Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Bioresour Technol ; 411: 131301, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39153694

RESUMEN

This study investigated the technical feasibility of using electrogermination to activate dormant cysts as an inoculum for subsequent 14-d photosynthetic astaxanthin production in Haematococcus lacustris. Electrotreatment affected the cell viability, surface charge, and morphology of H. lacustris cysts. At an optimal voltage of 2 V for 60 min, the cyst germination rate peaked at 44.6 % after 1 d, representing a 2.2-fold increase compared with that of the untreated control. Notably, electrogermination significantly enhanced both the astaxanthin content (44.9 mg/g cell) and productivity (13.2 mg/L/d) after 14 d of photobioreactor cultivation, corresponding to 1.7- and 1.5-fold increases compared with those in control, respectively. However, excessive electrotreatment, particularly at voltages exceeding 2 V or for durations beyond 60 min, did not enhance the astaxanthin production capability of H. lacustris. Proper optimization of renewable electrogermination can enable sustainable algal biorefinery to produce multiple bioactive products without compromising cell viability and astaxanthin productivity.


Asunto(s)
Xantófilas , Xantófilas/metabolismo , Chlorophyceae/metabolismo , Técnicas Electroquímicas/métodos , Fotobiorreactores , Chlorophyta/metabolismo , Fotosíntesis , Supervivencia Celular
2.
Life (Basel) ; 14(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39202719

RESUMEN

Haematococcus lacustris (Girod-Chantrans) Rostafinski (Chlorophyta) is the richest microalgal source of astaxanthin. Natural astaxanthin from H. lacustris has been widely studied and used for commercial production worldwide. In this study, we examined the effects of 11 antibiotics (dihydrostreptomycin sulphate, neomycin, chloramphenicol, penicillin, streptomycin, ampicillin, kanamycin, gentamycin, hygromycin B, tetracycline, and paromomycin) on the biomass dry weight, growth, and astaxanthin yield of H. lacustris using Jaworski's medium without a nitrogen source. Astaxanthin content in H. lacustris was improved in the presence of ampicillin (0.25 g/L, 0.5 g/L, 1 g/L), chloramphenicol (0.25 g/L), and penicillin (0.25 g/L, 0.5 g/L, 1 g/L) in comparison to the control on day 15. The greatest increase in astaxanthin content on day 15 (6.69-fold) was obtained with the addition of penicillin (0.5 g/L) in comparison to the control. Similarly, on day 15, the cell numbers were also the highest for the H. lacustris culture grown with the addition of penicillin (0.5 g/L).

3.
Bioresour Bioprocess ; 11(1): 78, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095685

RESUMEN

Astaxanthin biosynthesis in Haematococcus pluvialis is driven by energy. However, the effect of the flagella-mediated energy-consuming movement process on astaxanthin accumulation has not been well studied. In this study, the profiles of astaxanthin and NADPH contents in combination with the photosynthetic parameters with or without flagella enabled by pH shock were characterized. The results demonstrated that there was no significant alteration in cell morphology, with the exception of the loss of flagella observed in the pH shock treatment group. In contrast, the astaxanthin content in the flagella removal groups was 62.9%, 62.8% and 91.1% higher than that of the control at 4, 8 and 12 h, respectively. Simultaneously, the increased Y(II) and decreased Y(NO) suggest that cells lacking the flagellar movement process may allocate more energy towards astaxanthin biosynthesis. This finding was verified by NADPH analysis, which revealed higher levels in flagella removal cells. These results provide preliminary insights into the underlying mechanism of astaxanthin accumulation enabled by energy reassignment in movement-lacking cells.

4.
Molecules ; 29(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39064898

RESUMEN

Astaxanthin has 550 times more antioxidant activity than vitamin E, so it can scavenge free radicals in vivo and improve body immunity. However, the poor stability of astaxanthin becomes a bottleneck problem that limits its application. Herein, Haematococcus pluvialis (H. pluvialis) as a raw material was used to extract astaxanthin, and the optimal extraction conditions included the extraction solvent (EA:EtOH = 1:6, v/v), extraction temperature (60 °C), and extraction time (70 min). The extracted astaxanthin was then loaded using lecithin to form corresponding liposomes via the ethanol injection method. The results showed that the particle size and zeta potential of the prepared liposomes were 105.8 ± 1.2 nm and -38.0 ± 1.7 mV, respectively, and the encapsulation efficiency of astaxanthin in liposomes was 88.83%. More importantly, the stability of astaxanthin was significantly improved after being embedded in the prepared liposomes.


Asunto(s)
Liposomas , Xantófilas , Xantófilas/aislamiento & purificación , Xantófilas/química , Liposomas/química , Tamaño de la Partícula , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Chlorophyta/química , Chlorophyceae/química
5.
Environ Pollut ; 359: 124574, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029865

RESUMEN

Microalgae play an important role in aquatic ecosystems, but the widespread presence of micro- and nano-plastics (MNPs) poses significant threats to them. Haematococcus pluvialis is well-known for its ability to produce the antioxidant astaxanthin when it experiences stress from environmental conditions. Here we examined the effects of polystyrene nanoplastics (PS-NPs) at concentrations of 0.1, 1, and 10 mg/L on H. pluvialis over an 18-day period. Our results show that PS-NPs caused a significant, dose-dependent inhibition of H. pluvialis growth and a reduction in photosynthesis. Furthermore, PS-NPs severely damaged the morphology of H. pluvialis, leading to cell shrinkage, collapse, content release, and aggregation. Additionally, PS-NPs induced a dose-dependent increase in soluble protein content and a decrease in the production of extracellular polymeric substances. These findings indicate that PS-NPs has the potential to adversely affect both the physiology and morphology of H. pluvialis. An increase in reactive oxygen species and antioxidant enzyme activities was also observed, suggesting an oxidative stress response to PS-NPs exposure. Notably, the synthesis of astaxanthin, which is crucial for H. pluvialis's survival under stress, was significantly inhibited in a dose-dependent manner under strong light conditions, along with the down-regulation of genes involved in the astaxanthin biosynthesis pathway. This suggests that PS-NPs exposure reduces H. pluvialis's ability to survive under adverse conditions. This study enhances our understanding of the toxic effects of PS-NPs on microalgae and underscores the urgent need for measures to mitigate MNP pollution to protect aquatic ecosystems.


Asunto(s)
Microalgas , Fotosíntesis , Poliestirenos , Contaminantes Químicos del Agua , Xantófilas , Xantófilas/metabolismo , Fotosíntesis/efectos de los fármacos , Poliestirenos/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Chlorophyceae/efectos de los fármacos , Chlorophyceae/metabolismo , Estrés Oxidativo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Especies Reactivas de Oxígeno/metabolismo , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Microplásticos/toxicidad , Nanopartículas/toxicidad , Antioxidantes/metabolismo
6.
Adv Appl Microbiol ; 128: 105-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39059842

RESUMEN

This work explores astaxanthin (AXT), a valuable xanthophyll ketocarotenoid pigment with significant health benefits and diverse applications across various industries. It discusses the prevalence of synthetic AXT, and the development of natural-based alternatives derived from microorganisms such as microalgae, bacteria, and yeast. The chapter examines the potential of microbial AXT production, highlighting the advantages and challenges associated with natural AXT. Key microorganisms like Haematococcus pluvialis, Paracoccus carotinifaciens, and Phaffia rhodozyma are emphasized for their role in commercially producing this valuable ketocarotenoid. The narrative covers the complexities and opportunities in microbial AXT production, from cell structure implications to downstream processing strategies. Additionally, the chapter addresses current applications, commercialization trends, and market dynamics of natural microbial AXT, emphasizing the importance of cost-effective production, regulatory compliance, and technological advancements to reduce the market cost of the final product. As demand for natural microbial-based AXT rises, this chapter envisions a future where research, innovation, and collaboration drive sustainable and competitive microbial AXT production, fostering growth in this dynamic market.


Asunto(s)
Xantófilas , Xantófilas/metabolismo , Microalgas/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Paracoccus/metabolismo , Paracoccus/genética , Paracoccus/crecimiento & desarrollo , Microbiología Industrial/métodos , Basidiomycota
7.
Microorganisms ; 12(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38930422

RESUMEN

Natural astaxanthin is in high demand due to its multiple health benefits. The microalga Haematococcus lacustris has been used for the commercial production of astaxanthin. In this study, we investigated the effects of six different media with and without a nitrogen source and supplementation with nine organic compounds on the growth and astaxanthin accumulation of H. lacustris. The highest astaxanthin contents were observed in cultures of H. lacustris in Jaworski's medium (JM), with a level of 9.099 mg/L in JM with a nitrogen source supplemented with leucine (0.65 g/L) and of 20.484 mg/L in JM without a nitrogen source supplemented with sodium glutamate (0.325 g/L). Six of the nine organic compounds examined (leucine, lysine, alanine, sodium glutamate, glutamine, and cellulose) enhanced the production of astaxanthin in H. lacustris, while malic acid, benzoic acid, and maltose showed no beneficial effects.

8.
Bioresour Technol ; 406: 130974, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879049

RESUMEN

The extraction of astaxanthin from Haematococcus pluvialis involves the utilization of petroleum-derived organic solvents or supercritical CO2, beset by safety concerns, high costs, and environmental sustainability limitations. This study, in contrast, employed a method involving the adjustment of salt concentration, propylene glycol, and vegetable oil fraction to disrupt emulsion in aqueous cell lysates for facilitating the separation of astaxanthin. Under optimized conditions, an astaxanthin-containing oil with a content of 1.88% was obtained even with the use of wet biomass, and four rounds of consecutive extraction resulted in a cumulative recovery yield of 66.41%. This process produced astaxanthin-enriched soybean oil with 9.49 times improved antioxidant capacity that satisfies a requirement for health functional application. Omitting the solvent removal and drying processes, which consume tremendous energy, can reduce the production cost by 2.98 times compared to conventional methods. Consequently, this study suggests an effective technique for producing edible oil containing H. pluvialis-derived astaxanthin.


Asunto(s)
Chlorophyta , Xantófilas , Xantófilas/aislamiento & purificación , Chlorophyta/química , Chlorophyceae , Emulsiones , Antioxidantes/farmacología , Biomasa , Solventes/química , Aceite de Soja/química
9.
Int J Biol Macromol ; 274(Pt 1): 133014, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852729

RESUMEN

Algal polysaccharides possess many biological activities and health benefits, such as antioxidant, anti-tumor, anti-coagulant, and immunomodulatory potential. Gut microbiota has emerged as one of the major contributor in mediating the health benefits of algal polysaccharides. In this study we showed that Haematococcus pluvialis polysaccharides (HPP) decreased serum transaminase levels and hepatic triglyceride content, alleviated inflammation and oxidative stress in the liver of chronic and binge ethanol diet-fed mice. Furthermore, HPP reduced endotoxemia, improved gut microbiota dysbiosis, inhibited epithelial barrier disruption and gut vascular barrier (GVB) damage in ethanol diet-fed mice. Co-housing vehicle-fed mice with HPP-fed mice alleviated ethanol-induced liver damage and endotoxemia. Moreover, fecal microbiota transplantation from HPP-fed mice into antibiotic-induced microbiota-depleted recipients also alleviated ethanol-induced liver injury and improved gut epithelial and vascular barrier. Our study demonstrated that HPP ameliorated ethanol-induced gut epithelial and vascular barrier dysfunction through alteration of gut microbiota, therefore preventing alcoholic liver damage.


Asunto(s)
Chlorophyceae , Hígado Graso , Microbioma Gastrointestinal , Mucosa Intestinal , Polisacáridos , Chlorophyceae/química , Polisacáridos/farmacología , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Microbioma Gastrointestinal/efectos de los fármacos , Etanol/toxicidad , Células Epiteliales/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Hígado Graso/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Permeabilidad Capilar/efectos de los fármacos , Heces/microbiología , Estrés Oxidativo/efectos de los fármacos
10.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877488

RESUMEN

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

11.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791459

RESUMEN

Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.


Asunto(s)
Vesículas Extracelulares , Proteoma , Acetato de Sodio , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Acetato de Sodio/metabolismo , Acetato de Sodio/farmacología , Luz , Proteómica/métodos , Estrés Fisiológico , Chlorophyceae/metabolismo , Chlorophyceae/crecimiento & desarrollo , Chlorophyta/metabolismo , Chlorophyta/crecimiento & desarrollo
12.
Life (Basel) ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38792597

RESUMEN

(1) Background: Oxygen has exerted a great effect in shaping the environment and driving biological diversity in Earth's history. Green lineage has evolved primary and secondary carotenoid biosynthetic systems to adapt to Earth's oxygenation, e.g., Haematococcus lacustris, which accumulates the highest amount of secondary astaxanthin under stresses. The two systems are controlled by lycopene ε-cyclase (LCYE) and ß-cyclase (LCYB), which leave an important trace in Earth's oxygenation. (2) Objectives: This work intends to disclose the underlying molecular evolutionary mechanism of Earth's oxygenation in shaping green algal carotenogensis with a special focus on lycopene cyclases. (3) Methods: The two kinds of cyclases were analyzed by site-directed mutagenesis, phylogeny, divergence time and functional divergence. (4) Results: Green lineage LCYEs appeared at ~1.5 Ga after the first significant appearance and accumulation of atmospheric oxygen, the so-called Great Oxygenation Event (GOE), from which LCYBs diverged by gene duplication. Bacterial ß-bicyclases evolved from ß-monocyclase. Enhanced catalytic activity accompanied evolutionary transformation from ε-/ß-monocyclase to ß-bicyclase. Strong positive selection occurred in green lineage LCYEs after the GOE and in algal LCYBs during the second oxidation, the Neoproterozoic Oxygenation Event (NOE). Positively selected sites in the catalytic cavities of the enzymes controlled the mono-/bicyclase activity, respectively. Carotenoid profiling revealed that oxidative adaptation has been wildly preserved in evolution. (5) Conclusions: the functionalization of the two enzymes is a result of primary to secondary adaptations to Earth's oxygenation.

13.
Food Chem ; 449: 139165, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574520

RESUMEN

Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.


Asunto(s)
Dióxido de Carbono , Ácidos Grasos , Microalgas , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Microalgas/química , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Espectrometría de Masas en Tándem , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo
14.
Sci Rep ; 14(1): 5420, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443435

RESUMEN

The microalgae Haematococcus pluvialis are the main source of the natural antioxidant astaxanthin. However, the effective extraction of astaxanthin from these microalgae remains a significant challenge due to the rigid, non-hydrolyzable cell walls. Energy savings and high-efficiency cell disruption are essential steps in the recovery of the antioxidant astaxanthin from the cysts of H. pluvialis. In the present study, H. pluvialis microalgae were first cultured in Bold's Basal medium under certain conditions to reach the maximum biomass concentration, and then light shock was applied for astaxanthin accumulation. The cells were initially green and oval, with two flagella. As the induction time increases, the motile cells lose their flagellum and become red cysts with thick cell walls. Pre-treatment of aqueous two-phase systems based on deep eutectic solvents was used to decompose the cell wall. These systems included dipotassium hydrogen phosphate salt, water, and two types of deep eutectic solvents (choline chloride-urea and choline chloride-glucose). The results of pre-treatment of Haematococcus cells by the studied systems showed that intact, healthy cysts were significantly ruptured, disrupted, and facilitated the release of cytoplasmic components, thus facilitating the subsequent separation of astaxanthin by liquid-liquid extraction. The system containing the deep eutectic solvent of choline chloride-urea was the most effective system for cell wall degradation, which resulted in the highest ability to extract astaxanthin. More than 99% of astaxanthin was extracted from Haematococcus under mild conditions (35% deep eutectic solvent, 30% dipotassium hydrogen phosphate at 50 °C, pH = 7.5, followed by liquid-liquid extraction at 25 °C). The present study shows that the pre-treatment of two-phase systems based on deep eutectic solvent and, thus, liquid-liquid extraction is an efficient and environmentally friendly process to improve astaxanthin from the microalgae H. pluvialis.


Asunto(s)
Charadriiformes , Chlorophyceae , Quistes , Microalgas , Fosfatos , Compuestos de Potasio , Animales , Disolventes Eutécticos Profundos , Antioxidantes , Biomasa , Agua , Solventes , Colina , Urea , Xantófilas
15.
Front Microbiol ; 15: 1332642, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550863

RESUMEN

Nowadays the increasing amount of saline wastewaters has given rise to various biological desalination processes, among which the application possibilities of microalgae represents a priority research area. Next to "real" aquatic species (members of phytoplankton or phytobenthon), species from ephemeral aquatic habitats or aeroterrestrial algae also could be good candidates of research studying salt tolerance or desalination ability, since salinity stress is often referred as "physiological drought" and species from ephemeral habitats can be characterized by high drought tolerance. In this study, the salinity tolerance, salt and nutrient removal ability of a Haematococcus lacustris strain from eastern Hungary were investigated. Vegetative cells showed low salt tolerance, survival was ensured by the formation of cysts up to a sodium-chloride concentration of 2,000 mg l-1. Although relatively moderate (a max. 30%) conductivity reduction and chloride removal were observed, notable (nearly 100%) nitrate and phosphate removal occurred even in the presence of 2,000 mg l-1 NaCl. Carotenoid accumulation was observed earlier and in higher extent in salt treated cultures than in drying out ones, although the amount of astaxanthin-esters was significantly higher in the cultures of drying out experiment than in the corresponding cultures of salt treatment characterized with similar chloride content. Our results suggest that algae isolates from ephemeral aquatic habitats endangered by regular drying out (exposed to special salt stress), could have notable salt tolerance and consequently successful applicability in nutrient removal processes from slightly saline wastewaters. The accumulation of valuable metabolites (such as astaxanthin) as a response to salinity stress, could enhance the economic value of the biomass.

16.
Biotechnol Biofuels Bioprod ; 17(1): 15, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282041

RESUMEN

BACKGROUND: Microalgae-derived extracellular vesicles (EVs), which transfer their cargos to the extracellular environment to affect recipient cells, play important roles in microalgal growth and environmental adaptation. And, they are also considered as sustainable and renewable bioresources of delivery nanocarrier for bioactive molecules and/or artificial drug molecules. However, their molecular composition and functions remain poorly understood. RESULTS: In this study, isolation, characterization, and functional verification of Haematococcus pluvialis-derived EVs (HpEVs) were performed. The results indicated that HpEVs with typical EV morphology and size were secreted by H. pluvialis cells during the whole period of growth and accumulated in the culture medium. Cellular uptake of HpEVs by H. pluvialis was confirmed, and their roles in regulation of growth and various physiological processes of the recipient cells were also characterized. The short-term inhibition of HpEV secretion results in the accumulation of functional cellular components of HpEVs, thereby altering the biological response of these cells at the molecular level. Meanwhile, continuously inhibiting the secretion of HpEVs negatively influenced growth, and fatty acid and astaxanthin accumulation in H. pluvialis. Small RNA high-throughput sequencing was further performed to determine the miRNA cargoes and compelling details in HpEVs in depth. Comparative analysis revealed commonalities and differences in miRNA species and expression levels in three stages of HpEVs. A total of 163 mature miRNAs were identified with a few unique miRNAs reveal the highest expression levels, and miRNA expression profile of the HpEVs exhibited a clear stage-specific pattern. Moreover, a total of 12 differentially expressed miRNAs were identified and their target genes were classified to cell cycle control, lipid transport and metabolism, secondary metabolites biosynthesis and so on. CONCLUSION: It was therefore proposed that cargos of HpEVs, including miRNA constituents, were suggested potential roles in modulate cell physiological state of H. pluvialis. To summarize, this work uncovers the intercellular communication and metabolism regulation functions of HpEVs.

17.
Bioresour Technol ; 394: 130305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199438

RESUMEN

Haematococcus lacustris is a precious algal species renowned for its ability to simultaneous production of astaxanthin and lipid. However, its slow growth rate necessitates the development of appropriate mutagenesis methodologies to effectively enhance its synchronous production of both astaxanthin and lipid. This study introduced the co-mutation of Atmospheric and Room Temperature Plasma (ARTP) and ethanol. The performance and preliminary mechanisms underlying the combined accumulation of astaxanthin and lipid in H. lacustris under both mutations by ARTP and ethanol were comparatively analyzed. Combined astaxanthin and lipid contents relative to total cell mass in the 110-2 strain reached 54.4%, surpassing that of strain 0-3 and the control by 17.0% and 47.6% respectively. Transcriptome level analysis revealed how both ethanol and ARTP induction promote the expressions of carotenoid and lipid synthesis genes and related enzymatic activities. Upregulation of genes associated with cell activity contributed to lipid and astaxanthin metabolism in multi pathways.


Asunto(s)
Chlorophyceae , Etanol , Temperatura , Etanol/metabolismo , Chlorophyceae/metabolismo , Mutación/genética , Lípidos , Xantófilas
18.
Food Res Int ; 176: 113841, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163732

RESUMEN

Astaxanthin is a red-colored secondary metabolite with excellent antioxidant properties, typically finds application as foods, feed, cosmetics, nutraceuticals, and medications. Astaxanthin is usually produced synthetically using chemicals and costs less as compared to the natural astaxanthin obtained from fish, shrimps, and microorganisms. Over the decades, astaxanthin has been naturally synthesized from Haematococcus pluvialis in commercial scales and remains exceptional, attributed to its higher bioactive properties as compared to synthetic astaxanthin. However, the production cost of algal astaxanthin is still high due to several bottlenecks prevailing in the upstream and downstream processes. To that end, the present study intends to review the recent trends and advancements in astaxanthin production from microalgae. The structure of astaxanthin, sources, production strategies of microalgal astaxanthin, and factors influencing the synthesis of microalgal astaxanthin were discussed while detailing the pathway involved in astaxanthin biosynthesis. The study also discusses the relevant downstream process used in commercial scales and details the applications of astaxanthin in various health related issues.


Asunto(s)
Chlorophyceae , Microalgas , Microalgas/metabolismo , Xantófilas/metabolismo
19.
Sci Total Environ ; 912: 168733, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38013097

RESUMEN

A novel third-generation biorefinery approach, including two paths of Ethanol/methane production pathway (EMP) and the direct methane production pathway (DMP), for astaxanthin and ethanol and biogas production from the freshwater microalgae Haematococcus pluvialis was developed previously. To ensure its environmental sustainability, a comprehensive life cycle assessment (LCA) study was conducted based on 1-GJ energy generation from biomethane as the functional unit. Results indicate that the EMP pathway had higher environmental impacts on all categories due to more stages and chemicals/energy consumption (at least five times greater effect). Results showed that while the enzymatic hydrolysis step followed by the fermentation stage was the main contributor to all environmental categories in the EMP route, astaxanthin induction dominated all environmental categories in the DMP route. The results showed that sodium nitrate, phosphate salts, inoculum sludge, acetone, and electricity had considerable environmental impacts. Moreover, despite low enzyme usage in enzymatic hydrolysis, these proteins significantly impacted all environmental categories in this stage. The baseline analysis concluded that to produce 1 GJ energy from methane, about 88 kg and 13 kg CO2 were generated from the EMP and DMP pathways, respectively. A sensitivity analysis was also conducted to compare various ratios of chemicals, such as phosphate salts, with high contributions to enzymatic hydrolysis and astaxanthin induction stages in the EMP and DMP routes, respectively. Finally, the LCA results revealed that the DMP pathway is more environmentally friendly with the same economic value of biomethane and astaxanthin production. This LCA study updated the data related to the environmental assessment of processes to utilize H. pluvialis to produce biofuels and astaxanthin simultaneously.


Asunto(s)
Biocombustibles , Sales (Química) , Ambiente , Etanol , Metano , Fosfatos , Xantófilas
20.
Bioresour Technol ; 393: 130001, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37956949

RESUMEN

The economical way of Haematococcus pluvialis farming is to simultaneously achieve biomass, astaxanthin and lipid using less expensive chemicals. This paper explores the role of exogenous arginine in promoting growth and astaxanthin accumulation under stressful conditions. The application of arginine exerts a synergic effect on biomass, astaxanthin and lipid by improving carbon utilization, activating the arginine pathway and regulating carotenoid and lipid-related genes. Genes related to arginine catabolism, such as ADC, OCT, ASS1, NOS, and OAT, were up-regulated at both the cultivation and astaxanthin induction stages, signifying their importance in both growth and astaxanthin synthesis. Furthermore, transcriptome analysis revealed that arginine up-regulated transcription levels of genes involved carbon fixing, lipid biosynthesis, pyruvate metabolism, carotenoid, tricarboxylic acid cycle, and arginine and proline metabolism. The results provide a significant mechanism and applicability of using exogenous arginine and high light to stimulate bioproducts from Haematococcus pluvialis.


Asunto(s)
Chlorophyceae , Biomasa , Chlorophyceae/metabolismo , Xantófilas/metabolismo , Lípidos , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA