation in the perimysium can decrease cooked meat shear force, suggesting that the contribution of IMCT to meat toughness is complex and driven by both collagen structure and content. This review provides a theoretical foundation of information to modify IMCT components to improve meat tenderness.

7.
Food Chem ; 422: 136188, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119597

RESUMEN

The effects of vacuum cooking (VC), traditional cooking (TC), and high-pressure cooking (HPC) on the physicochemical properties and texture of yak meat and the digestibility of yak meat and intramuscular connective tissue (IMCT) were investigated. Compared with VC treatment, TC and HPC treatment significantly increased meat cooking loss and meat hardness (P < 0.05). Meanwhile, the carbonyl content of yak meat of TC and HPC was 3.73 nmol/mg protein, and the free sulfhydryl content was 7.93 nmol/mg protein, indicating that more protein was oxidized at higher temperatures. Oxidative aggregation of proteins caused by cooking reduced meat digestibility by about 25%. However, cooking reduced the undigested residue of IMCT and promoted its digestion. Principal component analysis showed that the physicochemical, texture, oxidation, and protein digestibility of TC and HPC meat were similar but significantly different from VC meat.


Asunto(s)
Culinaria , Carne , Animales , Bovinos , Carne/análisis , Culinaria/métodos , Tejido Conectivo , Calor , Digestión
8.
Foods ; 12(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37048351

RESUMEN

A recently identified broiler myopathy known as wooden breast (WB) is predominantly found in the pectoralis major muscle of fast-growing broiler hybrids and is causing significant losses to the poultry industry. The aim of this study was to investigate the effects of WB syndrome on raw meat texture, purge loss and thermal properties of intramuscular connective tissue of pectoralis major muscle in the early postmortem period (1-3 days). Results showed that the presence of the WB muscles condition at 1 day postmortem was associated with significantly increased stiffness (27.0 N vs. 23.1 N) and significantly increased purge loss (1.8% vs. 1.0%) compared to normal breast (NB). However, on 3 days postmortem, these parameters did not differ between WB and NB groups. Insoluble and total collagen content was significantly higher in WB muscles compared to NB muscles, and the extractability of intramuscular connective tissue (IMCT) of WB was also higher (0.42% vs. 0.37%) compared to NB and remained stable in the early postmortem period. There was significantly lower protein content in the sarcoplasmic protein fraction and myofibrillar protein fraction of WB muscles compared to NB muscles (p < 0.05). The IMCT of these two groups showed different thermal properties, as the enthalpy of denaturation (ΔH) was significantly lower in WB muscles compared to NB muscles. The WB syndrome had a great effect on the texture and connective tissue properties of the meat compared to normal muscle, with a tendency for having a lower purge loss and higher raw meat hardness.

9.
J Appl Physiol (1985) ; 134(5): 1278-1286, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995911

RESUMEN

Both aging and physical activity can influence the amount of intramuscular connective tissue in skeletal muscle, but the impact of these upon specific extracellular matrix (ECM) proteins in skeletal muscle is unknown. We investigated the proteome profile of intramuscular connective tissue by label-free proteomic analysis of cellular protein-depleted extracts from lateral gastrocnemius muscle of old (22-23 mo old) and middle-aged (11 mo old) male mice subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We hypothesized that aging is correlated with an increased amount of connective tissue proteins in skeletal muscle and that regular physical activity can counteract these age-related changes. We found that dominating cellular proteins were diminished in the urea/thiourea extract, which was therefore used for proteomics. Proteomic analysis identified 482 proteins and showed enrichment for ECM proteins. Statistical analysis revealed that the abundances of 86 proteins changed with age. Twenty-three of these differentially abundant proteins were identified as structural ECM proteins (e.g., collagens and laminins) and all of these were significantly more abundant with aging. No significant effect of training or interaction between training and advance in age was found for any proteins. Finally, we found a lower protein concentration in the urea/thiourea extracts from the old mice compared with the middle-aged mice. Our findings indicate that the intramuscular ECM solubility is affected by increased age but is not altered by physical training.NEW & NOTEWORTHY We investigated the impact of aging and exercise on extracellular matrix components of intramuscular connective tissue using proteomics. Middle-aged and old mice were subjected to three different levels of regular physical activity for 10 wk (high-resistance wheel running, low-resistance wheel running, or sedentary controls). We prepared extracts of extracellular matrix proteins depleted of cellular proteins. Our findings indicate that intramuscular connective tissue alters its soluble protein content with age but is unaffected by training.


Asunto(s)
Condicionamiento Físico Animal , Proteoma , Masculino , Ratones , Animales , Proteoma/metabolismo , Proteómica , Actividad Motora , Músculo Esquelético/fisiología , Envejecimiento/fisiología , Tejido Conectivo , Proteínas de la Matriz Extracelular/metabolismo
10.
Animals (Basel) ; 13(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36766284

RESUMEN

Intramuscular connective tissue (IMCT) collagen is an important factor in meat quality. This study analyzed the characteristics of type I and III collagen in the IMCT of the semitendinosus (SD) and longissimus dorsi (LD) of Wuzhumuqin sheep at different growth stages (6, 9, 12, and 18 months). Utilizing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR), collagen types I and III were successfully isolated and shown to contain an intact triple helix structure. Immunofluorescence revealed that these collagens were located in the endomysium and perimysium. Collagen-related genes were significantly expressed in sheep aged 9 and 12 months. The amino acid content increased with age in type I collagen whereas it decreased in type III collagen. Furthermore, type III collagen contained more hydroxyproline (Hyd) than type I collagen. Differential scanning calorimetry (DSC) revealed that the thermal stability of collagen increased with age, accompanied by a decrease in solubility. Semitendinosus muscle had more collagen cross-linkages than LD muscle due to the high pyridinoline (Pyr) content in the endomysium. Finally, a correlation analysis highlighted the multiple correlations between characteristics in different types of collagen during sheep growth. In summary, the collagen characteristics in the IMCT of sheep were impacted by collagen type, muscle type, and age. Furthermore, the various correlations between these characteristics may play an important role in the development of IMCT.

11.
Foods ; 11(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36496643

RESUMEN

BACKGROUND: This study evaluated the influence of intramuscular connective tissue (IMCT) on structural shrinkage and water loss during cooking. Longissimus thoracis (LT), semimembranosus (SM) and semitendinosus (ST) muscles were cut and boiled for 30 min in boiling water, followed by detection of water holding capacity (WHC), tenderness, fiber volume shrinkage and protein denaturation. RESULTS: Compared with LT and SM, ST had the best WHC and lowest WBSF and area shrinkage ratio. The mobility of immobilized water (T22) was key to holding the water of meat. ST contained the highest content of total and heat-soluble collagen. On the contrary, ST showed the lowest content of cross-links and decorin, which indicate the IMCT strength of ST is weaker than the other two. The heat-soluble collagen is positively correlated to T22. CONCLUSIONS: The shrinkage of heat-insoluble IMCT on WHC and WBSF may partly depend on the structural strength changes of IMCT components rather than solely caused by quantitative changes of IMCT.

12.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232366

RESUMEN

The intramuscular connective tissue plays a critical role in maintaining the structural integrity of the muscle and in providing mechanical support. The current study investigates age-related changes that may contribute to passive stiffness and functional impairment of skeletal muscles. Variations in the extracellular matrix in human quadriceps femoris muscles in 10 young men, 12 elderly males and 16 elderly females, and in the hindlimb muscles of 6 week old, 8 month old and 2 year old C57BL/6J male mice, were evaluated. Picrosirius red, Alcian blue and Weigert Van Gieson stainings were performed to evaluate collagen, glycosamynoglycans and elastic fibers. Immunohistochemistry analyses were carried out to assess collagen I, collagen III and hyaluronan. The percentage area of collagen was significantly higher with aging (p < 0.01 in humans, p < 0.001 in mice), mainly due to an increase in collagen I, with no differences in collagen III (p > 0.05). The percentage area of elastic fibers in the perimysium was significantly lower (p < 0.01) in elderly men, together with a significant decrease in hyaluronan content both in humans and in mice. No significant differences were detected according to gender. The accumulation of collagen I and the lower levels of hyaluronan and elastic fibers with aging could cause a stiffening of the muscles and a reduction of their adaptability.


Asunto(s)
Tejido Conectivo , Ácido Hialurónico , Anciano , Envejecimiento/fisiología , Azul Alcián , Animales , Colágeno/análisis , Colágeno Tipo I , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/química
13.
Foods ; 11(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35564011

RESUMEN

The content and solubility of collagen in the muscle tissue and cooked meat from three anatomical locations (loin, hind leg and shoulder) in carcasses of adult male European beavers and relationships of collagen fractions with proximate composition and shear force were studied. Shoulder muscle tissue contained the highest amount of intramuscular fat, collagen/protein ratio, total and insoluble collagen, and the lowest percentage of soluble collagen. The cooked meat from hind leg contained the lowest amount of total, soluble and insoluble collagen. The percentage of collagen fractions in cooked meat was comparable in all cuts (p > 0.05). The toughest meat was from the shoulder, followed by the hind leg, and the tenderest meat was from the loin (p < 0.01). Shear force of cooked meat was correlated positively with the amount of total collagen, insoluble collagen and its percentage in muscle tissue (0.597, 0.594 and 0.499, p < 0.01), as well as negatively with percentage of soluble collagen (−0.594, p < 0.001). No correlations between the shear force and the content of total collagen and its fractions in cooked meat were found. In conclusion, our results indicate that the amount of total collagen and its fractions in raw muscle tissue of beaver is a better tenderness predictor for cooked meat than their values in heat-treated meat.

14.
Animals (Basel) ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206329

RESUMEN

Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey's LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 µm2) than those of the wild turkey (4014 ± 1831 µm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 µg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 µg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey.

15.
J Clin Med ; 11(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011824

RESUMEN

BACKGROUND: Muscle spindles (MSs) play a crucial role in proprioception and locomotor coordination. Although the elasticity and viscosity of the extracellular matrix (ECM) within which MSs are embedded may play a key role in MS function, the impact of aging on ECM components is unclear. The aim of the current study was to investigate the age-related physiological changes of the ECM and to verify if these could be due to alterations of the environment directly surrounding MSs. METHODS: Hematoxylin Eosin and picrosirius-red staining was carried out; collagen types I (COLI) and III (COLIII) were assessed, and biotinylated hyaluronan binding protein (HABP) immunohistochemical analysis was undertaken to evaluate alterations of the ECM in the intramuscular connective tissue (IMCT) of the hindlimbs of C57BL/6J male mice. Assessments were carried out on 6-week-old (Group A), 8-month-old (Group B), and 2-year-old (Group C) laboratory mice. RESULTS: The capsule's outer layer became progressively thicker with aging (it was 3.02 ± 0.26 µm in Group A, 3.64 ± 0.31 µm in Group B, and 5.81 ± 0.85 µm in Group C). The collagen in IMCT around and within the MSs was significantly higher in Group C, but there were no significant differences between Groups A and B. The MS capsules and continuous IMCT were primarily made up of COLI and COLIII. The average optical density (AOD) values of COLI in IMCT surrounding MS were significantly higher after aging (p < 0.05), but there were no significant differences in COLIII in the three groups (p > 0.05). HA was present in IMCT and filled the MSs capsule. The AOD of HABP of MS showed that there were lower HA levels in Group C with respect to Group A (p = 0.022); no significant differences were noted neither between Groups A and B nor between Groups B and C (p > 0.05). CONCLUSION: Age-related collagen accumulation and lower HA in the ECM in which the MSs were embedded may probably cause more stiffness in the ECM in vivo, which could help to partly explain the peripheral mechanisms underlying the age-related decline in functional changes related to MSs.

16.
Foods ; 9(9)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911633

RESUMEN

The objective of this study was to determine the potential of multispectral imaging (MSI) data recorded in the visible and near infrared electromagnetic regions to predict the structural features of intramuscular connective tissue, the proportion of intramuscular fat (IMF), and some characteristic parameters of muscle fibers involved in beef sensory quality. In order to do this, samples from three muscles (Longissimus thoracis, Semimembranosus and Biceps femoris) of animals belonging to three breeds (Aberdeen Angus, Limousine, and Blonde d'Aquitaine) were used (120 samples). After the acquisition of images by MSI and segmentation of their morphological parameters, a back propagation artificial neural network (ANN) model coupled with partial least squares was applied to predict the muscular parameters cited above. The results presented a high accuracy and are promising (R2 test > 0.90) for practical applications. For example, considering the prediction of IMF, the regression model giving the best ANN model exhibited R2P = 0.99 and RMSEP = 0.103 g × 100 g-1 DM.

17.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992998

RESUMEN

With advancing age, the skeletal muscle extracellular matrix (ECM) undergoes fibrotic changes that may lead to increased muscle stiffness, injury susceptibility and strength loss. This study tested the potential of different exercises to counter these changes by stimulating the activity of genes associated with ECM remodeling. Twenty-six healthy men (66.9 ± 3.9 years) were stratified to two of four groups, performing unilateral (i) conventional resistance exercise, (ii) conventional resistance exercise followed by self-myofascial release (CEBR), (iii) eccentric-only exercise (ECC) or (iv) plyometric jumps (PLY). The non-trained leg served as control. Six hours post-exercise, vastus lateralis muscle biopsy samples were analyzed for the expression of genes associated with ECM collagen synthesis (COL1A1), matrix metallopeptidases (collagen degradation; MMPs) and peptidase inhibitors (TIMP1). Significant between-group differences were found for MMP3, MMP15 and TIMP1, with the greatest responses in MMP3 and TIMP1 seen in CEBR and in MMP15 in ECC. MMP9 (3.24-3.81-fold change) and COL1A1 (1.47-2.40-fold change) were increased in CEBR and PLY, although between-group differences were non-significant. The expression of ECM-related genes is exercise-specific, with CEBR and PLY triggering either earlier or stronger remodeling than other stimuli. Training studies will test whether execution of such exercises may help counter age-associated muscle fibrosis.


Asunto(s)
Envejecimiento/metabolismo , Terapia por Ejercicio , Matriz Extracelular/metabolismo , Fibrosis/terapia , Músculo Esquelético , Anciano , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Ejercicio Físico , Expresión Génica , Voluntarios Sanos , Humanos , Masculino , Metaloproteinasas de la Matriz/metabolismo , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
18.
Front Physiol ; 11: 495, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508678

RESUMEN

Extracellular matrix (ECM) structures within skeletal muscle play an important, but under-appreciated, role in muscle development, function and adaptation. Each individual muscle is surrounded by epimysial connective tissue and within the muscle there are two distinct extracellular matrix (ECM) structures, the perimysium and endomysium. Together, these three ECM structures make up the intramuscular connective tissue (IMCT). There are large variations in the amount and composition of IMCT between functionally different muscles. Although IMCT acts as a scaffold for muscle fiber development and growth and acts as a carrier for blood vessels and nerves to the muscle cells, the variability in IMCT between different muscles points to a role in the variations in active and passive mechanical properties of muscles. Some traditional measures of the contribution of endomysial IMCT to passive muscle elasticity relied upon tensile measurements on single fiber preparations. These types of measurements may now be thought to be missing the important point that endomysial IMCT networks within a muscle fascicle coordinate forces and displacements between adjacent muscle cells by shear and that active contractile forces can be transmitted by this route (myofascial force transmission). The amount and geometry of the perimysial ECM network separating muscle fascicles varies more between different muscle than does the amount of endomysium. While there is some evidence for myofascial force transmission between fascicles via the perimysium, the variations in this ECM network appears to be linked to the amount of shear displacements between fascicles that must necessarily occur when the whole muscle contracts and changes shape. Fast growth of muscle by fiber hypertrophy is not always associated with a high turnover of ECM components, but slower rates of growth and muscle wasting may be associated with IMCT remodeling. A hypothesis arising from this observation is that the level of cell signaling via shear between integrin and dystroglycan linkages on the surface of the muscle cells and the overlying endomysium may be the controlling factor for IMCT turnover, although this idea is yet to be tested.

19.
Int J Biol Macromol ; 136: 404-409, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31202843

RESUMEN

Chemical, thermal and mechanical collagen characteristics of intramuscular perimysial connective tissue (IMCT) from bovine Semitendinosus (ST) and Pectoralis profundus (PP) muscles were studied. Furthermore, these collagen characteristics in presence/absence of other extracellular matrix components were analyzed for both muscles. Differences between muscles were observed for collagen content; all IMCT-PP perimysial samples were higher than ST samples. In addition, for both muscles, IMCT-alkali resistant samples allowed the highest trypsin soluble collagen. The main differences between muscles were recorder for thermal and mechanical properties. The denaturation of collagen in the perimysium evidenced differences in total denaturation energy (ΔH) and peak temperatures (Tp). The ΔH resulted higher for IMCT-PP than for IMCT-ST tissues in all samples. By the tensile test it was observed that the maximum loads were constant and higher in all PP samples. In the FTIR assay, the peaks for the main amides were registered in both tissues. However, slight differences between ST and PP-IMCT were detected on hydrogen bond interactions and in secondary structure of the protein. The results reinforce the hypothesis of the presence of different IMCT-perimysial-collagen pools. In this study, chemical, thermal and mechanical characteristics were considered and quantified. However, the mechanical function and development of muscle in-vivo could be the main influence on the extracellular collagen characteristics as well as its interactions with non-collagen compounds. Its formation is essential for muscle function.


Asunto(s)
Fenómenos Químicos , Colágeno/química , Colágeno/metabolismo , Tejido Conectivo/metabolismo , Fenómenos Mecánicos , Músculos/metabolismo , Temperatura , Animales , Fenómenos Biomecánicos , Bovinos , Hidrólisis , Resistencia a la Tracción , Tripsina/metabolismo
20.
Differentiation ; 106: 35-41, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30852471

RESUMEN

Fish axial muscle consists of a series of W-shaped muscle blocks, called myomeres, that are composed primarily of multinucleated contractile muscle cells (myofibres) gathered together by an intricate network of connective tissue that transmits forces generated by myofibre contraction to the axial skeleton. This review summarises current knowledge on the successive and overlapping myogenic waves contributing to axial musculature formation and growth in fish. Additionally, this review presents recent insights into muscle connective tissue development in fish, focusing on the early formation of collagenous myosepta separating adjacent myomeres and the late formation of intramuscular connective sheaths (i.e. endomysium and perimysium) that is completed only at the fry stage when connective fibroblasts expressing collagens arise inside myomeres. Finally, this review considers the possibility that somites produce not only myogenic, chondrogenic and myoseptal progenitor cells as previously reported, but also mesenchymal cells giving rise to muscle resident fibroblasts.


Asunto(s)
Tejido Conectivo/fisiología , Fibroblastos/citología , Células Madre Mesenquimatosas/citología , Fibras Musculares Esqueléticas/citología , Somitos/citología , Animales , Fibroblastos/fisiología , Peces , Células Madre Mesenquimatosas/fisiología , Fibras Musculares Esqueléticas/fisiología , Somitos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA