Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Clin Immunol ; 266: 110326, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059757

RESUMEN

The interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional regulator, functioning a transcriptional corepressor by interacting with the interferon regulatory factor-2. The ubiquitous expression of IRF2BP2 by diverse cell types and tissues suggests its potential involvement in different cell signalling pathways. Variants inIRF2BP2have been recently identified to cause familial common variable immunodeficiency (CVID) characterized by immune dysregulation. This study investigated three rare novel variants inIRF2BP2, identified in patients with primary antibody deficiency and autoimmunity by whole exome-sequencing (WES). Following transient overexpression of EGFP-fused mutants in HEK293 cells and transfection in Jurkat cell lines, we used fluorescence microscopy, real-time PCR and Western blotting to analyze their effects on IRF2BP2 expression, subcellular localization, nuclear translocation of IRF2, and the transcriptional activation of NFκB1(p50). We found altered IRF2BP2 mRNA and protein expression levels in the mutants compared to the wild type after IRF2BP2 overexpression. In confocal fluorescence microscopy, variants in the C-terminal RING finger domain showed an irregular aggregate formation and distribution instead of the expected nuclear localization compared to the variants in the N-terminal zinc finger domain and their wildtype counterpart. Immunoblotting revealed an impaired IRF2 and NFκB1 (p50) nuclear localization in the mutants compared to the IRF2BP2 wildtype counterpart. LPS stimulation reduced IRF2BP2 mRNA expression in the variants compared to the wild type. Our findings significantly contribute to understanding the clinical significance of IRF2BP2 mutations in the pathogenesis of immunodeficiency and immune dysregulation. We observed impairment of the nuclear translocation of IRF2 and NFκB1 (p50) due to the upregulation of IRF2BP2, potentially affecting specific gene expressions involved in immune regulation.


Asunto(s)
Autoinmunidad , Inmunodeficiencia Variable Común , Humanos , Células HEK293 , Inmunodeficiencia Variable Común/genética , Inmunodeficiencia Variable Común/inmunología , Autoinmunidad/genética , Células Jurkat , Factor 2 Regulador del Interferón/genética , Factor 2 Regulador del Interferón/metabolismo , Factor 2 Regulador del Interferón/inmunología , Masculino , Femenino , Mutación , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/metabolismo , Secuenciación del Exoma , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN , Factores de Transcripción
2.
Transl Oncol ; 47: 102038, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991463

RESUMEN

BACKGROUND: Recurrent or metastatic cervical cancer have an extremely low 5-year survival rates about 17% due to limited therapeutic options. CDYL plays a critical role in multiple cancer development, as an oncogene or tumor suppressor in a context-dependent manner. However, the role of CDYL in cervical carcinogenesis has not yet been explored. METHODS: CDYL expression was examined in cervical cancer and cell lines. The effect of CDYL/IRF2BP2/PD-L1 axis on malignant phenotypes of cervical cancer cells were tested with gain-of-function experiments. A mouse model of cervical cancer was developed to validate the in vitro results. RESULTS: Clinical data analysis revealed that CDYL was downregulated and associated with a poor prognosis in cervical cancer patients. CDYL overexpression suppressed cervical cancer cells proliferation and invasion in vitro and vivo assays and enhanced the immune response by decreasing PD-L1 expression and reversing the tumor immunosuppressing microenvironment. Mechanistically, CDYL inhibited the PD-L1 expression through transcriptionally suppressing IRF2BP2 in cervical cancer cells. CONCLUSIONS: Taken together, our findings established the crucial role of CDYL in cervical carcinogenesis and sensitivity for immune checkpoint blockade therapy, and supported the hypothesis that CDYL could be a potential novel immunotherapy response predictive biomarker for cervical cancer patients.

3.
Neuro Oncol ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864832

RESUMEN

BACKGROUND: Super-enhancers (SEs) typically govern the expression of critical oncogenes and play a fundamental role in the initiation and progression of cancer. Focusing on genes that are abnormally regulated by SE in cancer may be a new strategy for understanding pathogenesis. In the context of this investigation, we have identified a previously unreported SE-driven gene IRF2BP2 in neuroblastoma (NB). METHODS: The expression and prognostic value of IRF2BP2 were detected in public databases and clinical samples. The effect of IRF2BP2 on NB cell growth and apoptosis was evaluated through in vivo and in vitro functional loss experiments. The molecular mechanism of IRF2BP2 was investigated by the study of chromatin regulatory regions and transcriptome sequencing. RESULTS: The sustained high expression of IRF2BP2 results from the activation of a novel SE established by NB master transcription factors MYCN, MEIS2 and HAND2, and they form a new complex that regulates the gene network associated with the proliferation of NB cell populations. We also observed a significant enrichment of the AP-1 family at the binding sites of IRF2BP2. Remarkably, within NB cells, AP-1 plays a pivotal role in shaping the chromatin accessibility landscape, thereby exposing the binding site for IRF2BP2. This orchestrated action enables AP-1 and IRF2BP2 to collaboratively stimulate the expression of the NB susceptibility gene ALK, thereby upholding the highly proliferative phenotype characteristic of NB. CONCLUSION: Our findings indicate that SE-driven IRF2BP2 can bind to AP-1 to maintain the survival of tumor cells via regulating chromatin accessibility of NB susceptibility gene ALK.

4.
Front Immunol ; 14: 1279171, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876937

RESUMEN

Background: At present, the knowledge about disease-causing mutations in IRF2BP2 is very limited because only a few patients affected by this condition have been reported. As previous studies have described, the haploinsufficiency of this interferon transcriptional corepressors leads to the development of CVID. Very recently, a more accurate phenotype produced by truncating variants in this gene has been defined, manifesting CVID with gastrointestinal inflammatory symptoms and autoimmune manifestations. Methods: We analyzed 5 index cases with suspected primary immunodeficiency by high throughput sequencing. They were submitted for a genetic test with a panel of genes associated with immune system diseases, including IRF2BP2. The screening of SNVs, indels and CNVs fulfilling the criteria with very low allelic frequency and high protein impact, revealed five novel variants in IRF2BP2. In addition, we isolated both wild-type and mutated allele of the cDNA from one of the families. Results: In this study, we report five novel loss-of-function (LoF) mutations in IRF2BP2 that likely cause primary immunodeficiency, with CVID as more frequent phenotype, variable expression of inflammatory gastrointestinal features, and one patient with predisposition of viral infection. All identified variants were frameshift changes, and one of them was a large deletion located on chromosome 1q42, which includes the whole sequence of IRF2BP2, among other genes. Both de novo and dominant modes of inheritance were observed in the families here presented, as well as incomplete penetrance. Conclusions: We describe novel variants in a delimited low-complex region, which may be considered a hotspot in IRF2BP2. Moreover, this is the first time that a large CNV in IRF2BP2 has been reported to cause CVID. The distinct mechanisms than LoF in IRF2BP2 could cause different phenotype compared with the mainly described. Further investigations are necessary to comprehend the regulatory mechanisms of IRF2BP2, which could be under variable expression of the disease.


Asunto(s)
Mutación del Sistema de Lectura , Pruebas Genéticas , Humanos , Genotipo , Fenotipo , Mutación con Pérdida de Función , Proteínas de Unión al ADN , Factores de Transcripción
5.
In Vivo ; 37(6): 2459-2463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905608

RESUMEN

BACKGROUND/AIM: Chondrogenic tumors are benign, intermediate or malignant neoplasms showing cartilaginous differentiation. In 2012, we reported a mesenchymal chondrosarcoma carrying a t(1;5)(q42;q32) leading to an IRF2BP2::CDX1 fusion gene. Here, we report a second chondrogenic tumor carrying an IRF2BP2::CDX1 chimera. CASE REPORT: Radiological examination of a 41 years old woman showed an osteolytic lesion in the os pubis with a large soft tissue component. Examination of a core needle biopsy led to the diagnosis chondromyxoid fibroma, and the patient was treated with curettage. Microscopic examination of the specimen showed a tumor tissue in which a pink-bluish background matrix was studded with small spindled to stellate cells without atypia, fitting well the chondromyxoid fibroma diagnosis. Focally, a more cartilage-like appearance was observed with cells lying in lacunae and areas with calcification. G-banding analysis of short-term cultured tumor cells yielded the karyotype 46,XX,der(1)inv(1)(p33~34q42) add(1)(p32)?ins(1;?)(q42;?),del(5)(q31),der(5)t(1;5)(q42;q35)[12]/46,XX[3]. RT-PCR together with Sanger sequencing showed the presence of two IRF2BP2::CDX1 chimeric transcripts in which exon 1 of the IRF2BP2 reference sequence NM_182972.3 or NM_001077397.1 was fused to exon 2 of CDX1. Both chimeras were predicted to code for proteins containing the zinc finger domain of IRF2BP2 and homeobox domain of CDX1. CONCLUSION: IRF2BP2::CDX1 chimera is recurrent in chondrogenic tumors. The data are still too sparse to conclude whether it is a hallmark of benign or malignant tumors.


Asunto(s)
Neoplasias Óseas , Fibroma , Femenino , Humanos , Adulto , Genes Homeobox , Factor 2 Regulador del Interferón/genética , Proteínas de Homeodominio/genética , Exones , Células Tumorales Cultivadas , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
6.
Inflamm Res ; 72(6): 1203-1213, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37314519

RESUMEN

BACKGROUND: Following central nervous system (CNS) injury, the investigation for neuroinflammation is vital because of its pleiotropic role in both acute injury and long-term recovery. Agmatine (Agm) is well known for its neuroprotective effects and anti-neuroinflammatory properties. However, Agm's mechanism for neuroprotection is still unclear. We screened target proteins that bind to Agm using a protein microarray; the results showed that Agm strongly binds to interferon regulatory factor 2 binding protein (IRF2BP2), which partakes in the inflammatory response. Based on these prior data, we attempted to elucidate the mechanism by which the combination of Agm and IRF2BP2 induces a neuroprotective phenotype of microglia. METHODS: To confirm the relationship between Agm and IRF2BP2 in neuroinflammation, we used microglia cell-line (BV2) and treated with lipopolysaccharide from Escherichia coli 0111:B4 (LPS; 20 ng/mL, 24 h) and interleukin (IL)-4 (20 ng/mL, 24 h). Although Agm bound to IRF2BP2, it failed to enhance IRF2BP2 expression in BV2. Therefore, we shifted our focus onto interferon regulatory factor 2 (IRF2), which is a transcription factor and interacts with IRF2BP2. RESULTS: IRF2 was highly expressed in BV2 after LPS treatment but not after IL-4 treatment. When Agm bound to IRF2BP2 following Agm treatment, the free IRF2 translocated to the nucleus of BV2. The translocated IRF2 activated the transcription of Kruppel-like factor 4 (KLF4), causing KLF4 to be induced in BV2. The expression of KLF4 increased the CD206-positive cells in BV2. CONCLUSIONS: Taken together, unbound IRF2, resulting from the competitive binding of Agm to IRF2BP2, may provide neuroprotection against neuroinflammation via an anti-inflammatory mechanism of microglia involving the expression of KLF4.


Asunto(s)
Agmatina , Humanos , Agmatina/farmacología , Agmatina/metabolismo , Factor 4 Similar a Kruppel , Proteínas Portadoras/metabolismo , Microglía/metabolismo , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Factor 2 Regulador del Interferón/metabolismo , Factor 2 Regulador del Interferón/farmacología , Fenotipo , Inflamación/metabolismo , Proteínas de Unión al ADN , Factores de Transcripción/metabolismo
7.
Front Immunol ; 14: 967345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350971

RESUMEN

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of disorders characterized by increased risk of infections, autoimmunity, autoinflammatory diseases, malignancy and allergy. Next-generation sequencing has revolutionized the identification of genetic background of these patients and assists in diagnosis and treatment. In this study, we identified a probable unique monogenic cause of IEI, and evaluated the immunological methods and pathogenic detections. Methods: A family with a member with a clinical diagnosis of IEI was screened by whole genomic sequencing (WGS). Demographic data, clinical manifestations, medical history, physical examination, laboratory findings and imaging features of the patient were extracted from medical records. Comprehensive immune monitoring methods include a complete blood count with differential, serum levels of cytokines and autoantibodies, T-cell and B-cell subsets analysis and measurement of serum immunoglobulins. In addition, metagenomic sequencing (mNGS) of blood, cerebrospinal fluid and biopsy from small intestine were used to detect potential pathogens. Results: The patient manifested with recurrent infections and autoimmune disorders, who was eventually diagnosed with IEI. Repetitive mNGS tests of blood, cerebrospinal fluid and biopsy from small intestine didn't detect pathogenic microorganism. Immunological tests showed a slightly decreased level of IgG than normal, elevated levels of tumor necrosis factor and interleukin-6. Lymphocyte flow cytometry showed elevated total B cells and natural killer cells, decreased total T cells and B-cell plasmablasts. WGS of the patient identified a novel heterozygous mutation in IRF2BP2 (c.439_450dup p. Thr147_Pro150dup), which was also confirmed in his father. The mutation was classified as variant of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics guidelines. Conclusion: We identified a novel IRF2BP2 mutation in a family with a member diagnosed with IEI. Immune monitoring and WGS as auxiliary tests are helpful in identifying genetic defects and assisting diagnosis in patients with clinically highly suspected immune abnormalities and deficiencies in inflammation regulation. In addition, mNGS techniques allow a more comprehensive assessment of the pathogenic characteristics of these patients. This report further validates the association of IRF2BP2 deficiency and IEI, and expands IEI phenotypes.


Asunto(s)
Enfermedades Autoinmunes , Reinfección , Humanos , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/genética , Autoanticuerpos , Autoinmunidad , Linfocitos B , Proteínas de Unión al ADN , Factores de Transcripción
8.
Rheumatology (Oxford) ; 62(4): 1699-1705, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36193988

RESUMEN

OBJECTIVES: Inborn errors of immunity manifest with susceptibility to infection but may also present with immune dysregulation only. According to the European Society for Immunodeficiencies Registry about 50% of inborn errors of immunity are classified as common variable immunodeficiencies (CVID). In only few CVID patients are monogenic causes identified. IFN regulatory factor-2 binding protein 2 (IRF2BP2) is one of 20 known genes associated with CVID phenotypes and has only been reported in two families so far. We report another IRF2BP2-deficient patient with a novel pathogenic variant and phenotype and characterize impaired B cell function and immune dysregulation. METHODS: We performed trio whole-exome sequencing, determined B cell subpopulations and intracellular calcium mobilization upon B cell receptor crosslinking in B cells. T cell subpopulations, T cell proliferation and a type I IFN signature were measured. Colonoscopy and gastroduodenoscopy including histopathology were performed. RESULTS: The 33-year-old male presented with recurrent respiratory infections since childhood, colitis and RA beginning at age 25 years. We identified a novel de novo nonsense IRF2BP2 variant c.1618C>T; p.(Q540*). IgG deficiency was detected as consequence of a severe B cell differentiation defect. This was confirmed by impaired plasmablast formation upon stimulation with CpG. No serum autoantibodies were detected. Intracellular cytokine production in CD4+ T cells and CTLA4 expression on FOXP3+ Tregs were impaired. Type I IFN signature was elevated. CONCLUSION: The identified loss-of-function variant in IRF2BP2 severely impairs B cell development and T cell homeostasis, and may be associated with colitis and RA. Our results provide further evidence for association of IRF2BP2 with CVID and contribute to the understanding of the underlying pathomechanisms.


Asunto(s)
Linfocitos T CD4-Positivos , Factores de Transcripción , Masculino , Linfocitos B , Mutación , Fenotipo , Humanos , Adulto
9.
Am J Med Sci ; 365(1): 73-83, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36002076

RESUMEN

BACKGROUND: Thyroid carcinoma (THCA) is a common malignancy of the endocrine system. Further understanding of the molecular mechanism underlying THCA is crucial to develop effective diagnostic therapy and improve its treatments. In this study, we intended to provide novel direction for THCA targeted therapy from the aspect of lncRNA-miRNA-mRNA interaction. We aimed to investigate the function and molecular mechanism of lncRNA ATP1A1-AS1 in THCA. METHODS: Gene expression was assessed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Cell growth was detected by CCK-8 and EdU assays. Flow cytometry was applied for analyzing cell apoptosis. The binding of ATP1A1-AS1 or IRF2BP2 to miR-620 was validated by RNA pulldown and luciferase reporter assays. The protein levels were examined by western blotting. RESULTS: ATP1A1-AS1 was decreased in THCA cells and tissues. ATP1A1-AS1 overexpression attenuated cell growth and promoted apoptosis. MiR-620, which was upregulated in THCA, was identified as a direct target of ATP1A1-AS1. Furthermore, IRF2BP2 was discovered to be a target of miR-620, which displayed low expression in THCA cells and tissues. Importantly, IRF2BP2 knockdown reversed the influence of ATP1A1-AS1 overexpression on THCA cell proliferation and apoptosis. CONCLUSIONS: LncRNA ATP1A1-AS1 inhibited cell growth and promotes apoptosis in THCA via the miR-620/IRF2BP2 axis.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Tiroides , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Tiroides/genética , Proliferación Celular/genética , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Neurochem Res ; 48(5): 1382-1394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36460840

RESUMEN

BACKGROUND: Ischemic stroke is a very dangerous disease with high incidence, fatality and disability rate in human beings. Massive evidence has indicated that oxidative stress and inflammation are intimately correlated with progression of ischemic stroke. Additionally, LncRNAs were reported to be involved in ischemic stroke. Here, we aim to explore the effects and molecular mechanism of lncRNA OIP5-AS1 on oxidative stress and inflammation in ischemic stroke. METHODS: HMC3 and SH-SY5Y cells were under the condition of oxygen-glucose deprivation/reoxygenation (OGD/R) treatment to establish cell models of ischemic stroke. Commercial kits were employed to detect the indicators of oxidative stress including ROS, MDA and SOD. The expression of OIP5-AS1, miR-155-5p and IRF2BP2 mRNA was determined using RT-qPCR. The protein levels of inflammatory factors including TNF-α, IL-1ß and IL-6 and IRF2BP2 were assessed by western blot and/or ELISA. Luciferase activity assay was employed to validate their correlations among OIP5-AS1, miR-155-5p and IRF2BP2. RESULTS: In OGD/R-induced HMC3 and SH-SY5Y cells, the expression of OIP5-AS1 and IRF2BP2 was reduced while miR-155-5p was elevated. OGD/R induction promoted oxidative stress and inflammatory response in HMC3 and SH-SY5Y cells, while OIP5-AS1 or IRF2BP2 sufficiency as well as miR-155-5p inhibitor attenuated OGD/R-induced these influences. In addition, IRF2BP2 knockdown abolished the suppressive impacts of OIP5-AS1 overexpression on oxidative stress and inflammatory response in OGD/R-induced HMC3 and SH-SY5Y cells. Mechanistically, OIP5-AS1 enhanced IRF2BP2 expression via sponging miR-155-5p. CONCLUSION: OIP5-AS1 suppressed oxidative stress and inflammatory response to alleviate cell injury caused by OGD/R induction in HMC3 and SH-SY5Y cells through regulating miR-155-5p/IRF2BP2 axis, which might offer novel targeted molecules for ischemic stroke therapy.


Asunto(s)
Accidente Cerebrovascular Isquémico , MicroARNs , Neuroblastoma , Humanos , MicroARNs/metabolismo , Inflamación/genética , Estrés Oxidativo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo
11.
Genes Chromosomes Cancer ; 62(3): 176-183, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36448218

RESUMEN

Soft tissue myoepitheliomas (STM) are benign myoepithelial neoplasms (of nonsalivary gland origin) arising, most commonly within subcutaneous and deep soft tissues of the extremities and rarely within bones. To the best of our knowledge, the intravascular location of STM as well as the identification of a novel IRF2BP2::CDX2 fusion have not been previously reported. Herein, we report a case of spindle cell myoepithelioma arising within the intravascular space of the right index finger in a 52-year-old male of more than 20 years duration. Histopathology demonstrated an intravascular tumefactive lesion composed of predominantly plump banal spindle cells in a fascicular arrangement within a mixed collagenous and chondromyxoid stroma colliding with papillary endothelial hyperplasia (Masson tumor). By immunohistochemistry, the lesional cells were positive for keratin-AE1/3, epithelial membrane antigen, S100, SOX10, glial fibrillary acid protein, calponin and negative for CD34, smooth muscle actin, desmin, p63, and ERG. Fluorescence in situ hybridization for EWSR1 gene rearrangement was negative. Next-generation sequencing detected a novel IRF2BP2::CDX2 fusion involving Exon 1 of the IRF2BP2 gene and Exon 2 of the CDX2 gene confirmed by reverse transcriptase polymerase chain reaction and Sanger sequencing. Further, clinical evaluation for a salivary gland mass in the head and neck region and magnetic resonance imaging (MRI) of the chest, abdomen, and pelvis was performed with no evidence of tumor elsewhere. Taken together, the overall features were considered diagnostic of STM. Our current case underscores the novelty of the IRF2BP2::CDX2 gene fusion in STM and its exceptionally rare intravascular location.


Asunto(s)
Mioepitelioma , Neoplasias de los Tejidos Blandos , Masculino , Humanos , Persona de Mediana Edad , Mioepitelioma/genética , Mioepitelioma/diagnóstico , Hibridación Fluorescente in Situ , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Inmunohistoquímica , Fusión Génica , Neoplasias de los Tejidos Blandos/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Factor de Transcripción CDX2/genética
12.
Biochim Biophys Acta Gen Subj ; 1866(10): 130186, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688336

RESUMEN

Zebrafish irf2bp2a, an ortholog of human IRF2BP2, is specifically expressed in the developing liver at growth stage. As a multi-functional protein, the role of irf2bp2a during hepatogenesis remains unclear. Here we take advantage of an irf2bp2a knockout line to show that the deficiency of irf2bp2a can induce apoptosis of hepatic cells through aberrant p53 activation at the early stage of embryonic development. Mechanistic studies reveal that within the IRF2BP2-null hepatic cells, more MDM2 molecules, the E3 ubiquitin ligase of P53, can be sequestrated into the IRF2-MDM2 complex, which in turns stabilizes P53 protein. Moreover, irf2bp2a is demonstrated as a direct downstream target of c/ebpα. Thus, a C/ebpα-Irf2bp2a-P53 axis controls liver development in zebrafish. Overall, our findings indicate a stage-specific role of irf2bp2a on liver organogenesis by regulating p53 pathway.


Asunto(s)
Hígado , Proteína p53 Supresora de Tumor , Proteínas de Pez Cebra , Pez Cebra , Animales , Hígado/crecimiento & desarrollo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
J Med Case Rep ; 16(1): 187, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35538558

RESUMEN

BACKGROUND: Mutations or polymorphisms of genes that are associated with inflammasome functions are known to predispose individuals to Crohn's disease and likely affect clinical presentations and responses to therapeutic agents in patients with Crohn's disease. The presence of additional gene mutations/polymorphisms that can modify immune responses may further affect clinical features, making diagnosis and management of Crohn's disease even more challenging. Whole-exome sequencing is expected to be instrumental in understanding atypical presentations of Crohn's disease and the selection of therapeutic measures, especially when multiple gene mutations/polymorphisms affect patients with Crohn's disease. We report the case of a non-Hispanic Caucasian female patient with Crohn's disease who was initially diagnosed with pediatric acute-onset neuropsychiatric syndrome with fluctuating anxiety symptoms at 9 years of age. This patient was initially managed with pulse oral corticosteroid treatment and then intravenous immunoglobulin due to her immunoglobulin G1 deficiency. At 15 years of age, she was diagnosed with Crohn's disease, following onset of acute abdomen. Treatment with oral corticosteroid and then tumor necrosis factor-α blockers (adalimumab and infliximab) led to remission of Crohn's disease. However, she continued to suffer from chronic abdominal pain, persistent headache, general fatigue, and joint ache involving multiple joints. Extensive gastrointestinal workup was unrevealing, but whole-exome sequencing identified two autosomal dominant gene variants: NLRP12 (loss of function) and IRF2BP2 (gain of function). Based on whole-exome sequencing findings, infliximab was discontinued and anakinra, an interleukin-1ß blocker, was started, rendering marked improvement of her clinical symptoms. However, Crohn's disease lesions recurred following Yersinia enterocolitis. The patient was successfully treated with a blocker of interleukin-12p40 (ustekinumab), and anakinra was discontinued following remission of her Crohn's disease lesions. CONCLUSION: Loss-of-function mutation of NRLRP12 gene augments production of interleukin-1ß and tumor necrosis factor-α, while gain-of-function mutation of IRF2BP2 impairs cytokine production and B cell differentiation. We propose that the presence of these two autosomal dominant variants caused an atypical clinical presentation of Crohn's disease.


Asunto(s)
Enfermedad de Crohn , Niño , Enfermedad de Crohn/complicaciones , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/genética , Femenino , Humanos , Infliximab/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1beta/genética , Factor de Necrosis Tumoral alfa , Secuenciación del Exoma
14.
Biochem Biophys Res Commun ; 615: 81-87, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35609419

RESUMEN

Hepatocyte nuclear factor 4α (HNF4α) has essential roles in controlling the expression of a variety of genes involved in key metabolic pathways, including gluconeogenesis in the liver. The mechanistic and physiological significance of peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) for HNF4α-mediated transcriptional activation models for gluconeogenic genes is well characterized. However, the transcriptional repression of HNF4α for those genes remains to be examined. In this study, we applied novel proteomic techniques to evaluate the interactions of HNF4α, including those with biochemically labile binding proteins. Based upon our experiments, we identified interferon regulatory factor 2 binding protein 2 (IRF2BP2) as a novel HNF4α co-repressor. This interaction could not be detected by conventional immunoprecipitation. IRF2BP2 repressed the transcriptional activity of HNF4α dependent on its E3 ubiquitin ligase activity. Deficiency of the IRF2BP2 gene in HepG2 cells induced gluconeogenic genes comparable to that of forskolin-treated wild-type HepG2 cells. Together, these results suggest that IRF2BP2 represents a novel class of nuclear receptor co-regulator.


Asunto(s)
Gluconeogénesis , Factor Nuclear 4 del Hepatocito , Proteínas Co-Represoras/metabolismo , Regulación de la Expresión Génica , Gluconeogénesis/genética , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/metabolismo , Proteómica
15.
Physiol Behav ; 249: 113766, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240124

RESUMEN

PURPOSE: Exercise is an effective way to alleviate insulin resistance (IR). However, the underlying mechanisms remain to be elucidated. Previous studies demonstrated that cardiolipin synthase 1 (CRLS1)/interferon-regulatory factor-2 binding protein 2 (IRF2bp2)-activating transcription factor 3 (ATF3)-adiponectin receptor 2 (AdipoR2)-adaptor protein containing pH domain, PTB domain and leucine zipper motif 1 (APPL1)-protein kinase B (AKT/PKB)-related signaling was closely associated with obesity-induced IR-related diseases, but the correlation between exercise training alleviating obesity-induced IR and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in rats is unknown. Therefore, We want to investigate the effect of exercise training on IR and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in rat. METHODS: The male healthy Sprague-Dawley rats were divided into four groups: normal control group (NCG, n = 10), diet-induced obesity-sedentary group (DIO-SG, n = 10), diet-induced obesity-chronic exercise group (DIOCEG, n = 10) received chronic swim exercise training and diet-induced obesity-acute exercise group (DIO-AEG, n = 10) received acute swim exercise training. We measured the levels of IR-related indicators and the protein levels of hepatic CRLS1/IRF2bp2-ATF3-AdipoR2-APPL1-AKT-related signaling in NCG, DIO-SG, DIOCEG and DIO-AEG. RESULTS: We found that high-fat diet (HFD)-induced obesity decreased insulin sensitivity in rats accompanied by decreased protein levels of hepatic CRLS1, IRF2bp2, AdipoR2, APPL1, p-AKT and increased protein level of hepatic ATF3. The acute exercise and the chronic exercise both increased insulin sensitivity in rats. The chronic exercise decreased hepatic ATF3 protein level and increased CRLS1, IRF2bp2, AdipoR2, APPL1, p-AKT protein levels in HFD-fed rats. The acute exercise decreased hepatic ATF3 protein level and increased hepatic IRF2bp2, APPL1 and p-AKT protein levels in HFD-fed rats. The acute exercise had no significant effect on hepatic CRLS1 and AdipoR2 protein levels in HFD-fed rats. CONCLUSION: Our current findings indicated that exercise alleviated obesity-induced IR accompanied by changes in protein levels of hepatic ATF3-related signaling in rats. Our results are meaningful for exploring the molecular mechanism of exercise alleviating IR symptoms.


Asunto(s)
Resistencia a la Insulina , Factor de Transcripción Activador 3 , Animales , Dieta Alta en Grasa/efectos adversos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Masculino , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
16.
Front Cardiovasc Med ; 8: 687645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760935

RESUMEN

Interferon regulatory factor 2 binding protein 2 (IRF2BP2) suppresses the innate inflammatory response of macrophages. A 9-nucleotide deletion (rs3045215) in the 3' untranslated region (3'-UTR) of human IRF2BP2 mRNA confers risk of coronary artery disease (CAD) in the Ottawa Heart Genomics Study (OHGS). Here, we sought to identify regulatory mechanisms that may contribute to this risk. We tested how lipopolysaccharides (LPS) affects IRF2BP2 expression in human THP-1 macrophages and primary aortic smooth muscle cells (HAoSMC) genotyped for the deletion allele. Both cell types are implicated in coronary atherosclerosis. We also examined how the deletion affects interaction with RNA binding proteins (RBPs) to regulate IRF2BP2 expression. LPS altered allele-specific binding of RBPs in RNA gel shift assays with the THP-1 macrophage protein extracts. The RBP ELAVL1 suppressed the expression of a luciferase reporter carrying the 3'UTR of IRF2BP2 with the deletion allele. Other RBPs AUF1 or KHSRP did not confer such allele specific regulation. Since it is co-inherited with a risk variant for osteoporosis, a condition tied to arterial calcification, we examined the association of the deletion allele with coronary artery calcification in individuals who had undergone computed tomography angiography in the OHGS. In 323 individuals with a minimal burden of atherosclerosis (<30% coronary stenosis) and 138 CAD cases (>50% stenosis), Mendelian randomization revealed that the rs3045215 deletion allele significantly increased coronary artery calcification in men with minimal coronary stenosis. Thus, not only does the rs3045215 deletion allele predict atherosclerosis, but it also predisposes to early-onset calcification in men.

17.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34451894

RESUMEN

Interferon regulatory factor 2 binding protein 2 (IRF2BP2) is a transcriptional coregulator that has an important role in the regulation of the immune response. IRF2BP2 has been associated with the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, but its exact role remains elusive. Here, we identified a novel clinical variant, IRF2BP2 c.625_665del, from two members of a family with inflammatory conditions and investigated the function of IRF2BP2 and c.625_665del mutation in JAK-STAT pathway activation and inflammatory signaling. The levels of constitutive and cytokine-induced phosphorylation of STATs and total STAT1 in peripheral blood monocytes, T cells, and B cells from the patients and four healthy controls were measured by flow cytometry. Inflammation-related gene expression was studied in peripheral blood mononuclear cells using direct digital detection of mRNA (NanoString). Finally, we studied the relationship between IRF2BP2 and STAT1 activation using a luciferase reporter system in a cell model. Our results show that patients having the IRF2BP2 c.625_665del mutation presented overexpression of STAT1 protein and increased constitutive activation of STAT1. In addition, interferon-induced JAK-STAT signaling was upregulated, and several interferon-inducible genes were overexpressed. Constitutive phosphorylation of STAT5 was also found to be upregulated in CD4+ T cells from the patients. Using a cell model, we show that IRF2BP2 was needed to attenuate STAT1 transcriptional activity and that IRF2BP2 c.625_665del mutation failed in this. We conclude that IRF2BP2 has an important role in suppressing immune responses elicited by STAT1 and STAT5 and suggest that aberrations in IRF2BP2 can lead to abnormal function of intrinsic immunity.

18.
Front Cell Dev Biol ; 9: 655307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996817

RESUMEN

Interferon regulatory factor 2-binding protein 2 (IRF2BP2) encodes a member of the IRF2BP family of transcriptional regulators, which includes IRF2BP1, IRF2BP2, and IRF2BPL (EAP1). IRF2BP2 was initially identified as a transcriptional corepressor that was dependent on Interferon regulatory factor-2 (IRF-2). The IRF2BP2 protein is found in different organisms and has been described as ubiquitously expressed in normal and tumor cells and tissues, indicating a possible role for this transcriptional cofactor in different cell signaling pathways. Recent data suggest the involvement of IRF2BP2 in the regulation of several cellular functions, such as the cell cycle, cell death, angiogenesis, inflammation and immune response, thereby contributing to physiological cell homeostasis. However, an imbalance in IRF2BP2 function may be related to the pathophysiology of cancer. Some studies have shown the association of IRF2BP2 expression in hematopoietic and solid tumors through mechanisms based on gene fusion and point mutations in gene coding sequences, and although the biological functions of these types of hybrid and mutant proteins are not yet known, they are thought to be involved in an increase in the likelihood of tumor development. In this review, we address the possible involvement of IRF2BP2 in tumorigenesis through its regulation of important pathways involved in tumor development.

19.
Inflammation ; 43(4): 1464-1475, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32239393

RESUMEN

Cardiomyopathy commonly occurs after sepsis and is closely associated with high mortality in clinic. Interferon regulatory factor-2 binding protein 2 (IRF2BP2) has been identified as a negative regulator of inflammation, but its role in septic cardiomyopathy is unknown. The current study aims to illuminate the regulatory function of IRF2BP2 on sepsis-induced cardiomyopathy and to explore the underlying mechanisms. Protein expression of IRF2BP2 in response to sepsis-induced cardiomyopathy was examined in the heart of mice challenged by LPS intraperitoneal injection. AAV9-delivered IRF2BP2 overexpression in the heart was applied to evaluate the regulatory role of IRF2BP2 in sepsis-induced myocardial depression, inflammatory response, and cell death. The molecular mechanisms underlying IRF2BP2-regulated cardiomyopathy were explored using western blot screening assay. Primary cardiomyocytes have been isolated to further confirm the role and mechanism of IRF2BP2 during septic cardiomyopathy. IRF2BP2 expression was dramatically increased in the heart of mice after LPS administration. AAV9-mediated IRF2BP2 overexpression significantly improved sepsis-induced cardiac dysfunction, inhibited inflammatory cell infiltration and cytokine production, and blocked cell death after LPS treatment. Mechanistically, IRF2BP2 activated AMPK signaling in cardiomyocytes, while inhibiting AMPK activation largely reversed IRF2BP2-benefited inflammatory suppression and cell survival. These findings clearly demonstrated that IRF2BP2 is a potent suppressor of sepsis-induced myocardial depression and related heart impairment. Targeting IRF2BP2 represents a promising therapeutic strategy for septic cardiomyopathy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/prevención & control , Sepsis/metabolismo , Sepsis/prevención & control , Factores de Transcripción/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/prevención & control , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Sepsis/inducido químicamente
20.
NMC Case Rep J ; 7(2): 47-52, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32322450

RESUMEN

Intracranial mesenchymal chondrosarcoma (MCS) is a rare neoplasm. The diagnosis of MCS is confirmed by the presence of a biphasic pattern on histological examination, comprising undifferentiated small round cells admixed with islands of well-differentiated hyaline cartilage; however, a differential diagnosis may be challenging in some cases. A 28-year-old woman with a 2-month history of headache was referred to our hospital. Radiologic studies showed an extra-axial lobulated mass composed of calcified and uncalcified areas occupying the left middle fossa. Surgical resection was planned, but her headache suddenly worsened before her planned hospital admission and she was admitted as an emergency. Radiologic studies showed an acute hemorrhage in the uncalcified part of the mass. The mass was resected via the left zygomatic approach after embolization of the feeder vessels. The most likely histopathological diagnosis was MCS. However, the typical bimorphic pattern was not identified in our surgical samples; each undifferentiated area and well-differentiated area was observed separately in different tissue specimens, and no islands of well-differentiated hyaline cartilage were identified within the undifferentiated areas in the same specimen. Molecular assays confirmed the presence of HEY1-NCOA2 fusion. IRF2BP2-CDX1 fusion and IDH1/2 mutations were negative. The final diagnosis of MCS was made based on the presence of HEY1-NCOA2 gene fusion. MCS should be included in the differential diagnosis when radiologic studies show an extra-axial lobulated mass with calcification. Furthermore, molecular demonstration of HEY1-NCOA2 gene fusion may help make a precise diagnosis of MCS, especially in surgical samples lacking the typical histopathological features.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA