Your browser doesn't support javascript.
loading
Association cortical areas in the mouse contain a large population of fast-spiking GABAergic neurons that do not express parvalbumin.
Courcelles, Erik Justin; Kjelsberg, Kasper; Convertino, Laura; Nair, Rajeevkumar Raveendran; Witter, Menno P; Nigro, Maximiliano José.
Afiliación
  • Courcelles EJ; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
  • Kjelsberg K; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
  • Convertino L; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
  • Nair RR; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
  • Witter MP; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
  • Nigro MJ; Kavli Institute for Systems Neuroscience, Center for Algorithms in the Cortex, Egil and Pauline Braathen and Fred Kavli Center for Cortical Microcircuits, Norwegian University of Science and Technology, Trondheim, Norway.
Eur J Neurosci ; 59(12): 3236-3255, 2024 Jun.
Article en En | MEDLINE | ID: mdl-38643976
ABSTRACT
GABAergic neurons represent 10-15% of the neuronal population of the cortex but exert a powerful control over information flow in cortical circuits. The largest GABAergic class in the neocortex is represented by the parvalbumin-expressing fast-spiking neurons, which provide powerful somatic inhibition to their postsynaptic targets. Recently, the density of parvalbumin interneurons has been shown to be lower in associative areas of the mouse cortex as compared with sensory and motor areas. Modelling work based on these quantifications linked the low-density of parvalbumin interneurons with specific computations of associative cortices. However, it is still unknown whether the total GABAergic population of association cortices is smaller or whether another GABAergic type can compensate for the low density of parvalbumin interneurons. In the present study, we investigated these hypotheses using a combination of neuroanatomy, mouse genetics and neurophysiology. We found that the GABAergic population of association areas is comparable with that of primary sensory areas, and it is enriched of fast-spiking neurons that do not express parvalbumin and were not accounted for by previous quantifications. We developed an intersectional viral strategy to demonstrate that the population of fast-spiking neurons is comparable across cortical regions. Our results provide quantifications of the density of fast-spiking GABAergic neurons and offers new biological constrains to refine current models of cortical computations.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parvalbúminas / Neuronas GABAérgicas Límite: Animals Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Francia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Parvalbúminas / Neuronas GABAérgicas Límite: Animals Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Noruega Pais de publicación: Francia