Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(9): 1347-1360, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730487

RESUMEN

One way of limiting the environmental impact of food production and improving food security is to replace part of the animal- or plant-based protein in the human diet with protein sourced from microorganisms. The recently discovered bacterium Xanthobacter sp. SoF1 (VTT-E-193585) grows autotrophically using carbon dioxide gas as the only carbon source, yielding protein-rich biomass that can be processed further into a powder and incorporated into various food products. Since the safety of this microbial protein powder for human consumption had not been previously assessed, its genotoxic potential was evaluated employing three internationally recognized and standardized studies: a bacterial reverse mutation test, an in vitro chromosomal aberration assay in human lymphocytes, and an in vitro micronucleus test in human lymphocytes. No biologically relevant evidence of genotoxicity or mutagenicity was found.


Asunto(s)
Linfocitos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Humanos , Linfocitos/efectos de los fármacos , Aberraciones Cromosómicas/inducido químicamente , Polvos , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/genética , Salmonella typhimurium/genética , Salmonella typhimurium/efectos de los fármacos , Mutágenos/toxicidad , Masculino , Adulto
2.
Food Chem Toxicol ; 184: 114428, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38163454

RESUMEN

Spermidine is a polyamine consumed in the diet, endogenously biosynthesized in most cells, and produced by the intestinal microbiome. A variety of foods contribute to intake of spermidine along with other polyamines. Spermidine trihydrochloride (spermidine-3HCl) of high purity can be produced using an engineered strain of Saccharomyces cerevisiae. Spermidine has a demonstrated history of safe use in the diet; however, limited information is available in the public literature to assess the potential toxicity of spermidine-3HCl. To support a safety assessment for this spermidine-3HCl as a dietary source of spermidine, authoritative guideline and good laboratory practice (GLP) compliant in vitro genotoxicity assays (bacterial reverse mutation and mammalian micronucleus assays) and a 90-day oral (dietary) toxicity study in rats were conducted with spermidine-3HCl. Spermidine-3HCl was non-genotoxic in the in vitro assays, and no adverse effects were reported in the 90-day oral toxicity study up to the highest dose tested, 12500 ppm, equivalent to 728 mg/kg bw/day for males and 829 mg/kg bw/day for females. The subchronic no observed adverse effect level (NOAEL) is 728 mg/kg bw/day.


Asunto(s)
Saccharomyces cerevisiae , Espermidina , Masculino , Femenino , Ratas , Animales , Espermidina/toxicidad , Saccharomyces cerevisiae/genética , Nivel sin Efectos Adversos Observados , Pruebas de Micronúcleos , Mamíferos , Pruebas de Mutagenicidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-36868693

RESUMEN

The roots of Paeonia lactiflora Pall., (Paeoniae Radix, PL) are a well-known herbal remedy used to treat fever, rheumatoid arthritis, systemic lupus erythematosus, hepatitis, and gynecological disorders in East Asia. Here we evaluated the genetic toxicity of PL extracts (as a powder [PL-P] and hot-water extract [PL-W]) in accordance with the Organization for Economic Co-operation and Development guidelines. The Ames test revealed that PL-W was not toxic to S. typhimurium strains and E. coli in absence and presence of the S9 metabolic activation system at concentrations up to 5000 µg/plate, but PL-P produced a mutagenic response to TA100 in the absence of S9 mix. PL-P was cytotoxic in in vitro chromosomal aberrations (more than a 50 % decrease in cell population doubling time), and it increased the frequency of structural and numerical aberrations in absence and presence of S9 mix in a concentration-dependent manner. PL-W was cytotoxic in the in vitro chromosomal aberration tests (more than a 50 % decrease in cell population doubling time) only in the absence of S9 mix, and it induced structural aberrations only in the presence of S9 mix. PL-P and PL-W did not produce toxic response during the in vivo micronucleus test after oral administration to ICR mice and did not induce positive results in the in vivo Pig-a gene mutation and comet assays after oral administration to SD rats. Although PL-P showed genotoxic in two in vitro tests, the results from physiologically relevant in vivo Pig-a gene mutation and comet assays illustrated that PL-P and PL-W does not cause genotoxic effects in rodents.


Asunto(s)
Aberraciones Cromosómicas , Paeonia , Extractos Vegetales , Animales , Ratones , Ratas , Daño del ADN , Escherichia coli , Ratones Endogámicos ICR , Paeonia/toxicidad , Ratas Sprague-Dawley , Extractos Vegetales/toxicidad , Raíces de Plantas/toxicidad , Salmonella typhimurium
4.
Toxics ; 10(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36136466

RESUMEN

The safety evaluation of food contact materials requires excluding mutagenicity and genotoxicity in migrates. Testing the migrates using in vitro bioassays has been proposed to address this challenge. To be fit for that purpose, bioassays must be capable of detecting very low, safety relevant concentrations of DNA-damaging substances. There is currently no bioassay compatible with such qualifications. High-performance thin-layer chromatography (HPTLC), coupled with the planar SOS Umu-C (p-Umu-C) bioassay, was suggested as a promising rapid test (~6 h) to detect the presence of low levels of mutagens/genotoxins in complex mixtures. The current study aimed at incorporating metabolic activation in this assay and testing it with a set of standard mutagens (4-nitroquinoline-N-oxide, aflatoxin B1, mitomycin C, benzo(a)pyrene, N-ethyl nitrourea, 2-nitrofluorene, 7,12-dimethylbenzanthracene, 2-aminoanthracene and methyl methanesulfonate). An effective bioactivation protocol was developed. All tested mutagens could be detected at low concentrations (0.016 to 230 ng/band, according to substances). The calculated limits of biological detection were found to be up to 1400-fold lower than those obtained with the Ames assay. These limits are lower than the values calculated to ensure a negligeable carcinogenic risk of 10-5. They are all compatible with the threshold of toxicological concern for chemicals with alerts for mutagenicity (150 ng/person). They cannot be achieved by any other currently available test procedures. The p-Umu-C bioassay may become instrumental in the genotoxicity testing of complex mixtures such as food packaging, foods, and environmental samples.

5.
Toxicol Ind Health ; 38(9): 529-543, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35535771

RESUMEN

4,4'-MDA is classified as a genotoxic carcinogen based on numerous in vitro and animal data. The consequential assumption that a safe threshold does not exist is not only applied to 4,4'-MDA but also to its structural isomers and impurities 2,2'- and 2,4'-MDA in the absence of substance-specific data. This constitutes a problem in human risk assessments for all three substances as the inherent risks of 2,2'- and 2,4'-MDA and their contribution as impurities to that of 4,4'-MDA are essentially unknown. A comparative in vitro genotoxicity dataset consisting of the bacterial reverse mutation (Ames) test and the chromosomal aberration test in human lymphocytes (both performed according to the current OECD Guidelines) was generated for all three isomers. Furthermore, an in vitro gene mutation test in Chinese hamster ovary (CHO) cells (HPRT locus assay) was conducted with 2,4'-MDA. The results indicate differences regarding the genotoxic mechanism and potential, respectively, between the three structures and suggest that the no-threshold assumption for 4,4'-MDA may not be appropriate for 2,2'- and 2,4'-MDA.


Asunto(s)
Compuestos de Anilina , Aberraciones Cromosómicas , Mutación , Compuestos de Anilina/análisis , Compuestos de Anilina/toxicidad , Animales , Células CHO , Aberraciones Cromosómicas/inducido químicamente , Cricetinae , Cricetulus , Pruebas de Mutagenicidad , Salmonella typhimurium/genética
6.
Nanotoxicology ; 16(1): 52-72, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35085458

RESUMEN

Human ENP exposure is inevitable and the novel, size-dependent physicochemical properties that enable ENPs to be beneficial in innovative technologies are concomitantly causing heightened public concerns as to their potential adverse effects upon human health. This study aims to deduce the mechanisms associated with potential ENP mediated (geno)toxicity and impact upon telomere integrity, if any, of varying concentrations of both ∼16 nm (4.34 × 10-3 to 17.36 × 10-3 mg/mL) Gold (Au) and ∼14 nm (0.85 × 10-5 to 3.32 × 10-5 mg/mL) Silver (Ag) ENPs upon two commonly used lung epithelial cell lines, 16HBE14o- and A549. Following cytotoxicity analysis (via Trypan Blue and Lactate Dehydrogenase assay), two sub-lethal concentrations were selected for genotoxicity analysis using the cytokinesis-blocked micronucleus assay. Whilst both ENP types induced significant oxidative stress, Ag ENPs (1.66 × 10-5 mg/mL) did not display a significant genotoxic response in either epithelial cell lines, but Au ENPs (8.68 × 10-3 mg/mL) showed a highly significant 2.63-fold and 2.4-fold increase in micronucleus frequency in A549 and 16HBE14o- cells respectively. It is hypothesized that the DNA damage induced by acute 24-h Au ENP exposure resulted in a cell cycle stall indicated by the increased mononuclear cell fraction (>6.0-fold) and cytostasis level. Albeit insignificant, a small reduction in telomere length was observed following acute exposure to both ENPs which could indicate the potential for ENP mediated telomere attrition. Finally, from the data shown, both in vitro lung cell cultures (16HBE14o- and A549) are equally as suitable and reliable for the in vitro ENP hazard identification approach adopted in this study.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Daño del ADN , Células Epiteliales , Oro/química , Humanos , Pulmón/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Plata/química
7.
Toxicol Sci ; 182(1): 96-106, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-33856461

RESUMEN

Black cohosh extract (BCE) is marketed to women as an alternative to hormone replacement therapy for alleviating menopausal symptoms. Previous studies by the National Toxicology Program revealed that BCE induced micronuclei (MN) and a nonregenerative macrocytic anemia in rats and mice, likely caused by disruption of the folate metabolism pathway. Additional work using TK6 cells showed that BCE induced aneugenicity by destabilizing microtubules. In the present study, BCE-induced MN were confirmed in TK6 and HepG2 cells. We then evaluated BCE-induced DNA damage using the comet assay at multiple time points (0.5-24 h). Following a 0.5-h exposure, BCE induced significant, concentration-dependent increases in %tail DNA in TK6 cells only. Although DNA damage decreased in TK6 cells over time, likely due to repair, small but statistically significant levels of DNA damage were observed after 2 and 4 h exposures to 250 µg/ml BCE. A G1/S arrest in TK6 cells exposed to 125 µg/ml BCE (24 h) was accompanied by apoptosis and increased expression of γH2A.X, p-Chk1, p-Chk2, p53, and p21. Conditioning TK6 cells to physiological levels of folic acid (120 nM) did not increase the sensitivity of cells to BCE-induced DNA damage. BCE did not alter global DNA methylation in TK6 and HepG2 cells cultured in standard medium. Our results suggest that BCE induces acute DNA strand breaks which are quickly repaired in TK6 cells, whereas DNA damage seen at 4 and 24 h may reflect apoptosis. The present study supports that BCE is genotoxic mainly by inducing MN with an aneugenic mode of action.


Asunto(s)
Cimicifuga , Animales , Línea Celular , Ensayo Cometa , Daño del ADN , Humanos , Ratones , Mutágenos , Extractos Vegetales , Ratas
8.
J Appl Toxicol ; 40(11): 1566-1587, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32662109

RESUMEN

Electronic nicotine delivery systems (ENDS) are regulated tobacco products and often contain flavor compounds. Given the concern of increased use and the appeal of ENDS by young people, evaluating the potential of flavors to induce DNA damage is important for health hazard identification. In this study, alternative methods were used as prioritization tools to study the genotoxic mode of action (MoA) of 150 flavor compounds. In particular, clastogen-sensitive (γH2AX and p53) and aneugen-sensitive (p-H3 and polyploidy) biomarkers of DNA damage in human TK6 cells were aggregated through a supervised three-pronged ensemble machine learning prediction model to prioritize chemicals based on genotoxicity. In addition, in silico quantitative structure-activity relationship (QSAR) models were used to predict genotoxicity and carcinogenic potential. The in vitro assay identified 25 flavors as positive for genotoxicity: 15 clastogenic, eight aneugenic and two with a mixed MoA (clastogenic and aneugenic). Twenty-three of these 25 flavors predicted to induce DNA damage in vitro are documented in public literature to be in e-liquid or in the aerosols produced by ENDS products with youth-appealing flavors and names. QSAR models predicted 46 (31%) of 150 compounds having at least one positive call for mutagenicity, clastogenicity or rodent carcinogenicity, 49 (33%) compounds were predicted negative for all three endpoints, and remaining compounds had no prediction call. The parallel use of these predictive technologies to elucidate MoAs for potential genetic damage, hold utility as a screening strategy. This study is the first high-content and high-throughput genotoxicity screening study with an emphasis on flavors in ENDS products.


Asunto(s)
Daño del ADN , Sistemas Electrónicos de Liberación de Nicotina , Aromatizantes/toxicidad , Aprendizaje Automático , Modelos Moleculares , Pruebas de Mutagenicidad , Animales , Biomarcadores/metabolismo , Línea Celular , Seguridad de Productos para el Consumidor , Aromatizantes/química , Citometría de Flujo , Histonas/metabolismo , Humanos , Ratones , Fosforilación , Relación Estructura-Actividad Cuantitativa , Ratas , Medición de Riesgo , Proteína p53 Supresora de Tumor/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-32247552

RESUMEN

Use of three-dimensional (3D) tissue equivalents in toxicology has been increasing over the last decade as novel preclinical test systems and as alternatives to animal testing. In the area of genetic toxicology, progress has been made with establishing robust protocols for skin, airway (lung) and liver tissue equivalents. In light of these advancements, a "Use of 3D Tissues in Genotoxicity Testing" working group (WG) met at the 7th IWGT meeting in Tokyo in November 2017 to discuss progress with these models and how they may fit into a genotoxicity testing strategy. The workshop demonstrated that skin models have reached an advanced state of validation following over 10 years of development, while liver and airway model-based genotoxicity assays show promise but are at an early stage of development. Further effort in liver and airway model-based assays is needed to address the lack of coverage of the three main endpoints of genotoxicity (mutagenicity, clastogenicity and aneugenicity), and information on metabolic competence. The IWGT WG believes that the 3D skin comet and micronucleus assays are now sufficiently validated to undergo an independent peer review of the validation study, followed by development of individual OECD Test Guidelines.


Asunto(s)
Daño del ADN/efectos de los fármacos , Metagenómica/tendencias , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Daño del ADN/genética , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Micronúcleos
10.
Nanomaterials (Basel) ; 9(11)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652841

RESUMEN

Titanium dioxide nanoparticles (NPs-TiO2 or TiO2-NPs) have been employed in many commercial products such as medicines, foods and cosmetics. TiO2-NPs are able to carry antibiotics to target cells enhancing the antimicrobial efficiency; so that these nanoparticles are generally used in antibiotic capsules, like lincomycin, added as a dye. Lincomycin is usually used to treat pregnancy bacterial vaginosis and its combination with TiO2-NPs arises questions on the potential effects on fetus health. This study investigated the potential impact of TiO2-NPs and lincomycin co-exposure on human amniocytes in vitro. Cytotoxicity was evaluated with trypan blue vitality test, while genotoxic damage was performed by Comet Test, Diffusion Assay and RAPD-PCR for 48 and 72 exposure hours. Lincomycin exposure produced no genotoxic effects on amniotic cells, instead, the TiO2-NPs exposure induced genotoxicity. TiO2-NPs and lincomycin co-exposure caused significant increase of DNA fragmentation, apoptosis and DNA damage in amniocytes starting from 48 exposure hours. These results contribute to monitor the use of TiO2-NPs combined with drugs in medical application. The potential impact of antibiotics with TiO2-NPs during pregnancy could be associated with adverse effects on embryo DNA. The use of nanomaterials in drugs formulation should be strictly controlled in order to minimize risks.

11.
Cytotechnology ; 71(6): 1063-1077, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31555935

RESUMEN

Vildagliptin and sitagliptin are commonly used antidiabetic drugs. Chromosomal aberration (CA), sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays were employed to assess and compare cytotoxic and genotoxic effects of these drugs. Peripheral lymphocytes were exposed to 125 µg/ml, 250 µg/ml and 500 µg/ml of vildagliptin and 250 µg/ml, 500 µg/ml and 1000 µg/ml of sitagliptin for 24 h and 48 h with and without exogenous metabolic activation. At the end of the study, it was determined that these drugs and their metabolites had no genotoxic effects on CA, SCE and CBMN. On the other hand, parallel to the increase in dose, vildagliptin showed weak cytotoxicity on the mitotic index, and depending on its increase in dose; sitagliptin caused potential cytotoxicity and cytostatic effect on the mitotic index, nuclear division index and proliferation index. Due to their cytotoxic and cytostatic potential, these drugs inhibit cell proliferation.

12.
Methods Mol Biol ; 2031: 195-208, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31473961

RESUMEN

The classical in vitro genotoxicity test battery is known to be sensitive for indicating genotoxicity. However, a high rate of "misleading" positives was reported when three assays were combined as required by several legislations. Despite the recent optimizations of the standard in vitro tests, two gaps could merely be addressed with assays based on monolayer cell cultures, that is, the route of exposure and a relevant intrinsic metabolic capacity to transform chemicals into reactive metabolites. Following these considerations, fertilized chicken eggs have been introduced into genotoxicity testing and were combined with a classical readout parameter, i.e., the analysis of micronucleus frequency in erythrocytes, to develop the hen's egg test for micronucleus induction, the HET-MN. As a major advantage the test mirrors the systemic availability of compounds after oral exposure reflecting certain steps of ADME without being considered as an animal experiment. After a successful validation exercise the detailed protocol is given here.


Asunto(s)
Daño del ADN/efectos de los fármacos , Huevos , Pruebas de Micronúcleos/métodos , Animales , Pollos , Huevos/análisis , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Mutágenos/toxicidad , Coloración y Etiquetado/métodos
13.
Toxicol Res ; 34(4): 303-310, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30370005

RESUMEN

The methods of applied genetic toxicology are changing from qualitative hazard identification to quantitative risk assessment. Recently, quantitative analysis with point of departure (PoD) metrics and benchmark dose (BMD) modeling have been applied to in vitro genotoxicity data. Two software packages are commonly used for BMD analysis. In previous studies, we performed quantitative dose-response analysis by using the PROAST software to quantitatively evaluate the mutagenicity of four piperidine nitroxides with various substituent groups on the 4-position of the piperidine ring and six cigarette whole smoke solutions (WSSs) prepared by bubbling machine-generated whole smoke. In the present study, we reanalyzed the obtained genotoxicity data by using the EPA's BMD software (BMDS) to evaluate the inter-platform quantitative agreement of the estimates of genotoxic potency. We calculated the BMDs for 10%, 50%, and 100% (i.e., a two-fold increase), and 200% increases over the concurrent vehicle controls to achieve better discrimination of the dose-responses, along with their BMDLs (the lower 95% confidence interval of the BMD) and BMDUs (the upper 95% confidence interval of the BMD). The BMD values and rankings estimated in this study by using the EPA's BMDS were reasonably similar to those calculated in our previous studies by using PROAST. These results indicated that both software packages were suitable for dose-response analysis using the mouse lymphoma assay and that the BMD modeling results from these software packages produced comparable rank orders of the mutagenic potency.

14.
Artículo en Inglés | MEDLINE | ID: mdl-29502735

RESUMEN

Recently revised OECD Testing Guidelines highlight the importance of considering the first site-of-contact when investigating the genotoxic hazard. Thus far, only in vivo approaches are available to address the dermal route of exposure. The 3D Skin Comet and Reconstructed Skin Micronucleus (RSMN) assays intend to close this gap in the in vitro genotoxicity toolbox by investigating DNA damage after topical application. This represents the most relevant route of exposure for a variety of compounds found in household products, cosmetics, and industrial chemicals. The comet assay methodology is able to detect both chromosomal damage and DNA lesions that may give rise to gene mutations, thereby complementing the RSMN which detects only chromosomal damage. Here, the comet assay was adapted to two reconstructed full thickness human skin models: the EpiDerm™- and Phenion® Full-Thickness Skin Models. First, tissue-specific protocols for the isolation of single cells and the general comet assay were transferred to European and US-American laboratories. After establishment of the assay, the protocol was then further optimized with appropriate cytotoxicity measurements and the use of aphidicolin, a DNA repair inhibitor, to improve the assay's sensitivity. In the first phase of an ongoing validation study eight chemicals were tested in three laboratories each using the Phenion® Full-Thickness Skin Model, informing several validation modules. Ultimately, the 3D Skin Comet assay demonstrated a high predictive capacity and good intra- and inter-laboratory reproducibility with four laboratories reaching a 100% predictivity and the fifth yielding 70%. The data are intended to demonstrate the use of the 3D Skin Comet assay as a new in vitro tool for following up on positive findings from the standard in vitro genotoxicity test battery for dermally applied chemicals, ultimately helping to drive the regulatory acceptance of the assay. To expand the database, the validation will continue by testing an additional 22 chemicals.


Asunto(s)
Ensayo Cometa/normas , Reactivos de Enlaces Cruzados/efectos adversos , Daño del ADN , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/efectos adversos , Piel/patología , Cosméticos , Humanos , Reproducibilidad de los Resultados , Piel/efectos de los fármacos
15.
Genes Environ ; 40: 2, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29339977

RESUMEN

We have demonstrated that retrospective evaluation of existing data of in vitro chromosomal aberration test using the new cytotoxicity indices RICC (relative increase in cell count) or RPD (relative population doubling) reduces the false-positive rate. We have constructed an algorithm to predict the likelihood that past-positive results would differ when retested accordingly. Here, we emphasize the importance of reviewing existing in vitro chromosomal aberration test results. The present Letter not only supports the rediscovery of potentially useful chemicals excluded from further development as a result of misclassification due to in vitro false-positive results, but also contributes to the development of a precise Quantitative Structure-Activity Relationship (QSAR) model by providing an appropriate training data-set. Furthermore, re-evaluation is expected to provide novel insights into underlying mechanisms and/or key structures involved in the development of chromosomal aberrations.

16.
Regul Toxicol Pharmacol ; 92: 94-103, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29158044

RESUMEN

The recent rapid increase in the prevalence of emerging tobacco- and nicotine-containing products, such as e-cigarettes, is being driven in part by their reduced-risk potential compared to tobacco smoking. In this study, we examined emission levels for selected cigarette smoke constituents, so-called "Hoffmann analytes", and in vitro toxicity of aerosol from a novel tobacco vapor product (NTV). The NTV thermally vaporizes a nicotine-free carrier liquid to form an aerosol which then passes through tobacco, where it absorbs tobacco-derived flavors and nicotine. The NTV results were compared with those for 3R4F cigarette smoke. Chemical analysis of the NTV aerosol demonstrated that Hoffmann analyte levels were substantially lower than in 3R4F smoke and that the most were below quantifiable levels. Results from in vitro bacterial reverse mutation, micronucleus and neutral red uptake assays showed that, in contrast with 3R4F smoke, the NTV aerosol failed to demonstrate any measurable genotoxicity or cytotoxicity. The temperature of tobacco during NTV use was measured at approximately 30 °C, which may explain the lower Hoffmann analyte emission and in vitro toxicity levels. These results suggest that the aerosol from the NTV has a very different toxicological profile when compared with combustible cigarette smoke.


Asunto(s)
Aerosoles/análisis , Productos de Tabaco/análisis , Animales , Células CHO , Línea Celular , Cricetulus , Sistemas Electrónicos de Liberación de Nicotina/métodos , Aromatizantes/química , Rojo Neutro/química , Nicotina/análisis , Humo/análisis , Fumar/efectos adversos , Nicotiana/química
17.
Environ Mol Mutagen ; 58(5): 361-374, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28556235

RESUMEN

Food contact materials are all materials and articles intended to come directly or indirectly into contact with food. Before being included in the positive European "Union list" of authorized substances (monomers, other starting substances and additives) for plastic food contact materials, the European Food Safety Authority (EFSA) must assess their safety "in use". If relevant for risk, the safety of the main impurities, reaction and degradation products originating from the manufacturing process is also evaluated. Information on genotoxicity is always required irrespective of the extent of migration and the resulting human exposure, in view of the theoretical lack of threshold for genotoxic events. The 2008 EFSA approach, requiring the testing of food contact materials in three in vitro mutagenicity tests, though still acceptable, is now superseded by the 2011 EFSA Scientific Committee's recommendation for only two complementary tests including a bacterial gene mutation test and an in vitro micronucleus test, to detect two main genetic endpoints (i.e., gene mutations and chromosome aberrations). Follow-up of in vitro positive results depends on the type of genetic effect and on the substance's systemic availability. In this study, we provide an analysis of the data on genotoxicity testing gathered by EFSA on food contact materials for the period 1992-2015. We also illustrate practical examples of the approaches that EFSA took when evaluating "non standard" food contact chemicals (e.g., polymeric additives, oligomer or other reaction mixtures, and nanosubstances). Additionally, EFSA's experience gained from using non testing methods and/or future possibilities in this area are discussed. Environ. Mol. Mutagen. 58:361-374, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Medición de Riesgo/métodos , Animales , Unión Europea , Contaminación de Alimentos/prevención & control , Humanos
18.
Cytotechnology ; 69(2): 245-263, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28050721

RESUMEN

Engineered titanium dioxide nanoparticles (TiO2 NPs) are extensively used in cosmetic, pharmaceutical and other industries globally due to their unique properties, which has raised concern for biosafety. Genotoxicity assessment is an important part of biosafety evaluation; we report in vitro cytogenetic assays for NPs considering their unique physicochemical characteristics to fill the gap of laboratory data regarding biological safety along with mechanistic study for mode of interaction of NP with genetic material. Comet and chromosome aberration assay (CA assay) using short-term human peripheral blood cultures following exposure to TiO2 NPs; along with physicochemical parameters for stability of nano form in cultures; and DNA binding activity were carried out. The dynamic light scattering and zeta potential measurements revealed mono dispersion in media. The fluorescence spectroscopy for binding affinity of TiO2 NPs and human genomic DNA showed binding constant (Kb), 4.158 × 106 M-1 indicating strong binding affinity and negative ΔG0 value suggesting spontaneous DNA binding supporting its genotoxic potential. Following in vitro exposure to TiO2 NPs for 24 h, the cultures were analyzed for comet and CA assays, which showed significant results (p < 0.05) for % DNA intensity in tail, Olive Tail Moment and frequency of Chromosomal aberrations (CA) at 75 and 125 µM but not at 25 µM.

20.
Toxicol In Vitro ; 28(1): 46-53, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23850743

RESUMEN

A novel high throughput-enabled human cell based screen, Anthem's Genotoxicity screen, was developed to achieve higher specificity for predicting in vivo genotoxins by an in vitro method. The assay employs engineered human colon carcinoma cell line; HCT116 cells that are stably engineered with three promoter-reporter cassettes such that an increased reporter activity reflects the activation of associated signaling events in a human cell. The current study focuses on the evaluation of sensitivity and specificity of Anthem's Genotoxicity screen using 62 compounds recommended by the European Centre for the Validation of Alternative Methods (ECVAM). The concordance of Anthem's Genotoxicity screen with in vivo tests was 95.5% with sensitivity of 95.2% and specificity of 95.7%. Thus Anthem's Genotoxicity screen, a high-throughput mechanism based genotox indicator test can be employed by a variety of industries for rapid screening and early detection of potential genotoxins.


Asunto(s)
Neoplasias del Colon/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Genes Reporteros , Células HCT116 , Humanos , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA