Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125733

RESUMEN

Leveraging the fluorescence enhancement effect of the G-triplex (G3)/thioflavin T (ThT) catalyzed by the adjacent double-stranded DNA positioned at the 5' terminus of the G3, the G3-specific oligonucleotide (G3MB6) was utilized to facilitate the rapid detection of mercury (Hg(II)) through thymine-Hg(II)-thymine (T-Hg(II)-T) interactions. G3MB6 adopted a hairpin structure in which partially complementary strands could be disrupted with the presence of Hg(II). It prompted the formation of double-stranded DNA by T-Hg(II)-T, inducing the unbound single strand of G3MB6 to spontaneously form a parallel G3 structure, producing a solid fluorescence signal by ThT. Conversely, fluorescence was absent without Hg(II), since no double strand and formation of G3 occurred. The fluorescence intensity of G3MB6 exhibited a positive correlation with Hg(II) concentrations from 17.72 to 300 nM (R2 = 0.9954), boasting a notably low quality of limitation (LOQ) of 17.72 nM. Additionally, it demonstrated remarkable selectivity for detecting Hg(II). Upon application to detect Hg(II) in milk samples, the recovery rates went from 100.3% to 103.2%.


Asunto(s)
ADN , Mercurio , Mercurio/análisis , Mercurio/química , ADN/química , Animales , Espectrometría de Fluorescencia/métodos , Conformación de Ácido Nucleico , Timina/química , Técnicas Biosensibles/métodos , Leche/química
2.
ChemistryOpen ; : e202400089, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051714

RESUMEN

In this study five different complexes of Cu(II) were synthesized for the purpose of environmentally notorious mercury sensing and preliminary biological screening. Pyridine-2,6-dicarboxylic acid (also known as dipicolinic acid, and abbreviated as H2DPA), 3-phenyl pyrazole (3-ppz), 4-iodo-1H-pyrazole (4-ipz), 4-nitropyrazole (4-npz), 4-bromopyrazole (4-bpz), and 4-chloropyrazole (4-cpz) were chosen as potential ligands. The synthesized complexes labelled as 1-5, namely [Cu(DPA)(3-ppz)], [Cu(DPA)(4-ipz)], [Cu(DPA)(4-npz)], [Cu(DPA)(4-bpz)], [Cu(DPA)(4-cpz)], were proposed based on spectroscopic data (FTIR, TGA, and UV-visible spectroscopy). These complexes feature C=O functionalities that are not involved in coordination and may be used for further applications. The isolated complexes were utilized for detecting Hg(II) ions in water samples. Various concentrations of Hg(II) ions were prepared for detection purposes, and changes in absorption concerning complexes 1-5 were determined using UV-Visible spectroscopy. It was found that complexes 3 and 4 exhibit efficient sensing abilities towards Hg(II) ions. The antibacterial activities of complexes 1-5 were assessed against S. typhi and E. coli. The complexes 1 and 3 displayed good antibacterial activities against S. typhi (13.67, and 13.56 mm, respectively) while complexes 1, 2 and 4 were found to be efficient against E. coli (11.6, 12.66, 11.31 mm, respectively). The absorption maxima of 2,2-diphenyl-1-picryhydrazyl (DPPH) at 517 nm, considerably shifted upon addition of complexes 1-5. The results reveal that the complexes possess potential free radical scavenging abilities.

3.
Food Chem ; 451: 139390, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653103

RESUMEN

The DNA-based biosensor utilises a thymine/guanine(T/G)-rich ODN-4 scaffold with 4',6-diamidino-2-phenylindole(DAPI) as a fluorescent emissary to monitor mercury/lead(Hg(II)/Pb(II)) ions simultaneously. Key to its bifocal detection capability is the twin unbound cytosine(C) bases strategically bridging the G-quadruplex and T-rich sequences, enabling their synergistic interplay. It facilitates the recognition of Hg(II)/Pb(II) ions, characterised by high specificity, and effectively mitigates interference from silver(Ag(I)). The G-quadruplex, guided by the C bases, induces a conformational transition in T-Hg(II)-T complexes, resulting in intense fluorescence. Pb(II) causes a spatial shift in the G-quadruplex, relaxing the T-Hg(II)-T base pairs and attenuating the fluorescence signal. The ODN-4 exhibits a robust, linear correlation with Hg(II) concentration (4.09 nmol/L to 1000 nmol/L) and Pb(II) concentration (3.22 nmol/L to 5 µmol/L). Recovery rates in milk, tap water, and rice water specimens with both ions validate method accuracy (Hg(II): 95.19% to 104.68%, Pb(II): 98.20% to 103.46%). It holds promising prospects for practical food analysis.


Asunto(s)
Técnicas Biosensibles , ADN , Colorantes Fluorescentes , Indoles , Mercurio , Técnicas Biosensibles/instrumentación , ADN/química , Colorantes Fluorescentes/química , Mercurio/análisis , Mercurio/química , Indoles/química , Plomo/análisis , Plomo/química , Leche/química , Animales , G-Cuádruplex , Metales Pesados/química , Metales Pesados/análisis , Contaminación de Alimentos/análisis , Espectrometría de Fluorescencia
4.
J Fluoresc ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300484

RESUMEN

This research introduces a novel fluorescence sensor 'on-off-on' employing nitrogen-doped carbon dots (N-CDs) with an 'on-off-on' mechanism for the selective and sensitive detection of Hg(II) and L-cysteine (L-Cys). N-CDs was synthesized using citric acid as the carbon precursor and urea as the nitrogen source in dimethylformamide (DMF) solvent, resulting in red emissive characteristics under UV light. Comprehensive spectroscopic analyses, including UV-Vis, fluorescence, FT-IR, XRD, XPS, Raman, and Zeta potential techniques, validated the structural and optical characteristics of the synthesized N-CDs. The maximum excitation and emission of N-CDs were observed at 548 and 622 nm, respectively. The quantum yield of N-CDs was calculated to be 16.1%. The fluorescence of N-CDs effectively quenches upon the addition of Hg(II) due to the strong coordination between Hg(II) and the surface functionalities of N-CDs. Conversely, upon the subsequent addition of L-Cys, the fluorescence of N-CDs was restored. This restoration can be attributed to the stronger affinity of the -SH group in L-Cys towards Hg(II) relative to the surface functionalities of N-CDs. This dual-mode response enabled the detection of Hg(II) and L-Cys with impressive detection limits of 15.1 nM and 8.0 nM, respectively. This sensor methodology effectively detects Hg(II) in lake water samples and L-Cys levels in human urine, with a recovery range between 99 and 101%. Furthermore, the N-CDs demonstrated excellent stability, high sensitivity, and selectivity, making them a promising fluorescence on-off-on probe for both environmental monitoring of Hg(II) and clinical diagnostics of L-Cys.

5.
Anal Chim Acta ; 1230: 340404, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36192070

RESUMEN

Transition metal oxides are widely used in electrochemical detection because of the promotion of redox of heavy metal ions (HMIs) by valence change behavior. However, it is challenging to favorably promote the valence change to achieve the improvement of detection sensitivity. Herein, a Mn3O4/g-C3N4 composite (named as MO-CN) with small-sized of Mn3O4 and high proportion of Mn(II) and Mn(III) was prepared, which reveals an excellent performance on detecting mercury ion (Hg(II)). It is discovered that Mn3O4 becomes small in size and well disperses on g-C3N4, which solves the adverse effect of agglomeration and also lead to a good conductivity. And g-C3N4 can provide more adsorption sites to enhance the adsorption on Hg(II). Heterojunction is proved to form in MO-CN and thus accelerates electrons to flow from g-C3N4 to Mn3O4. This results in transforming Mn(IV) to Mn(II) and Mn(III) in Mn3O4, thereby promoting the cycle of Mn(II)/Mn(III)/Mn(IV) and furthermore facilitating the redox of Hg(II). Simultaneously, the obtained sensitivity (473.43 µA µM-1 cm-2) and limit of detection (LOD, 0.003 µM) are as expected. The nanocomposites and heterojunction based on transition metal oxide and 2D nanomaterials is promising to boost the detection of HMIs.


Asunto(s)
Mercurio , Metales Pesados , Nanocompuestos , Electrones , Óxidos
6.
Crit Rev Anal Chem ; : 1-17, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290138

RESUMEN

To maintain a green and sustainable environment for human beings, rapid detection of potentially toxic heavy metals like mercury (Hg(II)) has attracted great attention. Recently, sensors have been designed which can selectively detect Hg(II) over other common available cations and give a naked eye or fluorometric response. In the last two decades, the trend is shifting from bulky organic chemosensors toward nanoparticles due to their rapid response, low cost, eco-friendly and easy synthesis. In this review, promising nanoparticles-based sensors for Hg(II) detection are discussed. The nano-sensors are functionalized with nucleotide or other suitable materials which coordinate with Hg(II) ions and give clear color or fluorescence change. The operational mechanisms are discussed focusing on its four basic types. The nanoparticles-based sensors are even able to detect Hg in three different oxidation states (Hg(II), Hg(I) and Hg(0)). Recently, the trend has been shifted from ordinary nanoparticles to magnetic nanoparticles to simultaneously detect and remove Hg(II) ions from environmental samples. Furthermore, the nano-sensors for Hg(II) are compared with each other and with the reported organic chemosensors.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118277, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32217455

RESUMEN

Two novel rhodamine-polystyrene solid-phase fluorescence sensors PS-RB-2 and PS-R6G-2 with pyrene or naphthalene as fluorophore were synthesized for Hg(II) detection. Their structures were characterized by Fourier transform infrared (FTIR) spectra and scanning electron micrographs (SEM). Sensor PS-RB-2 displayed higher selectivity and sensitivity to Hg(II), with a lower detection limit of 0.065 µM. A detection mechanism involving the Hg(II) chelation-induced spirocycle open of rhodamine was proposed and discussed from theoretic level based on crystal structures and density functional theory (DFT) calculations. Sensor PS-RB-2 with recyclable and environment-friendly performance was successfully employed to fluorescent detection of Hg(II) in real water and fish samples, indicating its good potential in practical application. Its solid phase extraction columns were developed for rapid detection of Hg(II) by observing the color change with the naked eyes.

8.
Mater Sci Eng C Mater Biol Appl ; 47: 325-32, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25492203

RESUMEN

Herein, a facile hydrothermal treatment of lime juice to prepare biocompatible nitrogen-doped carbon quantum dots (N-CQDs) in the presence of ammonium bicarbonate as a nitrogen source has been presented. The resulting N-CQDs exhibited excitation and pH independent emission behavior; with the quantum yield (QY) up to 40%, which was several times greater than the corresponding value for CQDs with no added nitrogen source. The N-CQDs were applied as a fluorescent probe for the sensitive and selective detection of Hg(2+) ions with a detection limit of 14 nM. Moreover, the cellular uptake and cytotoxicity of N-CQDs at different concentration ranges from 0.0 to 0.8 mg/ml were investigated by using PC12 cells as a model system. Response surface methodology was used for optimization and systematic investigation of the main variables that influence the QY, including reaction time, reaction temperature, and ammonium bicarbonate weight.


Asunto(s)
Materiales Biocompatibles/química , Compuestos de Calcio/química , Carbono/química , Colorantes Fluorescentes/química , Nitrógeno/química , Óxidos/química , Puntos Cuánticos/química , Animales , Línea Celular Tumoral , Iones/química , Mercurio/química , Células PC12 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA