Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med Genomics ; 12(1): 138, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31623605

RESUMEN

BACKGROUND: Healthcare providers increasingly use information about pathogenic variants in cancer predisposition genes, including sequence variants and large rearrangements (LRs), in medical management decisions. While sequence variant detection is typically robust, LRs can be difficult to detect and characterize and may be underreported as a cause for hereditary cancer risk. This report describes the outcomes of hereditary cancer genetic testing using a comprehensive strategy that employs next-generation sequencing (NGS) for LR detection, coupled with LR confirmation using repeat hybrid capture NGS, microarray comparative genomic hybridization (microarray-CGH), and/or multiplex ligation-dependent probe amplification (MLPA). METHODS: Sequencing and LR analysis were conducted in a consecutive series of 376,159 individuals who received clinical testing with a hereditary pan-cancer gene panel from September 2013 through May 2017. NGS dosage analysis was used to evaluate potential deletions or duplications, with controls in place to exclude pseudogene reads. Samples positive for a putative LR based on NGS were confirmed using a comprehensive approach that included targeted microarray-CGH and/or MLPA analysis, with further examination as needed to ascertain the nature of the LR. RESULTS: A total of 3461 LRs were identified and classified as a deleterious mutation (DM), suspected deleterious mutation (SDM) or variant of uncertain significance. Pathogenic LRs (DM/SDM) accounted for the majority of LRs (67.7%), the largest proportion of which were deletions (86.1%), followed by duplications (11.3%), insertions (1.8%), triplications (0.5%), and inversions (0.3%). Several cases presented illustrate that the laboratory approach employed here can ensure consistent identification and accurate characterization of LRs. In the absence of this comprehensive testing strategy, 9% of LRs identified in this testing population might have been missed, potentially leading to inappropriate medical management in as many as 210 individuals referred for hereditary cancer testing. CONCLUSIONS: These data show that copy number analysis using NGS coupled with confirmatory testing reliably detects and characterizes LRs. Further, LRs comprise a substantial proportion (7.2%) of pathogenic variants identified by the test. A robust and accurate LR identification strategy is an essential component of a high-quality genetic testing program, enabling clinicians to optimize patient medical management decisions.


Asunto(s)
Reordenamiento Génico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Estudios de Casos y Controles , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Duplicación de Gen , Humanos , Mutagénesis Insercional , Neoplasias/diagnóstico , Análisis de Secuencia de ADN , Eliminación de Secuencia
2.
Cancer Genet ; 235-236: 31-38, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31056428

RESUMEN

Next-generation sequencing (NGS) hereditary pan-cancer panel testing can identify somatic variants, which exhibit lower allele frequencies than do germline variants and may confound hereditary cancer predisposition testing. This analysis examined the prevalence and characteristics of likely-somatic variants among 348,543 individuals tested using a clinical NGS hereditary pan-cancer panel. Variants showing allele frequencies between 10% and 30% were interpreted as likely somatic and identified in 753 (0.22%) individuals. They were most frequent in TP53, CHEK2 and ATM, commonly as C-to-T transitions. Among individuals who carried a likely-somatic variant and reported no personal cancer history, 54.2% (78/144) carried a variant in TP53, CHEK2 or ATM. With a reported cancer history, this percentage increased to 81.1% (494/609), predominantly in CHEK2 and TP53. Their presence was associated with age (OR=3.1, 95% CI 2.5, 3.7; p<0.001) and personal history of cancer (OR=3.3, 95% CI 2.7, 4.0; p<0.001), particularly ovarian cancer. Germline ATM pathogenic variant carriers showed significant enrichment of likely-somatic variants (OR=2.8, 95% CI 1.6, 4.9; p = 0.005), regardless of cancer status. The appearance of likely-somatic variants is consistent with clonal hematopoiesis, possibly influenced by cancer treatment. These findings highlight the precision required of diagnostic laboratories to deliver accurate germline testing results.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación de Línea Germinal/genética , Síndromes Neoplásicos Hereditarios/genética , Adulto , Anciano , Proteínas de la Ataxia Telangiectasia Mutada/genética , Secuencia de Bases , Quinasa de Punto de Control 2/genética , Frecuencia de los Genes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Tamizaje Masivo , Persona de Mediana Edad , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA