Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 14(9): 197, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39131174

RESUMEN

Phosphorus (P) is the key to several structural molecules and catalyzes numerous biochemical reactions in plant body besides its involvement in energy transfer. Any deficit in P availability is likely to result in reduced RNA and protein content, inhibiting crop growth and development. Thus, availability of soil P is extremely crucial for plant growth especially in acid soils of India, where most of the fraction is bound to solid phase rendering their availability. The present communication deals with the isolation of elite phosphate-solubilizing bacterial (PSB) strains from the acid soils to work out their ability to improve the fertilizer P use efficiency in the acidic environment. Initially twenty-six bacteria were isolated from the acid soils of Northeastern India. Among them, ten bacteria were selected based on formation of halo zone in the Pikovskaya agar plate. In addition, these bacteria were able to solubilize insoluble zinc (Zn) and potassium (K). The isolates were subject to in vitro optimization for P solubilization under different insoluble P source utilization and at different pH and salinity conditions. Strains AN3, AN11, and AN21 exhibited significant solubilization of insoluble P, Zn, and K, and were identified as Streptomyces sp., Enterobacter sp., and Paraburkholderia caribensis. These three bacteria solubilized 206.53 to 254.08 µg mL-1 P, 79.7 to 177.55 µg mL-1 Zn, and 0.96 to 1.56 µg mL-1 K from insoluble minerals. Their performance was further evaluated in pot culture experiment using green gram as test crop. These three bacteria were found to improve P uptake and dry matter accumulation in green gram plant substantially. Seed bio-priming with the PSB strains enhanced the efficiency of added P fertilizer, resulting in a 1.40 to 1.52 times higher effectiveness compared to the control. On the whole, AN11 may be ranked as best inoculant for the acidic soils of Northeastern India. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04042-2.

2.
Heliyon ; 10(12): e32763, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994076

RESUMEN

Multi-environment trials (MET) are crucial for selecting genotypes that are well-suited to different environmental conditions. Incorporating multiple traits in the analysis can provide more reliable recommendations for selecting genotypes with desirable traits, including resistance to the Mungbean Yellow Mosaic Virus (MYMV) and high yield potential. The use of a Multi-Trait Stability Index (MTSI) is a good approach for analyzing the stability of genotypes across multiple traits under MYMV stress. In the present investigation, the performance of thirteen green gram genotypes were evaluated for traits such as yield, plant height, number of branches per plant, and resistance to MYMV. The main objective of the study is to identify highly productive and stable mung bean genotypes resistant to MYMV. MTSI can be calculated by combining information on the performance of genotypes across multiple traits and environmental conditions to provide a single index that indicates the overall stability of genotypes across traits and environments. The results helped to identify two green gram genotypes (Yadadri and JNG-18) that were high-yielding with stable resistance to MYMV stress across multiple environmental conditions. This can provide useful information to breeders for the development of suitable genotypes against MYMV in the affected areas.

3.
J Food Sci Technol ; 61(7): 1355-1362, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910919

RESUMEN

Pulse beetle (Callasobruchus maculatus) is a common infestation during storage of legumes in India, and presently being managed by chemical fumigation. In the present investigation, a non-chemical method based on dielectric heating by microwaves (900 W, 2450 MHz) was studied for disinfestation of green gram at different grain layer thickness (5, 10, 15 and 20 mm) and exposure durations (0-60 s). The susceptibility (LT95) of different stages was in the order of egg (31.668 s) > grub (40.388 s) > pupa (44.176 s) > adult (49.018 s). The adult was tolerant up to 50 s (R2-0.799, P < 0.01) to microwave exposure duration without green gram, and up to 30 s (R2-0.804, P < 0.01) with green gram. Hundred percent mortality was observed at 10 mm (30 s, R2-0.969, P < 0.01) and 15 mm (30 s, R2-0.972, P < 0.01) grain layer thickness without significantly affecting grain quality. Cooking time and germination did not vary significantly up to 30 s of exposure, thereafter, reduced significantly. However, water uptake did not vary significantly up to 60 s of exposure. The microwave radiations are found effective for disinfestations of green gram without significantly affecting the grain quality.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124249, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603957

RESUMEN

Quercetin is an important antioxidant with high bioactivity and it has been used as SARS-CoV-2 inhibitor significantly. Quercetin, one of the most abundant flavonoids in nature, has been in the spot of numerous experimental and theoretical studies in the past decade due to its great biological and medicinal importance. But there have been limited instances of employing quercetin and its derivatives as a fluorescent framework for specific detection of various cations and anions in the chemosensing field. Therefore, we have developed a novel chemosensor based on quercetin coupled benzyl ethers (QBE) for selective detection of Hg2+ with "naked-eye" colorimetric and "turn-on" fluorometric response. Initially QBE itself exhibited very weak fluorescence with low quantum yield (Φ = 0.009) due to operating photoinduced electron transfer (PET) and inhibition of excited state intramolecular proton transfer (ESIPT) as well as intramolecular charge transfer (ICT) within the molecule. But in presence of Hg2+, QBE showed a sharp increase in fluorescence intensity by 18-fold at wavelength 444 nm with high quantum yield (Φ = 0.159) for the chelation-enhanced fluorescence (CHEF) with coordination of Hg2+, which hampers PET within the molecule. The strong binding affinity of QBE towards Hg2+ has been proved by lower detection limit at 8.47 µM and high binding constant value as 2 × 104 M-1. The binding mechanism has been verified by DFT study, Cyclic voltammograms and Jobs plot analysis. For the practical application, the binding selectivity of QBE with Hg2+ has been capitalized in physiological medium to detect intracellular Hg2+ levels in living plant tissue by using green gram seeds. Thus, employing QBE as a fluorescent chemosensor for the specific identification of Hg2+ will pave the way for a novel approach to simplifying the creation of various chemosensors based on quercetin backbone for the precise detection of various biologically significant analytes.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Quercetina , Espectrometría de Fluorescencia , Quercetina/análisis , Mercurio/análisis , Colorantes Fluorescentes/química , Humanos , Espectrometría de Fluorescencia/métodos , Límite de Detección
5.
Int J Food Microbiol ; 417: 110696, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38615426

RESUMEN

The probiotic beverage was developed using germinated and ungerminated pearl millet flour and green gram milk. The germinated and ungerminated pearl millet flour was added to green gram milk at different concentrations (0.5-2.5 %) along with sugar and cardamom. The mixtures were then inoculated with probiotic bacteria Lactobacillus acidophilus incubated at 37 °C for 6 h. Characterization of probiotic beverages was carried out during storage at (4 ± 1)°C for 21 days. The germinated flour beverage had high acidity as compared to the ungerminated flour beverage. The probiotic count in germinated and ungerminated flour beverages ranged from 8.19 to 8.77 × 107 and 8.04 to 8.52 × 107 log CFU/mL, respectively. Antioxidant activity, polyphenol content increased with an increase in the concentration of flour in the beverage. The LC-MS analysis found the existence of vitexin and isovitexin as the main polyphenolic compounds in the probiotic beverage. Non-dairy probiotic beverage prepared with 0.5 % germinated millet flour gave the best taste, color, texture, and rheological properties.


Asunto(s)
Harina , Lactobacillus acidophilus , Pennisetum , Probióticos , Probióticos/análisis , Harina/análisis , Lactobacillus acidophilus/crecimiento & desarrollo , Bebidas/análisis , Bebidas/microbiología , Leche/química , Leche/microbiología , Antioxidantes/análisis , Animales , Polifenoles/análisis , Germinación , Microbiología de Alimentos , Gusto
6.
PeerJ ; 12: e16722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406271

RESUMEN

Quantitative trait loci (QTL) mapping is used for the precise localization of genomic regions regulating various traits in plants. Two major QTLs regulating Soil Plant Analysis Development (SPAD) value (qSPAD-7-1) and trichome density (qTric-7-2) in mungbean were identified using recombinant inbred line (RIL) populations (PMR-1×Pusa Baisakhi) on chromosome 7. Functional analysis of QTL region identified 35 candidate genes for SPAD value (16 No) and trichome (19 No) traits. The candidate genes regulating trichome density on the dorsal leaf surface of the mungbean include VRADI07G24840, VRADI07G17780, and VRADI07G15650, which encodes for ZFP6, TFs bHLH DNA-binding superfamily protein, and MYB102, respectively. Also, candidate genes having vital roles in chlorophyll biosynthesis are VRADIO7G29860, VRADIO7G29450, and VRADIO7G28520, which encodes for s-adenosyl-L-methionine, FTSHI1 protein, and CRS2-associated factor, respectively. The findings unfolded the opportunity for the development of customized genotypes having high SPAD value and high trichome density having a possible role in yield and mungbean yellow vein mosaic India virus (MYMIV) resistance in mungbean.


Asunto(s)
Sitios de Carácter Cuantitativo , Vigna , Sitios de Carácter Cuantitativo/genética , Vigna/genética , Mapeo Cromosómico , Genotipo , Suelo , Tricomas/genética , Hojas de la Planta/genética
7.
Plant Physiol Biochem ; 207: 108369, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38241830

RESUMEN

This research paper focuses on exploring the possibility of delivering macro, micro and trace elements using seed encapsulation through nano-fibres that are known to improve the nutrient use efficiencies while reducing the loss of nutrients. The nano-fibres were developed using an electrospinning machine by subjecting the polymer solution (10% polyvinyl alcohol PVA) loaded with recommended quantities of nutrients under optimal solution (pH, concentration, viscosity) and process (voltage, flow rate, tip-to-collector distance) parameters. The nano-fibres were characterized using SEM, TEM, FT-IR, XRD, TGA and Impedance spectra besides nutrient release pattern by ICP-MS. The data have clearly shown that nano-fibres retained nutrients and released slowly up to 35 days. After the characterization, green gram (Vigna radiata L) seeds were encapsulated with nano-fibres loaded with multi-nutrients and each seed was coated with approximately 20-25 mg of nano-fibres, dibbled into the soil and the physiological, nutritional, growth and yield responses were assessed. Seeds encapsulated with nano-fibres fortified with nutrients (NF) had registered significantly higher crop emergence percentage (C 62%; NF 99.8%), root length (C 12.3; NF 27.1 cm), shoot length (C 28.7; NF 47.7 cm), dry matter production (C 16.2; NF 27.5 g) and grain yield (C 621.6; NF 796.3 kg ha-1). All the parameters measured in nano-fibre encapsulated seeds fortified with 100% of recommended dose of nutrients (NF) were higher than uncoated control (C) seeds but comparable with 100 % conventional fertilizer applied ones (RDF). Such phenomenal increase in growth and yield parameters associated with the extensive surface area of nano-fibres that is capable of retaining and releasing nutrients in a regulated pattern and assist in improving the pulses productivity by achieving balance crop nutrition which alleviating multi-nutrient deficiencies.


Asunto(s)
Vigna , Espectroscopía Infrarroja por Transformada de Fourier , Nutrientes , Semillas , Suelo/química
8.
J Sci Food Agric ; 104(6): 3606-3613, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38148709

RESUMEN

BACKGROUND: Green gram is a rich source of protein, carbohydrates, dietary fibre, and minerals. However, accurate data on the nutritional composition of green gram remains scarce since most researchers reported the carbohydrate content using the 'by difference method'. The objective of the current study is to accurately estimate the nutritional and mineral composition of green gram (Vigna radiata (L.) Wilczek). RESULTS: Ten newly developed varieties and three local varieties of green gram were subjected to proximate and mineral composition analysis. The green gram varieties differed significantly (P < 0.05) for proximate and mineral content. From the results, they contain 62.5 to 84.6 g/kg of moisture, 28.3-37.4 g/kg of ash, 21.9-3.08 g/kg of fat, 484.6-535.7 g/kg of carbohydrate, 228.7-277.6 g/kg of protein, and 118.3-157.9 g/kg of dietary fibre. The most abundant mineral found was phosphorus, ranging 2716.66-4473.49 mg/kg followed by 3183.31-3597.61 mg/kg of potassium, 1506.51-1713.93 mg/kg of magnesium, 166.38-340.62 mg/kg of calcium, 40.16-348.79 mg/kg of iron, 27.60-34.35 mg/kg of zinc, 5.95-12.86 mg/kg of copper and 8.65-19.47 mg/kg of manganese. CONCLUSION: The newly developed varieties of green gram showed high protein and dietary fibre content, while the local varieties were high in calcium and iron. Hence, both types of varieties are nutritionally significant. © 2023 Society of Chemical Industry.


Asunto(s)
Vigna , Calcio , Minerales/análisis , Nutrientes , Hierro , Fibras de la Dieta/análisis , Carbohidratos
9.
Heliyon ; 9(10): e20926, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876491

RESUMEN

Soil macronutrient and micronutrient availability is particularly critical in semi-arid agro-ecological zones that are characterized by poor soil fertility and low rainfall regimes. An experiment was initiated in Siakago, Embu County to investigate the effects of tied-ridges, conventional tillage and input applications on soil nutrient fertility using a randomized complete block design with a split-split plot arrangement for 4 seasons (2018-2021). The treatments comprised of two main plot tillage systems, three cropping systems allocated to the sub-plots and four soil input management treatments assigned to sub-sub plots. ANOVA was used to test the effects of different treatments including tillage, crop system and soil fertility management using Genstat software. The data was also subjected to Principal Component Analysis procedures using R ("FactoMineR" and "factoextra") to examine the inter-relationship patterns between different soil fertility parameters and to reduce the data into independent soil fertility components. There were significant main effects due to crop system (Soil Mn), tillage and crop system interaction (SOC and TSN) and soil fertility management (TOC, TSN, Ca, Zn). Soil inputs significantly influenced soil carbon concentrations (p = 0.002), with the lowest values observed in the control (0.2 %), followed by sole fertilizer (0.35 %), manure + fertilizer (0.41 %) and the fully decomposed manure treatment (0.61 %). The soil-extracted manganese values recorded significant effects due to crop system, while soil-extracted Zn values were significant due to soil fertility management. Multivariate analysis results revealed the structure of soil nutrient distribution. Tied ridging can improve soil micronutrient availability through reduced soil erosion, conservation of soil organic matter, which can improve soil micronutrient availability. Soil conservation practices such as tied-ridging integrated with organic input applications can enhance multiple nutrient availability for improved crop performance and human nutrition in dryland farming systems where farmers lack soil moisture, technologies and resources to enhance crop nutrient availability.

10.
Environ Geochem Health ; 45(11): 7979-7997, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37515727

RESUMEN

Nutrient management in resource conservation practices influence the structural and functional microbial diversities and thereby affect biological processes and biochemical properties in soil. We studied the long-term effects of resource conservation technologies on functional microbial diversity and their interactions with soil biochemical properties and enzymatic activities in tropical rice-green gram cropping system. The experiment includes seven treatments viz., conventional practice (CC), brown manuring (BM), green manuring (GM), wet direct drum sowing, zero tillage, green manuring-customized leaf colour chart based-N application (GM-CLCC-N) and biochar (BC) application. The result of the present study revealed that microbial biomass nitrogen (N), carbon (C) and phosphorus (P) in GM practice were increased by 23.3, 37.7 and 35.1%, respectively than CC. GM, BM and GM-CLCC-N treatments provide higher yields than conventional practice. The average well color development value, Shannon index and McIntosh index were significantly higher by 26.6%, 86.9% and 29.2% in GM as compared to control treatment. So, from this study we can conclude that resource conservation practices like GM, GM-CLCC N and BM in combination with chemical fertilizers provide easily decomposable carbon source to support the microbial growth. Moreover, dominance of microbial activity in biomass amended treatments (GM, GM-CLCC N and BM) indicated that these treatments could supply good amount of labile C sources on real time basis for microbial growth that may protect the stable C fraction in soil, hence could support higher yield and soil organic carbon build-up in long run under rice-green gram soil.


Asunto(s)
Oryza , Suelo , Suelo/química , Carbono/análisis , Biomarcadores Ambientales , Indicadores de Calidad de la Atención de Salud , Agricultura/métodos , Fertilizantes , Nitrógeno/análisis
11.
Environ Res ; 231(Pt 2): 116150, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37209987

RESUMEN

The present study evaluates the biocompatibility of silver and zinc oxide nanoparticles with various effective microorganisms (EM), like beneficial microbial formulations. The respective nanoparticle was synthesised by chemical reduction of metal precursor with reducer via simple route green technology principles. The synthesised nanoparticles were characterised by UV visible spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies, revealing highly stable, nanoscale particles with marked crystallinity. EM-like beneficial cultures composed of viable cells of Lactobacillus lactis, Streptomyces sp, Candida lipolytica, and Aspergillus oryzae were formulated with rice bran, sugarcane syrup, and groundnut cake. The respective formulation was inoculated into the nanoparticles amalgamated pots raised with green gram seedlings. Biocompatibility was determined by measuring plant growth parameters of a green gram at pre-determined periods associated with enzymatic antioxidants like catalase (CAT), superoxide dismutase (SOD), and glutathione S transferase (GST) levels. Most significantly, the expression level of these enzymatic antioxidants level was also investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The impact of the soil conditioning effect on soil nutrients like nitrogen, phosphorous, potassium, organic carbon, soil enzymes glucosidases, and ß-xylosidases activity was also studied. Among the formulation, rice bran-groundnut cake-sugar syrup formulation recorded the best biocompatibility. This formulation showed high growth promotion, soil conditioning effect and no impact on the oxidative stress enzymes genes that revealed the best compatibility of nanoparticles. This study concluded that biocompatible, eco-friendly formulations of microbial inoculants could be used for the desirable agro active properties that show extreme tolerance or biocompatibility to the nanoparticles. This present study also suggests the utilisation of the above said beneficial microbial formulation and metal-based nanoparticles with desirable agro active properties in a synergistic manner due to their high tolerance or compatibility towards the metal or metal oxide nanoparticles.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Antioxidantes/metabolismo , Óxidos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Estrés Oxidativo , Óxido de Zinc/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
12.
Int J Phytoremediation ; 25(13): 1733-1742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36941766

RESUMEN

The current investigation depicts the individual and synergistic effects of two important plant growth promoting microbial groups viz. Plant Growth Promoting Rhizobacteria (PGPR) and Phosphate Solubilizing Bacteria (PSB) in alleviating the phytotoxic impacts of chromium in Vigna radiata (L) R. Wilczek (green gram) seedlings. Cr6+ (100 ppm) treatment caused a stiff decline of about 44%, 72%, 68%, and 49% reduction in root and shoot length as well as leaf number and leaf area respectively as compared to control after 90 d of exposure. However, combined amendment with PGPR and PSB causes a significant amelioration of Cr toxicity though doubling the shoot length and leaf area with a 4 times increase in root length and leaf number after 90 d of growth. Total chlorophyll synthesis showed a 68% reduction in Cr6+ (100 ppm) which was ameliorated by combined treatments of PGPR and PSB. It showed a 123% increased total chlorophyll content than Cr6+ (100 ppm) whereas individual application of PGPR and PSB showed a 46% and 27% increase respectively. Combined application of PGPR and PSB with a toxic dose of Cr showed significant boosting alleviation ability and indicates its ameliorative role for abatement of Cr-induced toxicity.


The present research work suggests the combined potential of PGPR and PSB in agriculture and can be adopted as a sustainable strategy for the alleviation of Cr toxicity stress in mining soil.


Asunto(s)
Cromo , Vigna , Cromo/toxicidad , Plantones , Fosfatos/farmacología , Biodegradación Ambiental , Clorofila/farmacología , Bacterias
13.
Plant Physiol Biochem ; 195: 256-265, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36652847

RESUMEN

In the present study, the impact of four metal/metal oxide nanoparticles (NPs) viz.Ag, ZnO),ZVI and TiO2 on physiological seed quality attributes of green gram (Vigna radiata) were evaluated. The synthesized NPs characterized and evaluated the germination percentage, vigour indices and physiological responses like catalase and peroxidase activities (seed quality parameters) of fresh, naturally aged and fresh accelerated aged seed lots of green gram. In naturally aged seeds, zinc oxide-NPs (1000 mg kg-1) treated seeds showed 14.96% higher germination percentage, 24.81% higher vigour index I and (3696) and 33.33% higher vigour index II than the controls. The treated seeds with ZnO-NPs (1000 mg kg-1) under fresh accelerated aged conditions resulted in higher than 15.15% of germination percentage, 23.61% of vigour index I and 24.11% of vigour index II over controls. Moreover, ZnO-NPs treated naturally aged seeds showed lower electrical conductivity (EC) of 20.10 µ S cm-1g-1 than the control (26.60 µ S cm-1 g-1). Pertinent to catalase enzyme activity, ZnO-NPs (1000 mg kg-1) treated naturally aged seed lots resulted in 356.89 µmol H2O2 mg-1 min-1 activity, 216.05 µmol H2O2 mg-1 min-1 activity in fresh accelerated aged seed lots.. Similarly, ZnO-NPs (1000 mg kg-1) enhanced peroxidase enzyme activity in naturally aged seed lots (3.21 µg/FW/10 min) than control (0.72 µg/FW/10 min) that depicts 63.35% of increased enzyme activity. The present results showcases the ZnO-NPs as potent nano-priming agents in maintaining the seed quality parameters that ultimately establish better crop stand and field performance.


Asunto(s)
Nanopartículas del Metal , Vigna , Óxido de Zinc , Catalasa , Germinación , Peróxido de Hidrógeno , Semillas/fisiología , Óxido de Zinc/farmacología
14.
J Chem Ecol ; 48(11-12): 802-816, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36333551

RESUMEN

This study investigated effects of volatile blends released from undamaged (UD), insect-damaged [ID, plants fed by larvae of Spilosoma obliqua Walker (Lepidoptera: Arctiidae)] and mechanically-damaged (MD) plants of three green gram cultivars [PDM 54, Pusa Baisakhi and Samrat] including synthetic blends on the behavior of conspecific adult moths in Y-tube olfactometer bioassays. Females showed attraction towards volatile blends of UD, ID and MD plants of these green gram cultivars against the control solvent (CH2Cl2). The components of volatile blends in UD plants of three green gram cultivars are not similar, but no any difference was found among three cultivars in term of the attractive effect on the insect moths when volatile blends from UD plants of these three cultivars were tested against one another. Females were more attracted towards volatile blends of ID plants of a particular cultivar compared to UD plants of the same cultivar. Total amount of volatiles was higher in ID plants than UD plants. Some herbivore-induced plant volatiles - (Z)-3-hexenal, 1-hexanol, (Z)-3-hexenyl acetate, 2-octanol and ocimene were attractive to the insect moths. Females were attracted towards three synthetic blends resembling amounts present in natural volatile blends of ID plants of these three cultivars in Y-tube olfactometer and wind tunnel bioassays, suggesting that involvement of host-specific chemical cues in long-range host location by S. obliqua females. If attraction of adult S. obliqua to these synthetic volatile blends is upheld by field trials then these blends may find practical application in detection and monitoring of S. obliqua populations.


Asunto(s)
Mariposas Nocturnas , Compuestos Orgánicos Volátiles , Animales , Femenino , Larva , Herbivoria , Plantas , Compuestos Orgánicos Volátiles/farmacología
16.
Data Brief ; 39: 107520, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34805456

RESUMEN

The main objective of this study is to use bio-inoculants in relative to specific legume plant diversity for, enhanced nodulation and plant growth. Method involves organically based selection of 36 rhizobial strains, of which 6 strains were isolated to assess the efficiency of relative host-specific inoculation on nodulation and development in legumes viz. Vigna radiata. All promising combinations of the preferred rhizobial strain inoculants were tested under sterile conditions for improving nodulation and to screen the best isolate to be evaluated for its enhanced characteristics through inoculation by field trial in various soils. It was observed that the strains from Bhadrachalam forest BD1 are highly host specific for Vigna radiata plants and when inoculated, improved nodulation and enhanced plant growth. Because of the novel characters in BD1, further studies were carried out and was identified as Rhizobium sp. BD1 (NCBI Accession no. MT577595). The percentage of nitrogen content in Vigna radiata ranged between 1.2% to 2.9%. This Rhizobium sp. BD1 was tested for the unraveling and amelioration of crop production in barren, polluted and agricultural soils which showed enhanced characteristics in Vigna radiata plants. This method may be employed across the globe of same climatic conditions for the retrieval of plants in soils that carry agriculture unsuccessfully.

17.
J Food Biochem ; 45(6): e13743, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33934386

RESUMEN

Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of galactooligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics, land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods. PRACTICAL APPLICATIONS: Green gram is rich in proteins, carbohydrate, dietary fiber, vitamins, and minerals and contains a low amount of fat. Since it is rich in protein, it can be considered as the meat alternative for vegetarians. Besides being a nutritious food, green gram possesses potential health benefits such as antioxidant, anticancerous, antioxidant, anti-inflammatory and hypolipidemic activities. Green gram has prebiotic and nutraceutical properties. It contains an appreciable amount of oligosaccharides that are capable of enhancing the growth of beneficial gut microbiota. Different researchers already developed functional foods such as mung bean milk and non-diary probiotic drinks from green gram. It can also be used as a carrier material to deliver probiotic bacteria to the gut. Apart from these applications, green gram is used in cosmetics and land reclamation and incorporated into different foods such as jams, jellies, noodles, etc. Green gram is also a major ingredient used in China's traditional health foods.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Vigna , Fibras de la Dieta , Prebióticos
18.
Bull Entomol Res ; 110(2): 219-230, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31456529

RESUMEN

The effect of three green gram cultivars (PDM 54, PUSA BAISAKHI and SAMRAT) on the biology of Spilosoma obliqua Walker (Lepidoptera: Arctiidae) was studied using age-stage, two-sex life table. We also studied food utilization efficiency measures of larvae on green gram cultivars. The nutritional and antinutritional factors of leaves of green gram cultivars were determined. The preadult development time of S. obliqua was shortest on PDM 54 (35.54 days) and longest on SAMRAT (39.29 days). The fecundity was highest on PDM 54 (318.32) and lowest on SAMRAT (250.20). The net reproductive rate (R0) ranged from 37.53 on SAMRAT to 79.58 on PDM 54. The intrinsic rate of increase (r) was higher on PDM 54 (0.1148 day-1) and PUSA BAISAKHI (0.1018 day-1) than SAMRAT (0.0875 day-1). The finite rate of increase (λ) was lowest on SAMRAT (1.0915 day-1). Mean generation time (T) was shortest on PDM 54 (38.12 days) and longest on SAMRAT (41.42 days). Population projection revealed that the population growth was slowest on SAMRAT. The growth rate of sixth instar larvae was highest on PDM 54 and lowest on SAMRAT. The lower level of nutritional factors such as total carbohydrates, proteins, lipids, amino acids and nitrogen content, and a higher level of antinutritional factors such as total phenols, flavonols and tannins influenced higher development time and lower fecundity of S. obliqua on SAMRAT than other cultivars. These findings suggested that SAMRAT is a less suitable cultivar to S. obliqua than other cultivars, and this cultivar can be promoted for cultivation.


Asunto(s)
Herbivoria , Mariposas Nocturnas/crecimiento & desarrollo , Vigna/química , Animales , Femenino , Tablas de Vida , Longevidad , Masculino , Reproducción , Especificidad de la Especie
19.
Saudi J Biol Sci ; 25(7): 1439-1445, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30505193

RESUMEN

Chlorpyrifos (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), is an organophosphate insecticide effective against a broad spectrum of insect pests of economically important crops. The present study investigated the effects of chlorpyrifos application on sulfate assimilation and macro elemental composition in different plant parts at different phenological stages. Field experiments were conducted in the month of April 2008-2009. The individual plot size was 6 m2 (4 m × 1.5 m) having 4 rows with a row-to-row distance of 15 inches and plant to plant distance of 10 inches. The number of plants per m2 was 15. Seedlings were collected at 5 (preflowering), 10 (flowering) and 20 (postflowering) DAT (day after treatment) to analyze the effect of chlorpyrifos on APR activity and elemental composition. At harvest stage, seed from individual treatments were analyzed for sulfur containing amino acids like methionine and cysteine content. Twenty-day-old seedlings of Vigna radiata L. were subjected to chlorpyrifos at different concentrations ranging from 0 to 1.5 mM through foliar spray in the field condition. A significant increase (50% in cysteine content and 50-92% in methionine content) in sulfur containing amino acids at a higher dose rate of 1.5 mM was recorded in seeds, however the increased activity of adenosine 5-phosphosulfate reductase (APR), the key enzyme in sulfate assimilation was recorded in all the three parts of the plant (leaf, stem, root.). Transiently lower nitrogen, sulfur and carbon content in 0.6 and 1.5 mM chlorpyrifos application in V. radiata L. supports the inhibition of metabolic processes. However, reverse trend was exhibited at 0.3 mM for same parameters. These results suggest the stimulatory effects on sulfate assimilation in V. radiata L. while as inhibitory effects were prevalent on elemental composition.

20.
Food Res Int ; 113: 269-276, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30195521

RESUMEN

Green gram, rich in dietary fiber is known to enhance the function of immune system. However information pertaining to the immunomodulatory potential of its non starch polysaccharides (NSPs) is scanty. Hence, five different NSPs were extracted successively using water (WSP), hot water (55 o C, HWSP), EDTA (0.5%, Pectins) and alkali (10%, Hemicellulose A and B) which varied in their arabinose to galactose ratio, sugar, protein, uronic acid contents, molecular weight distribution and immunomodulatory activity. Hemicellulose B was relatively rich in carbohydrate content (~95%) and also possessed potent immunomodulatory activity among the various NSPs. Hemicellulose B was further fractionated on DEAE-cellulose column into six different fractions by eluting step-wise with water, ammonium carbonate (0.1, 0.2, 0.3 M AC) and sodium hydroxide (0.1 and 0.2 M NaOH). 0.1 M AC eluted fraction was found to be the major one amounting to ~ 50% yield and showed relatively significant (p < 0.001) activity towards splenocyte proliferation and macrophage activation as compared with rest of the DEAE eluted fractions.


Asunto(s)
Factores Inmunológicos , Polisacáridos , Vigna/química , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Extractos Vegetales/química , Polisacáridos/química , Polisacáridos/farmacología , Ratas , Ratas Wistar , Bazo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA