Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Synaptic Neurosci ; 16: 1433977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267890

RESUMEN

Short-term plasticity is an important feature in the brain for shaping neural dynamics and for information processing. Short-term plasticity is known to depend on many factors including brain region, cortical layer, and cell type. Here we focus on vasoactive-intestinal peptide (VIP) interneurons (INs). VIP INs play a key disinhibitory role in cortical circuits by inhibiting other IN types, including Martinotti cells (MCs) and basket cells (BCs). Despite this prominent role, short-term plasticity at synapses to and from VIP INs is not well described. In this study, we therefore characterized the short-term plasticity at inputs and outputs of genetically targeted VIP INs in mouse motor cortex. To explore inhibitory to inhibitory (I → I) short-term plasticity at layer 2/3 (L2/3) VIP IN outputs onto L5 MCs and BCs, we relied on a combination of whole-cell recording, 2-photon microscopy, and optogenetics, which revealed that VIP IN→MC/BC synapses were consistently short-term depressing. To explore excitatory (E) → I short-term plasticity at inputs to VIP INs, we used extracellular stimulation. Surprisingly, unlike VIP IN outputs, E → VIP IN synapses exhibited heterogeneous short-term dynamics, which we attributed to the target VIP IN cell rather than the input. Computational modeling furthermore linked the diversity in short-term dynamics at VIP IN inputs to a wide variability in probability of release. Taken together, our findings highlight how short-term plasticity at VIP IN inputs and outputs is specific to synapse type. We propose that the broad diversity in short-term plasticity of VIP IN inputs forms a basis to code for a broad range of contrasting signal dynamics.

2.
bioRxiv ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39071266

RESUMEN

Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.

3.
Neuron ; 112(16): 2765-2782.e9, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38917805

RESUMEN

Inhibitory interneurons in the dorsolateral geniculate nucleus (dLGN) are situated at the first central synapse of the image-forming visual pathway, but little is known about their function. Given their anatomy, they are expected to be multiplexors, integrating many different retinal channels along their dendrites. Here, using targeted single-cell-initiated rabies tracing, we found that mouse dLGN interneurons exhibit a degree of retinal input specialization similar to thalamocortical neurons. Some are anatomically highly specialized, for example, toward motion-selective information. Two-photon calcium imaging performed in vivo revealed that interneurons are also functionally specialized. In mice lacking retinal horizontal direction selectivity, horizontal direction selectivity is reduced in interneurons, suggesting a causal link between input and functional specialization. Functional specialization is not only present at interneuron somata but also extends into their dendrites. Altogether, inhibitory interneurons globally display distinct visual features which reflect their retinal input specialization and are ideally suited to perform feature-selective inhibition.


Asunto(s)
Cuerpos Geniculados , Interneuronas , Inhibición Neural , Vías Visuales , Animales , Interneuronas/fisiología , Ratones , Cuerpos Geniculados/fisiología , Cuerpos Geniculados/citología , Vías Visuales/fisiología , Inhibición Neural/fisiología , Retina/citología , Retina/fisiología , Dendritas/fisiología , Tálamo/fisiología , Tálamo/citología , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Trends Neurosci ; 47(6): 398-399, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760193

RESUMEN

A recent study by Hadler and colleagues uncovered a novel form of plasticity of gamma oscillations in an ex vivo hippocampal slice preparation which they term 'gamma potentiation'. We discuss the potential cellular mechanisms of this form of plasticity and its functional and translational implications.


Asunto(s)
Ritmo Gamma , Hipocampo , Plasticidad Neuronal , Animales , Humanos , Ritmo Gamma/fisiología , Hipocampo/fisiología , Plasticidad Neuronal/fisiología
5.
Front Cell Neurosci ; 18: 1389094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706517

RESUMEN

The plasticity of inhibitory interneurons (INs) plays an important role in the organization and maintenance of cortical microcircuits. Given the many different IN types, there is an even greater diversity in synapse-type-specific plasticity learning rules at excitatory to excitatory (E→I), I→E, and I→I synapses. I→I synapses play a key disinhibitory role in cortical circuits. Because they typically target other INs, vasoactive intestinal peptide (VIP) INs are often featured in I→I→E disinhibition, which upregulates activity in nearby excitatory neurons. VIP IN dysregulation may thus lead to neuropathologies such as epilepsy. In spite of the important activity regulatory role of VIP INs, their long-term plasticity has not been described. Therefore, we characterized the phenomenology of spike-timing-dependent plasticity (STDP) at inputs and outputs of genetically defined VIP INs. Using a combination of whole-cell recording, 2-photon microscopy, and optogenetics, we explored I→I STDP at layer 2/3 (L2/3) VIP IN outputs onto L5 Martinotti cells (MCs) and basket cells (BCs). We found that VIP IN→MC synapses underwent causal long-term depression (LTD) that was presynaptically expressed. VIP IN→BC connections, however, did not undergo any detectable plasticity. Conversely, using extracellular stimulation, we explored E→I STDP at inputs to VIP INs which revealed long-term potentiation (LTP) for both causal and acausal timings. Taken together, our results demonstrate that VIP INs possess synapse-type-specific learning rules at their inputs and outputs. This suggests the possibility of harnessing VIP IN long-term plasticity to control activity-related neuropathologies such as epilepsy.

6.
Eur J Neurosci ; 59(12): 3236-3255, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643976

RESUMEN

GABAergic neurons represent 10-15% of the neuronal population of the cortex but exert a powerful control over information flow in cortical circuits. The largest GABAergic class in the neocortex is represented by the parvalbumin-expressing fast-spiking neurons, which provide powerful somatic inhibition to their postsynaptic targets. Recently, the density of parvalbumin interneurons has been shown to be lower in associative areas of the mouse cortex as compared with sensory and motor areas. Modelling work based on these quantifications linked the low-density of parvalbumin interneurons with specific computations of associative cortices. However, it is still unknown whether the total GABAergic population of association cortices is smaller or whether another GABAergic type can compensate for the low density of parvalbumin interneurons. In the present study, we investigated these hypotheses using a combination of neuroanatomy, mouse genetics and neurophysiology. We found that the GABAergic population of association areas is comparable with that of primary sensory areas, and it is enriched of fast-spiking neurons that do not express parvalbumin and were not accounted for by previous quantifications. We developed an intersectional viral strategy to demonstrate that the population of fast-spiking neurons is comparable across cortical regions. Our results provide quantifications of the density of fast-spiking GABAergic neurons and offers new biological constrains to refine current models of cortical computations.


Asunto(s)
Neuronas GABAérgicas , Parvalbúminas , Animales , Parvalbúminas/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Ratones , Interneuronas/metabolismo , Interneuronas/fisiología , Ratones Endogámicos C57BL , Potenciales de Acción/fisiología , Masculino , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiología , Ratones Transgénicos
7.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1022732

RESUMEN

The complex function of the brain depends on the interaction of its intrinsic neurons and neural network systems,in which glutamatergic projection neurons and GABAergic inhibitory interneurons play an important role.There is a critical period in the postnatal development of the visual system when it is susceptible to the external environment,which may affect visual plasticity.Changes in the visual environment can lead to adaptive adjustment in neural connections and synaptic structures among visual cortexes,and the perineural network in the extracellular matrix has been proven to play an essential role in this process.The parvalbumin-positive inhibitory interneurons(PV+INs)contained in the perineural net-works are also involved in regulating plasticity during the critical period of visual development.PV+INs are a kind of inter-neurons that express the parvalbumin found in various parts of the brain.Recent studies have demonstrated that specific modulation of these neurons not only reveals some potential therapeutic mechanisms for disorders such as amblyopia,de-pression and autism but also provides a more precise treatment for these diseases.In this paper,various regulatory factors of PV+INs from their origin to the end of the critical period of visual development and their involvement in visual develop-mental plasticity were reviewed,with the aim of providing some guidance for basic research on visual cortical plasticity.

8.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673072

RESUMEN

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Asunto(s)
Células Ependimogliales , Neurogénesis , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Corteza Cerebral , Interneuronas/fisiología
9.
bioRxiv ; 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37461642

RESUMEN

The functional properties of the human brain arise, in part, from the vast assortment of cell types that pattern the cortex. The cortical sheet can be broadly divided into distinct networks, which are further embedded into processing streams, or gradients, that extend from unimodal systems through higher-order association territories. Here, using transcriptional data from the Allen Human Brain Atlas, we demonstrate that imputed cell type distributions are spatially coupled to the functional organization of cortex, as estimated through fMRI. Cortical cellular profiles follow the macro-scale organization of the functional gradients as well as the associated large-scale networks. Distinct cellular fingerprints were evident across networks, and a classifier trained on post-mortem cell-type distributions was able to predict the functional network allegiance of cortical tissue samples. These data indicate that the in vivo organization of the cortical sheet is reflected in the spatial variability of its cellular composition.

10.
Cereb Cortex ; 33(17): 9917-9926, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37415260

RESUMEN

Inhibitory interneurons expressing parvalbumin (PV) play critical roles throughout the brain. Their rapid spiking enables them to control circuit dynamics on a millisecond time scale, and the timing of their activation by different excitatory pathways is critical to these functions. We used a genetically encoded hybrid voltage sensor to image PV interneuron voltage changes with sub-millisecond precision in primary somatosensory barrel cortex (BC) of adult mice. Electrical stimulation evoked depolarizations with a latency that increased with distance from the stimulating electrode, allowing us to determine conduction velocity. Spread of responses between cortical layers yielded an interlaminar conduction velocity and spread within layers yielded intralaminar conduction velocities in different layers. Velocities ranged from 74 to 473 µm/ms depending on trajectory; interlaminar conduction was 71% faster than intralaminar conduction. Thus, computations within columns are more rapid than between columns. The BC integrates thalamic and intracortical input for functions such as texture discrimination and sensory tuning. Timing differences between intra- and interlaminar PV interneuron activation could impact these functions. Imaging of voltage in PV interneurons reveals differences in signaling dynamics within cortical circuitry. This approach offers a unique opportunity to investigate conduction in populations of axons based on their targeting specificity.


Asunto(s)
Interneuronas , Parvalbúminas , Ratones , Animales , Parvalbúminas/metabolismo , Interneuronas/fisiología , Axones/fisiología , Estimulación Eléctrica , Encéfalo/metabolismo , Corteza Somatosensorial/fisiología
11.
Front Mol Neurosci ; 16: 1142072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324588

RESUMEN

Background: According to our previous study, the loss of inhibitory interneuron function contributes to central sensitization in chronic migraine (CM). Synaptic plasticity is a vital basis for the occurrence of central sensitization. However, whether the decline in interneuron-mediated inhibition promotes central sensitization by regulating synaptic plasticity in CM remains unclear. Therefore, this study aims to explore the role of interneuron-mediated inhibition in the development of synaptic plasticity in CM. Methods: A CM model was established in rats by repeated dural infusion of inflammatory soup (IS) for 7 days, and the function of inhibitory interneurons was then evaluated. After intraventricular injection of baclofen [a gamma-aminobutyric acid type B receptor (GABABR) agonist] or H89 [a protein kinase A (PKA) inhibitor), behavioral tests were performed. The changes in synaptic plasticity were investigated by determining the levels of the synapse-associated proteins postsynaptic density protein 95 (PSD95), synaptophysin (Syp) and synaptophysin-1(Syt-1)]; evaluating the synaptic ultrastructure by transmission electron microscopy (TEM); and determining the density of synaptic spines via Golgi-Cox staining. Central sensitization was evaluated by measuring calcitonin gene-related peptide (CGRP), brain-derived neurotrophic factor (BDNF), c-Fos and substance P (SP) levels. Finally, the PKA/Fyn kinase (Fyn)/tyrosine-phosphorylated NR2B (pNR2B) pathway and downstream calcium-calmodulin-dependent kinase II (CaMKII)/c-AMP-responsive element binding protein (pCREB) signaling were assessed. Results: We observed dysfunction of inhibitory interneurons, and found that activation of GABABR ameliorated CM-induced hyperalgesia, repressed the CM-evoked elevation of synapse-associated protein levels and enhancement of synaptic transmission, alleviated the CM-triggered increases in the levels of central sensitization-related proteins, and inhibited CaMKII/pCREB signaling via the PKA/Fyn/pNR2B pathway. The inhibition of PKA suppressed the CM-induced activation of Fyn/pNR2B signaling. Conclusion: These data reveal that the dysfunction of inhibitory interneurons contributes to central sensitization by regulating synaptic plasticity through the GABABR/PKA/Fyn/pNR2B pathway in the periaqueductal gray (PAG) of CM rats. Blockade of GABABR-pNR2B signaling might have a positive influence on the effects of CM therapy by modulating synaptic plasticity in central sensitization.

12.
Cell Rep ; 42(6): 112591, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37261953

RESUMEN

Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons-with implications for circuit function and animal behavior.


Asunto(s)
Sinapsis , Transmisión Sináptica , Animales , Ratones , Homólogo 4 de la Proteína Discs Large/metabolismo , Interneuronas/metabolismo , Ratones Noqueados , Células Piramidales/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Factores de Transcripción/metabolismo
13.
Glia ; 71(8): 1830-1846, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36994892

RESUMEN

Neurovascular coupling (NVC) modulates cerebral blood flow to match increased metabolic demand during neuronal excitation. Activation of inhibitory interneurons also increase blood flow, but the basis for NVC caused by interneurons is unclear. While astrocyte Ca2+ levels rise with excitatory neural transmission, much less is known with regards to astrocytic sensitivity to inhibitory neurotransmission. We performed two-photon microscopy in awake mice to examine the correlation between astrocytic Ca2+ and NVC, evoked by activation of either all (VGATIN ) or only parvalbumin-positive GABAergic interneurons (PVIN ). Optogenetic stimulation of VGATIN and PVIN in the somatosensory cortex triggered astrocytic Ca2+ increases that were abolished by anesthesia. In awake mice, PVIN evoked astrocytic Ca2+ responses with a short latency that preceded NVC, whereas VGATIN evoked Ca2+ increases that were delayed relative to the NVC response. The early onset of PVIN evoked astrocytic Ca2+ increases depended on noradrenaline release from locus coeruleus as did the subsequent NVC response. Though the relationship between interneuron activity and astrocytic Ca2+ responses is complex, we suggest that the rapid astrocyte Ca2+ responses to increased PVIN activity shaped the NVC. Our results underline that interneuron and astrocyte-dependent mechanisms should be studied in awake mice.


Asunto(s)
Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Astrocitos/metabolismo , Vigilia , Circulación Cerebrovascular/fisiología , Interneuronas
14.
Schizophr Bull ; 49(3): 569-580, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36573631

RESUMEN

BACKGROUND AND HYPOTHESIS: Converging lines of evidence suggest that dysfunction of cortical GABAergic inhibitory interneurons is a core feature of psychosis. This dysfunction is thought to underlie neuroimaging abnormalities commonly found in patients with psychosis, particularly in the hippocampus. These include increases in resting cerebral blood flow (CBF) and glutamatergic metabolite levels, and decreases in ligand binding to GABAA α5 receptors and to the synaptic density marker synaptic vesicle glycoprotein 2A (SV2A). However, direct links between inhibitory interneuron dysfunction and these neuroimaging readouts are yet to be established. Conditional deletion of a schizophrenia susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal inhibitory interneurons leads to synaptic defects, and behavioral and cognitive phenotypes relevant to psychosis in mice. STUDY DESIGN: Here, we investigated how this inhibitory interneuron disruption affects hippocampal in vivo neuroimaging readouts. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, n = 12) and their wild-type littermates (Erbb4F/F, n = 12) were scanned in a 9.4T magnetic resonance scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. RESULTS: Erbb4 mutant mice showed significantly elevated ventral hippccampus CBF and glutamine levels, and decreased SV2A density across hippocampus sub-regions compared to wild-type littermates. No significant GABAA receptor density differences were identified. CONCLUSIONS: These findings demonstrate that specific disruption of cortical inhibitory interneurons in mice recapitulate some of the key neuroimaging findings in patients with psychosis, and link inhibitory interneuron deficits to non-invasive measures of brain function and neurochemistry that can be used across species.


Asunto(s)
Glutamina , Trastornos Psicóticos , Ratones , Animales , Glutamina/metabolismo , Parvalbúminas/metabolismo , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismo , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/metabolismo , Interneuronas/metabolismo , Fenotipo , Neuroimagen , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo
15.
Neuroimage ; 264: 119735, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36347441

RESUMEN

To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.


Asunto(s)
Calcio , Vigilia , Animales , Calcio/metabolismo , Interneuronas/fisiología , Neuronas/fisiología , Parvalbúminas/metabolismo
16.
Cell ; 185(21): 3877-3895.e21, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36152627

RESUMEN

Williams-Beuren syndrome (WBS) is a rare disorder caused by hemizygous microdeletion of ∼27 contiguous genes. Despite neurodevelopmental and cognitive deficits, individuals with WBS have spared or enhanced musical and auditory abilities, potentially offering an insight into the genetic basis of auditory perception. Here, we report that the mouse models of WBS have innately enhanced frequency-discrimination acuity and improved frequency coding in the auditory cortex (ACx). Chemogenetic rescue showed frequency-discrimination hyperacuity is caused by hyperexcitable interneurons in the ACx. Haploinsufficiency of one WBS gene, Gtf2ird1, replicated WBS phenotypes by downregulating the neuropeptide receptor VIPR1. VIPR1 is reduced in the ACx of individuals with WBS and in the cerebral organoids derived from human induced pluripotent stem cells with the WBS microdeletion. Vipr1 deletion or overexpression in ACx interneurons mimicked or reversed, respectively, the cellular and behavioral phenotypes of WBS mice. Thus, the Gtf2ird1-Vipr1 mechanism in ACx interneurons may underlie the superior auditory acuity in WBS.


Asunto(s)
Corteza Auditiva/fisiología , Síndrome de Williams/fisiopatología , Animales , Corteza Auditiva/citología , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Interneuronas/citología , Interneuronas/fisiología , Ratones , Fenotipo , Transactivadores/genética , Síndrome de Williams/genética
17.
eNeuro ; 9(5)2022.
Artículo en Inglés | MEDLINE | ID: mdl-36104278

RESUMEN

The rostral nucleus of the solitary tract (rNST), the initial CNS site for processing gustatory information, is comprised of two major cell types, glutamatergic excitatory and GABAergic inhibitory neurons. Although many investigators have described taste responses of rNST neurons, the phenotypes of these cells were unknown. To directly compare the response characteristics of both inhibitory and noninhibitory neurons, we recorded from mice expressing Channelrhodopsin-2 (ChR2) under the control of GAD65, a synthetic enzyme for GABA. We observed that chemosensitive profiles of GABAergic taste neurons (G+TASTE) were similar to non-GABA taste neurons (G-TASTE) but had much lower response rates. We further observed a novel subpopulation of GABA cells located more ventrally in the nucleus that were unresponsive to taste stimulation (G+UNR), suggesting pathways for inhibition initiated by centrifugal sources. This preparation also allowed us to determine how optogenetic activation of the rNST GABA network impacted the taste responses of G-TASTE neurons. Activating rNST inhibitory circuitry suppressed gustatory responses of G-TASTE neurons across all qualities and chemosensitive types of neurons. Although the tuning curves of identified G-TASTE were modestly sharpened, the overall shape of response profiles and the ensemble pattern remained highly stable. These neurophysiological effects were consistent with the behavioral consequences of activating GAD65-expressing inhibitory neurons using DREADDs. In a brief-access licking task, concentration-response curves to both palatable (sucrose, maltrin) and unpalatable (quinine) stimuli were shifted to the right when GABA neurons were activated. Thus, the rNST GABAergic network is poised to modulate taste intensity across the qualitative and hedonic spectrum.


Asunto(s)
Núcleo Solitario , Gusto , Animales , Channelrhodopsins/genética , Neuronas GABAérgicas/fisiología , Ratones , Quinina/farmacología , Sacarosa/farmacología , Gusto/fisiología
18.
Neuropathol Appl Neurobiol ; 48(6): e12833, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35790454

RESUMEN

AIMS: Alpers' syndrome is a severe neurodegenerative disease typically caused by bi-allelic variants in the mitochondrial DNA (mtDNA) polymerase gene, POLG, leading to mtDNA depletion. Intractable epilepsy, often with an occipital focus, and extensive neurodegeneration are prominent features of Alpers' syndrome. Mitochondrial oxidative phosphorylation (OXPHOS) is severely impaired with mtDNA depletion and is likely to be a major contributor to the epilepsy and neurodegeneration in Alpers' syndrome. We hypothesised that parvalbumin-positive(+) interneurons, a neuronal class critical for inhibitory regulation of physiological cortical rhythms, would be particularly vulnerable in Alpers' syndrome due to the excessive energy demands necessary to sustain their fast-spiking activity. METHODS: We performed a quantitative neuropathological investigation of inhibitory interneuron subtypes (parvalbumin+, calretinin+, calbindin+, somatostatin interneurons+) in postmortem neocortex from 14 Alpers' syndrome patients, five sudden unexpected death in epilepsy (SUDEP) patients (to control for effects of epilepsy) and nine controls. RESULTS: We identified a severe loss of parvalbumin+ interneurons and clear evidence of OXPHOS impairment in those that remained. Comparison of regional abundance of interneuron subtypes in control tissues demonstrated enrichment of parvalbumin+ interneurons in the occipital cortex, while other subtypes did not exhibit such topographic specificity. CONCLUSIONS: These findings suggest that the vulnerability of parvalbumin+ interneurons to OXPHOS deficits coupled with the high abundance of parvalbumin+ interneurons in the occipital cortex is a key factor in the aetiology of the occipital-predominant epilepsy that characterises Alpers' syndrome. These findings provide novel insights into Alpers' syndrome neuropathology, with important implications for the development of preclinical models and disease-modifying therapeutics.


Asunto(s)
Esclerosis Cerebral Difusa de Schilder , Epilepsia , Enfermedades Neurodegenerativas , ADN Mitocondrial/genética , Esclerosis Cerebral Difusa de Schilder/complicaciones , Epilepsia/patología , Humanos , Interneuronas/patología , Enfermedades Neurodegenerativas/complicaciones , Parvalbúminas/genética
19.
Cell Rep ; 39(11): 110948, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705055

RESUMEN

Dendrites are essential determinants of the input-output relationship of single neurons, but their role in network computations is not well understood. Here, we use a combination of dendritic patch-clamp recordings and in silico modeling to determine how dendrites of parvalbumin (PV)-expressing basket cells contribute to network oscillations in the gamma frequency band. Simultaneous soma-dendrite recordings from PV basket cells in the dentate gyrus reveal that the slope, or gain, of the dendritic input-output relationship is exceptionally low, thereby reducing the cell's sensitivity to changes in its input. By simulating gamma oscillations in detailed network models, we demonstrate that the low gain is key to increase spike synchrony in PV basket cell assemblies when cells are driven by spatially and temporally heterogeneous synaptic inputs. These results highlight the role of inhibitory neuron dendrites in synchronized network oscillations.


Asunto(s)
Interneuronas , Parvalbúminas , Potenciales de Acción/fisiología , Dendritas/fisiología , Interneuronas/fisiología , Neuronas
20.
Elife ; 112022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35647816

RESUMEN

Pyramidal neurons with axons that exit from dendrites rather than the cell body itself are relatively common in non-primates, but rare in monkeys and humans.


Asunto(s)
Axones , Neuronas , Axones/fisiología , Cuerpo Celular , Neuronas/fisiología , Células Piramidales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA