Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Am Nat ; 203(6): 681-694, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781530

RESUMEN

AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.


Asunto(s)
Rasgos de la Historia de Vida , Dinámica Poblacional , Animales , Modelos Biológicos , Ambiente , Simulación por Computador
2.
Mar Environ Res ; 193: 106253, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979403

RESUMEN

Knowledge about connectivity between populations is essential for the fisheries management of commercial species. The lobster Jasus frontalis inhabits two oceanic island groups, the Juan Fernández Archipelago and the Desventuradas Islands, separated by 800 km. Since this species is primarily exploited in the Juan Fernández Archipelago, knowledge of the connectivity patterns among islands is foundational for species management. Here, we used variability at single-nucleotide polymorphisms (SNPs) and individual-based modeling (IBM) to estimate the genetic structure and connectivity between J. frontalis populations in these island groups. The variability at 9090 SNPs suggests two genetic populations, one in the Juan Fernández Archipelago and one in the Desventuradas Islands. Furthermore, IBM suggests an asymmetric connectivity pattern, with particles moving from the Juan Fernández Archipelago to the Desventuradas Islands but not vice versa. Since the IBM analysis suggests asymmetric larval movement between the islands, and the genetic analysis indicates isolation between the Juan Fernández Archipelago and the Desventuradas Islands, larval retention mechanisms such as small-scale oceanographic processes or behavior could hinder larval movement between islands. This study highlights the importance of using more than one methodology to estimate population connectivity.


Asunto(s)
Palinuridae , Animales , Palinuridae/genética , Islas , Metagenómica , Genética de Población , Océanos y Mares
3.
Glob Chang Biol ; 29(23): 6693-6712, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819148

RESUMEN

Megaherbivores play "outsized" roles in ecosystem functioning but are vulnerable to human impacts such as overhunting, land-use changes, and climate extremes. However, such impacts-and combinations of these impacts-on population dynamics are rarely examined using empirical data. To guide effective conservation actions under increasing global-change pressures, we developed a socially structured individual-based model (IBM) using long-term demographic data from female giraffes (Giraffa camelopardalis) in a human-influenced landscape in northern Tanzania, the Tarangire Ecosystem. This unfenced system includes savanna habitats with a wide gradient of anthropogenic pressures, from national parks, a wildlife ranch and community conservation areas, to unprotected village lands. We then simulated and projected over 50 years how realistic environmental and land-use management changes might affect this metapopulation of female giraffes. Scenarios included: (1) anthropogenic land-use changes including roads and agricultural/urban expansion; (2) reduction or improvement in wildlife law enforcement measures; (3) changes in populations of natural predators and migratory alternative prey; and (4) increases in rainfall as predicted for East Africa. The factor causing the greatest risk of rapid declines in female giraffe abundance in our simulations was a reduction in law enforcement leading to more poaching. Other threats decreased abundances of giraffes, but improving law enforcement in both of the study area's protected areas mitigated these impacts: a 0.01 increase in giraffe survival probability from improved law enforcement mitigated a 25% rise in heavy rainfall events by increasing abundance 19%, and mitigated the expansion of towns and blockage of dispersal movements by increasing abundance 22%. Our IBM enabled us to further quantify fine-scale abundance changes among female giraffe social communities, revealing potential source-sink interactions within the metapopulation. This flexible methodology can be adapted to test additional ecological questions in this landscape, or to model populations of giraffes or other species in different ecosystems.


Asunto(s)
Jirafas , Animales , Humanos , Femenino , Ecosistema , Cambio Climático , Tanzanía
4.
Environ Sci Technol ; 57(42): 15936-15944, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37801563

RESUMEN

The impact of microplastic particles of micro- and nanometer sizes on microbial horizontal gene transfer (HGT) remains a controversial topic. Existing studies rely on traditional approaches, which analyze population behavior, leading to conflicting conclusions and a limited understanding. The present study addressed these limitations by employing a novel microfluidic chamber system for in situ visualization and precise quantification of the effects of different concentrations of polystyrene (PS) microbeads on microbial HGT at the single-cell level. The statistical analysis indicated no significant difference in the division times of both the donor and recipient bacteria across different PS microbead concentrations. However, as the concentration of PS microbeads increased from 0 to 2000 mg L-1, the average conjugation frequency of Escherichia coli decreased from 0.028 ± 0.015 to 0.004 ± 0.003. Our observations from the microfluidic experiments revealed that 500 nm PS microbeads created a barrier effect on bacterial conjugative transfer. The presence of microbeads resulted in reduced contact and interaction between the donor and recipient strains, thereby causing a decrease in the conjugation transfer frequency. These findings were validated by an individual-based modeling framework parameterized by the data from the individual-level microfluidic experiments. Overall, this study offers a fresh perspective and strategy for investigating the risks associated with the dissemination of antibiotic resistance genes related to microplastics.


Asunto(s)
Escherichia coli , Microplásticos , Escherichia coli/genética , Plásmidos , Plásticos , Poliestirenos , Antibacterianos/farmacología , Transferencia de Gen Horizontal
5.
J Mech Behav Biomed Mater ; 147: 106127, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797554

RESUMEN

Biofilm growth and transport in confined systems frequently occur in natural and engineered systems. Designing customizable engineered porous materials for controllable biofilm transportation properties could significantly improve the rapid utilization of biofilms as engineered living materials for applications in pollution alleviation, material self-healing, energy production, and many more. We combine Bayesian optimization (BO) and individual-based modeling to conduct design optimizations for maximizing different porous materials' (PM) biofilm transportation capability. We first characterize the acquisition function in BO for designing 2-dimensional porous membranes. We use the expected improvement acquisition function for designing lattice metamaterials (LM) and 3-dimensional porous media (3DPM). We find that BO is 92.89% more efficient than the uniform grid search method for LM and 223.04% more efficient for 3DPM. For all three types of structures, the selected characterization simulation tests are in good agreement with the design spaces approximated with Gaussian process regression. All the extracted optimal designs exhibit better biofilm growth and transportability than unconfined space without substrates. Our comparison study shows that PM stimulates biofilm growth by taking up volumetric space and pushing biofilms' upward growth, as evidenced by a 20% increase in bacteria cell numbers in unconfined space compared to porous materials, and 128% more bacteria cells in the target growth region for PM-induced biofilm growth compared with unconfined growth. Our work provides deeper insights into the design of substrates to tune biofilm growth, analyzing the optimization process and characterizing the design space, and understanding biophysical mechanisms governing the growth of biofilms.


Asunto(s)
Biopelículas , Porosidad , Teorema de Bayes , Simulación por Computador
6.
Am Nat ; 202(3): E65-E82, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606946

RESUMEN

AbstractCompetition typically takes place in a spatial context, but eco-evolutionary models rarely address the joint evolution of movement and competition strategies. Here we investigate a spatially explicit forager-kleptoparasite model where consumers can either forage on a heterogeneous resource landscape or steal resource items from conspecifics (kleptoparasitism). We consider three scenarios: (1) foragers without kleptoparasites, (2) consumers specializing as foragers or as kleptoparasites, and (3) consumers that can switch between foraging and kleptoparasitism depending on local conditions. We model movement strategies as individual-specific combinations of preferences for environmental cues, similar to step-selection coefficients. Using mechanistic, individual-based simulations, we study the joint evolution of movement and competition strategies, and we investigate the implications for the distribution of consumers over this landscape. Movement and competition strategies evolve rapidly and consistently across scenarios, with marked differences among scenarios, leading to differences in resource exploitation patterns. In scenario 1, foragers evolve considerable individual variation in movement strategies, while in scenario 2, movement strategies show a swift divergence between foragers and kleptoparasites. In scenario 3, where individuals' competition strategies are conditional on local cues, movement strategies facilitate kleptoparasitism, and individual consistency in competition strategy also emerges. Even in the absence of kleptoparasitism (scenario 1), the distribution of consumers deviates considerably from predictions of ideal free distribution models because of the intrinsic difficulty of moving effectively on a depleted resource landscape with few reliable cues. Our study emphasizes the advantages of a mechanistic approach when studying competition in a spatial context and suggests how evolutionary modeling can be integrated with current work in animal movement ecology.


Asunto(s)
Señales (Psicología) , Ecología , Animales , Movimiento
7.
Infect Dis Model ; 8(2): 415-426, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37082109

RESUMEN

The pandemic of novel coronavirus disease 2019 (COVID-19) has been a severe threat to public health. The policy of close contract tracing quarantine is an effective strategy in controlling the COVID-19 epidemic outbreak. In this paper, we developed a mathematical model of the COVID-19 epidemic with confirmed case-driven contact tracing quarantine, and applied the model to evaluate the effectiveness of the policy of contact tracing and quarantine. The model is established based on the combination of the compartmental model and individual-based model simulations, which results in a closed-form delay differential equation model. The proposed model includes a novel form of quarantine functions to represent the number of quarantine individuals following the confirmed cases every day and provides analytic expressions to study the effects of changing the quarantine rate. The proposed model can be applied to epidemic dynamics during the period of community spread and when the policy of confirmed cases-driven contact tracing quarantine is efficient. We applied the model to study the effectiveness of contact tracing and quarantine. The proposed delay differential equation model can describe the average epidemic dynamics of the stochastic-individual-based model, however, it is not enough to describe the diverse response due to the stochastic effect. Based on model simulations, we found that the policy of contact tracing and quarantine can obviously reduce the epidemic size, however, may not be enough to achieve zero-infectious in a short time, a combination of close contact quarantine and social contact restriction is required to achieve zero-infectious. Moreover, the effect of reducing epidemic size is insensitive to the period of quarantine, there are no significant changes in the epidemic dynamics when the quarantine days vary from 7 to 21 days.

8.
PNAS Nexus ; 2(2): pgac311, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36845354

RESUMEN

Particulate organic carbon settling through the marine water column is a key process that regulates the global climate by sequestering atmospheric carbon. The initial colonization of marine particles by heterotrophic bacteria represents the first step in recycling this carbon back to inorganic constituents-setting the magnitude of vertical carbon transport to the abyss. Here, we demonstrate experimentally using millifluidic devices that, although bacterial motility is essential for effective colonization of a particle leaking organic nutrients into the water column, chemotaxis specifically benefits at intermediate and higher settling velocities to navigate the particle boundary layer during the brief window of opportunity provided by a passing particle. We develop an individual-based model that simulates the encounter and attachment of bacterial cells with leaking marine particles to systematically evaluate the role of different parameters associated with bacterial run-and-tumble motility. We further use this model to explore the role of particle microstructure on the colonization efficiency of bacteria with different motility traits. We find that the porous microstructure facilitates additional colonization by chemotactic and motile bacteria, and fundamentally alters the way nonmotile cells interact with particles due to streamlines intersecting with the particle surface.

9.
Appl Netw Sci ; 8(1): 6, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36684825

RESUMEN

The graph-theoretic based studies employing bipartite network approach mostly focus on surveying the statistical properties of the structure and behavior of the network systems under the domain of complex network analysis. They aim to provide the big-picture-view insights of a networked system by looking into the dynamic interaction and relationship among the vertices. Nonetheless, incorporating the features of individual vertex and capturing the dynamic interaction of the heterogeneous local rules governing each of them in the studies is lacking. The methodology in achieving this could hardly be found. Consequently, this study intends to propose a methodology framework that considers the influence of heterogeneous features of each node to the overall network behavior in modeling real-world bipartite network system. The proposed framework consists of three main stages with principal processes detailed in each stage, and three libraries of techniques to guide the modeling activities. It is iterative and process-oriented in nature and allows future network expansion. Two case studies from the domain of communicable disease in epidemiology and habitat suitability in ecology employing this framework are also presented. The results obtained suggest that the methodology could serve as a generic framework in advancing the current state of the art of bipartite network approach.

10.
ACS Biomater Sci Eng ; 9(1): 269-279, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537745

RESUMEN

Biofilms pose significant problems for engineers in diverse fields, such as marine science, bioenergy, and biomedicine, where effective biofilm control is a long-term goal. The adhesion and surface mechanics of biofilms play crucial roles in generating and removing biofilm. Designing customized nanosurfaces with different surface topologies can alter the adhesive properties to remove biofilms more easily and greatly improve long-term biofilm control. To rapidly design such topologies, we employ individual-based modeling and Bayesian optimization to automate the design process and generate different active surfaces for effective biofilm removal. Our framework successfully generated optimized functional nanosurfaces for improved biofilm removal through applied shear and vibration. Densely distributed short pillar topography is the optimal geometry to prevent biofilm formation. Under fluidic shearing, the optimal topography is to sparsely distribute tall, slim, pillar-like structures. When subjected to either vertical or lateral vibrations, thick trapezoidal cones are found to be optimal. Optimizing the vibrational loading indicates a small vibration magnitude with relatively low frequencies is more efficient in removing biofilm. Our results provide insights into various engineering fields that require surface-mediated biofilm control. Our framework can also be applied to more general materials design and optimization.


Asunto(s)
Antiinfecciosos , Adhesión Bacteriana , Teorema de Bayes , Biopelículas
11.
ACS Synth Biol ; 11(11): 3564-3574, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36315012

RESUMEN

Microbial communities are complex living systems that populate the planet with diverse functions and are increasingly harnessed for practical human needs. To deepen the fundamental understanding of their organization and functioning as well as to facilitate their engineering for applications, mathematical modeling has played an increasingly important role. Agent-based models represent a class of powerful quantitative frameworks for investigating microbial communities because of their individualistic nature in describing cells, mechanistic characterization of molecular and cellular processes, and intrinsic ability to produce emergent system properties. This review presents a comprehensive overview of recent advances in agent-based modeling of microbial communities. It surveys the state-of-the-art algorithms employed to simulate intracellular biomolecular events, single-cell behaviors, intercellular interactions, and interactions between cells and their environments that collectively serve as the driving forces of community behaviors. It also highlights three lines of applications of agent-based modeling, namely, the elucidation of microbial range expansion and colony ecology, the design of synthetic gene circuits and microbial populations for desired behaviors, and the characterization of biofilm formation and dispersal. The review concludes with a discussion of existing challenges, including the computational cost of the modeling, and potential mitigation strategies.


Asunto(s)
Microbiota , Humanos , Modelos Teóricos , Análisis de Sistemas , Algoritmos , Interacciones Microbianas , Consorcios Microbianos
12.
Front Microbiol ; 13: 878223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081784

RESUMEN

Microbial conflicts have a particularly aggressive nature. In addition to other chemical, mechanical, and biological weapons in their repertoire, bacteria have evolved bacteriocins, which are narrow-spectrum toxins that kill closely related strains. Bacterial cells are known to frequently use their arsenal while competing against each other for nutrients and space. This stands in contrast with the animal world, where conflicts over resources and mating opportunities are far less lethal, and get commonly resolved via ritualized fighting or "limited war" tactics. Prevalence of aggression in microbial communities is usually explained as due to their limited ability to resolve conflicts via signaling as well as their limited ability to pull out from conflicts due to the sessile nature of their life within biofilms. We use an approach that combines Evolutionary Game Theory (EGT) and Individual-based Modeling (IbM) to investigate the origins of aggression in microbial conflicts. In order to understand how the spatial mode of growth affects the cost of a fight, we compare the growth dynamics emerging from engaging in aggression in a well-mixed system to a spatially structured system. To this end, a mathematical model is constructed for the competition between two bacterial strains where each strain produces a diffusible toxin to which the other strain is sensitive. It is observed that in the biofilm growth mode, starting from a mixed layer of two strains, mutual aggression gives rise to an exceedingly high level of spatial segregation, which in turn reduces the cost of aggression on both strains compared to when the same competition occurs in a well-mixed culture. Another observation is that the transition from a mixed layer to segregated growth is characterized by a switch in the overall growth dynamics. An increased "lag time" is observed in the overall population growth curve that is associated with the earlier stages of growth, when each strain is still experiencing the inhibiting effect of the toxin produced by its competitor. Afterwards, an exponential phase of growth kicks in once the competing strains start segregating from each other. The emerging "lag time" arises from the spiteful interactions between the two strains rather than acclimation of cells' internal physiology. Our analysis highlights the territorial nature of microbial conflicts as the key driver to their elevated levels of aggression as it increases the benefit-to-cost ratio of participating in antagonistic interactions.

13.
Math Biosci Eng ; 19(6): 6317-6330, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35603403

RESUMEN

Mathematical modeling of epidemic diseases is increasingly being used to respond to emerging diseases. Although conditions modeled by SIS dynamics will eventually reach either a disease-free steady-state or an endemic steady state without interventions, it is desirable to eradicate the disease as quickly as possible by introducing a control scheme. Here, we investigate the control methods of epidemic models on dynamic networks with temporary link deactivation. A quick link deactivation mechanism can simulate a community effort to reduce the risk of infection by temporarily avoiding infected neighbors. Once infected individuals recover, the links between the susceptible and recovered are activated. Our study suggests that a control scheme that has been shown ineffective in controlling dynamic network models may yield effective responses for networks with certain types of link dynamics, such as the temporary link deactivation mechanisms. We observe that a faster and more effective eradication could be achieved by updating control schemes frequently.


Asunto(s)
Enfermedades Transmisibles , Epidemias , Enfermedades Transmisibles/epidemiología , Susceptibilidad a Enfermedades/epidemiología , Supervivencia sin Enfermedad , Humanos , Modelos Biológicos , Modelos Teóricos
14.
Front Microbiol ; 13: 812763, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283822

RESUMEN

Quorum sensing is a cell-cell communication system that bacteria use to express social phenotypes, such as the production of extracellular enzymes or toxins, at high cell densities when these phenotypes are most beneficial. However, many bacterial strains are known to lack a sensing mechanism for quorum signals, despite having the gene responsible for releasing the signals to the environment. The aim of this article is 2-fold. First, we utilize mathematical modeling and signaling theory to elucidate the advantage that a bacterial species can gain by releasing quorum signals, while not being able to sense them, in the context of ecological competition with a focal quorum sensing species, by reducing the focal species' ability to optimize the timing of expression of the quorum sensing regulated phenotype. Additionally, the consequences of such "dishonest signaling," signaling that has evolved to harm the signal's receiver, on the focal quorum sensing species are investigated. It is found that quorum sensing bacteria would have to incur an additional, strategic, signaling cost in order to not suffer a reduction in fitness against dishonest signaling strains. Also, the concept of the Least Expensive Reliable Signal is introduced and applied to study how the properties of the regulated phenotype affect the metabolic investment in signaling needed by the quorum sensing bacteria to withstand dishonest signaling.

15.
Magn Reson Chem ; 60(7): 719-729, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35246874

RESUMEN

Numerous predictive microbiology models have been proposed to describe bacterial population behaviors in foodstuffs. These models depict the growth kinetics of particular bacterial strains based on key physico-chemical parameters of food matrices and their storage temperature. In this context, there is a prominent issue to accurately characterize these parameters, notably pH, water activity (aw ), and NaCl and organic acid concentrations. Usually, all these product features are determined using one destructive analysis per parameter at macroscale (>5 g). Such approach prevents an overall view of these characteristics on a single sample. Besides, it does not take into account the intra-product microlocal variability of these parameters within foods. Nuclear magnetic resonance (NMR) is a versatile non-invasive spectroscopic technique. Experiments can be recorded successively on a same collected sample without damaging it. In this work, we designed a dedicated NMR approach to characterize the microenvironment of foods using 10-mg samples. The multiparametric mesoscopic-scale approach was validated on four food matrices: a smear soft cheese, cooked peeled shrimps, cold-smoked salmon, and smoked ham. Its implementation in situ on salmon fillets enabled to observe the intra-product heterogeneity and to highlight the impact of process on the spatial distribution of pH, NaCl, and organic acids. This analytical development and its successful application can help address the shortcomings of monoparametric methods traditionally used for predictive microbiology purposes.


Asunto(s)
Conservación de Alimentos , Listeria monocytogenes , Recuento de Colonia Microbiana , Microbiología de Alimentos , Conservación de Alimentos/métodos , Espectroscopía de Resonancia Magnética , Cloruro de Sodio
16.
mSystems ; 7(1): e0103321, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35014875

RESUMEN

A key challenge in microbiome science is the scale mismatch problem, which arises when the scale at which microbial communities are sampled, interrogated, and averaged is different from the scale at which individual microorganisms within those communities interact with each other and with their environment. Profiling the microbial communities in a teaspoon of soil, from a scoop of fecal matter, or along a plant leaf surface represents a scale mismatch of multiple orders of magnitude, which may limit our ability to interpret or predict species interactions and community assembly within such samples. In this Perspective, we explore how economists, who are historically and topically split along the lines of micro- and macroeconomics, deal with the scale mismatch problem, and how taking clues from (micro)economists could benefit the field of microbiomics.


Asunto(s)
Microbiota , Hojas de la Planta
17.
Microorganisms ; 9(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671308

RESUMEN

The human microbiome has been a focus of intense study in recent years. Most of the living organisms comprising the microbiome exist in the form of biofilms on mucosal surfaces lining our digestive, respiratory, and genito-urinary tracts. While health-associated microbiota contribute to digestion, provide essential nutrients, and protect us from pathogens, disturbances due to illness or medical interventions contribute to infections, some that can be fatal. Myriad biological processes influence the make-up of the microbiota, for example: growth, division, death, and production of extracellular polymers (EPS), and metabolites. Inter-species interactions include competition, inhibition, and symbiosis. Computational models are becoming widely used to better understand these interactions. Agent-based modeling is a particularly useful computational approach to implement the various complex interactions in microbial communities when appropriately combined with an experimental approach. In these models, each cell is represented as an autonomous agent with its own set of rules, with different rules for each species. In this review, we will discuss innovations in agent-based modeling of biofilms and the microbiota in the past five years from the biological and mathematical perspectives and discuss how agent-based models can be further utilized to enhance our comprehension of the complex world of polymicrobial biofilms and the microbiome.

18.
Front Microbiol ; 12: 812788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35250912

RESUMEN

There are two major views toward the role of antibiotics in microbial social interactions. The classical view is that antibiotics serve as weapons, produced by a bacterial species, at a significant cost, to inhibit the growth of its competitors. This view is supported by observations that antibiotics are usually upregulated by stress responses that infer the intensity of ecological competition, such as nutrient limitation and cellular damage, which point out to a competitive role for antibiotics. The other ecological function frequently assigned to antibiotics is that they serve as signaling molecules which regulate the collective behavior of a microbial community. Here, we investigate the conditions at which a weapon can serve as a signal in the context of microbial competition. We propose that an antibiotic will serve as a signal whenever a potential alteration of the growth behavior of the signal receiver, in response to a subinhibitory concentration (SIC) of the antibiotic, reduces the competitive pressure on the signal producer. This in turn would lead to avoiding triggering the stress mechanisms of the signal producer responsible for further antibiotics production. We show using individual-based modeling that this reduction of competitive pressure on the signal producer can happen through two main classes of responses by the signal recipient: competition tolerance, where the recipient reduces its competitive impact on the signal producer by switching to a low growth rate/ high yield strategy, and niche segregation, where the recipient reduces the competitive pressure on the signal producer by reducing their niche overlap. Our hypothesis proposes that antibiotics serve as signals out of their original function as weapons in order to reduce the chances of engaging in fights that would be costly to both the antibiotic producer as well as to its competitors.

19.
Environ Model Softw ; 134: 104873, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32958993

RESUMEN

Being able to replicate research results is the hallmark of science. Replication of research findings using computational models should, in principle, be possible. In this manuscript, we assess code sharing and model documentation practices of 7500 publications about individual-based and agent-based models. The code availability increased over the years, up to 18% in 2018. Model documentation does not include all the elements that could improve the transparency of the models, such as mathematical equations, flow charts, and pseudocode. We find that articles with equations and flow charts being cited more among other model papers, probably because the model documentation is more transparent. The practices of code sharing improve slowly over time, partly due to the emergence of more public repositories and archives, and code availability requirements by journals and sponsors. However, a significant change in norms and habits need to happen before computational modeling becomes a reproducible science.

20.
Clin Infect Dis ; 71(12): 3174-3181, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32609825

RESUMEN

BACKGROUND: The coronavirus disease 19 (COVID-19) pandemic has spread globally, causing extensive illness and mortality. In advance of effective antiviral therapies, countries have applied different public health strategies to control spread and manage healthcare need. Sweden has taken a unique approach of not implementing strict closures, instead urging personal responsibility. We analyze the results of this and other potential strategies for pandemic control in Sweden. METHODS: We implemented individual-based modeling of COVID-19 spread in Sweden using population, employment, and household data. Epidemiological parameters for COVID-19 were validated on a limited date range; where substantial uncertainties remained, multiple parameters were tested. The effects of different public health strategies were tested over a 160-day period, analyzed for their effects on intensive care unit (ICU) demand and death rate, and compared with Swedish data for April 2020. RESULTS: Swedish mortality rates are intermediate between rates for European countries that quickly imposed stringent public health controls and those for countries that acted later. Models most closely reproducing reported mortality data suggest that large portions of the population voluntarily self-isolate. Swedish ICU use rates remained lower than predicted, but a large fraction of deaths occurred in non-ICU patients. This suggests that patient prognosis was considered in ICU admission, reducing healthcare load at a cost of decreased survival in patients not admitted. CONCLUSIONS: The Swedish COVID-19 strategy has thus far yielded a striking result: mild mandates overlaid with voluntary measures can achieve results highly similar to late-onset stringent mandates. However, this policy causes more healthcare demand and more deaths than early stringent control and depends on continued public will.


Asunto(s)
COVID-19 , Pandemias , Adulto , Anciano , Europa (Continente) , Humanos , Salud Pública , SARS-CoV-2 , Suecia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA