Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
DNA Res ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845356

RESUMEN

Micro-Tom is a cultivar of tomato (Solanum lycopersicum), which is known as a major crop and model plant in Solanaceae. Micro-Tom has phenotypic traits such as dwarfism, and substantial EMS-mutagenized lines have been reported. After Micro-Tom was generated in Florida, USA, it was distributed to research institutes worldwide and used as a genetic resource. In Japan, the Micro-Tom lines have been genetically fixed; currently three lines have been re-distributed from three institutes, but many phenotypes among the lines have been observed. We have determined the genome sequence de novo of the Micro-Tom KDRI line, one of the Micro-Tom lines distributed from Kazusa DNA Research Institute (KDRI) in Japan, and have built chromosome-scale pseudomolecules. Genotypes among six Micro-Tom lines, including three in Japan, one in the United States, one in France, and one in Brazil showed phenotypic alternation. Here, we unveiled the swift emergence of genetic diversity in both phenotypes and genotypes within the Micro-Tom genome sequence during its propagation. These findings offer valuable insights crucial for the management of bioresources.

2.
Anim Genet ; 55(4): 511-526, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38726735

RESUMEN

Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.


Asunto(s)
Filogenia , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Secuenciación Completa del Genoma/veterinaria , Variación Genética , Cruzamiento , India
3.
Plant Cell Physiol ; 65(8): 1271-1284, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38807462

RESUMEN

Japanese green tea, an essential beverage in Japanese culture, is characterized by the initial steaming of freshly harvested leaves during production. This process efficiently inactivates endogenous enzymes such as polyphenol oxidases, resulting in the production of sencha, gyokuro and matcha that preserves the vibrant green color of young leaves. Although genome sequences of several tea cultivars and germplasms have been published, no reference genome sequences are available for Japanese green tea cultivars. Here, we constructed a reference genome sequence of the cultivar 'Seimei', which is used to produce high-quality Japanese green tea. Using the PacBio HiFi and Hi-C technologies for chromosome-scale genome assembly, we obtained 15 chromosome sequences with a total genome size of 3.1 Gb and an N50 of 214.9 Mb. By analyzing the genomic diversity of 23 Japanese tea cultivars and lines, including the leading green tea cultivars 'Yabukita' and 'Saemidori', it was revealed that several candidate genes could be related to the characteristics of Japanese green tea. The reference genome of 'Seimei' and information on genomic diversity of Japanese green tea cultivars should provide crucial information for effective breeding of such cultivars in the future.


Asunto(s)
Camellia sinensis , Cromosomas de las Plantas , Genoma de Planta , Camellia sinensis/genética , Cromosomas de las Plantas/genética , Té/genética , Japón , Hojas de la Planta/genética
4.
Viruses ; 16(4)2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38675898

RESUMEN

Piscine orthoreovirus (PRV) is a pathogen that causes heart and skeletal muscle inflammation in Salmo salar and has also been linked to circulatory disorders in other farmed salmonids, such as Oncorhynchus kisutch and Oncorhynchus mykiss. The virus has a segmented, double-stranded RNA genome, which makes it possible to undergo genetic reassortment and increase its genomic diversity through point mutations. In this study, genetic reassortment in PRV was assessed using the full genome sequences available in public databases. This study used full genome sequences that were concatenated and genome-wide reassortment events, and phylogenetic analyses were performed using the recombination/reassortment detection program version 5 (RDP5 V 5.5) software. Additionally, each segment was aligned codon by codon, and overall mean distance and selection was tested using the Molecular Evolutionary Genetics Analysis X software, version 10.2 (MEGA X version 10.2). The results showed that there were 17 significant reassortment events in 12 reassortant sequences, involving genome exchange between low and highly virulent genotypes. PRV sequences from different salmonid host species did not appear to limit the reassortment. This study found that PRV frequently undergoes reassortment events to increase the diversity of its segmented genome, leading to antigenic variation and increased virulence. This study also noted that to date, no reassortment events have been described between PRV-1 and PRV-3 genotypes. However, the number of complete genomic sequences within each genotype is uneven. This is important because PRV-3 induces cross-protection against PRV-1, making it a potential vaccine candidate.


Asunto(s)
Evolución Molecular , Enfermedades de los Peces , Genoma Viral , Orthoreovirus , Filogenia , Virus Reordenados , Infecciones por Reoviridae , Selección Genética , Orthoreovirus/genética , Orthoreovirus/clasificación , Animales , Virus Reordenados/genética , Virus Reordenados/clasificación , Infecciones por Reoviridae/virología , Infecciones por Reoviridae/veterinaria , Enfermedades de los Peces/virología , Genotipo , Variación Genética , Oncorhynchus mykiss/virología
5.
J Zhejiang Univ Sci B ; 25(4): 324-340, 2024 Apr 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38584094

RESUMEN

The worldwide chicken gene pool encompasses a remarkable, but shrinking, number of divergently selected breeds of diverse origin. This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture, genetic variability, and detailed structure among 49 populations. These populations represent a significant sample of the world's chicken breeds from Europe (Russia, Czech Republic, France, Spain, UK, etc.), Asia (China), North America (USA), and Oceania (Australia). Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism (SNP) chip, a bioinformatic analysis was carried out. This included the calculation of heterozygosity/homozygosity statistics, inbreeding coefficients, and effective population size. It also included assessment of linkage disequilibrium and construction of phylogenetic trees. Using multidimensional scaling, principal component analysis, and ADMIXTURE-assisted global ancestry analysis, we explored the genetic structure of populations and subpopulations in each breed. An overall 49-population phylogeny analysis was also performed, and a refined evolutionary model of chicken breed formation was proposed, which included egg, meat, dual-purpose types, and ambiguous breeds. Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding. In general, whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.


Asunto(s)
Pollos , Genoma , Animales , Filogenia , Pollos/genética , Genómica/métodos , Demografía , Polimorfismo de Nucleótido Simple , Variación Genética
6.
Virus Evol ; 10(1): veae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361827

RESUMEN

Infection by hepatitis B virus (HBV) is responsible for approximately 296 million chronic cases of hepatitis B, and roughly 880,000 deaths annually. The global burden of HBV is distributed unevenly, largely owing to the heterogeneous geographic distribution of its subtypes, each of which demonstrates different severity and responsiveness to antiviral therapy. It is therefore crucial to the global public health response to HBV that the spatiotemporal spread of each genotype is well characterized. In this study, we describe a collection of 133 newly sequenced HBV strains from recent African immigrants upon their arrival in Belgium. We incorporate these sequences-all of which we determine to come from genotypes A, D, and E-into a large-scale phylogeographic study with genomes sampled across the globe. We focus on investigating the spatio-temporal processes shaping the evolutionary history of the three genotypes we observe. We incorporate several recently published ancient HBV genomes for genotypes A and D to aid our analysis. We show that different spatio-temporal processes underlie the A, D, and E genotypes with the former two having originated in southeastern Asia, after which they spread across the world. The HBV E genotype is estimated to have originated in Africa, after which it spread to Europe and the Americas. Our results highlight the use of phylogeographic reconstruction as a tool to understand the recent spatiotemporal dynamics of HBV, and highlight the importance of supporting vulnerable populations in accordance with the needs presented by specific HBV genotypes.

7.
BMC Microbiol ; 24(1): 23, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229068

RESUMEN

BACKGROUND: Mycoplasma pneumoniae (M. pneumoniae) is an important pathogen of community-acquired pneumonia in children. The factors contributing to the severity of illness caused by M. pneumoniae infection are still under investigation. We aimed to evaluate the sensitivity of common M. pneumoniae detection methods, as well as to analyze the clinical manifestations, genotypes, macrolide resistance, respiratory microenvironment, and their relationship with the severity of illness in children with M. pneumoniae pneumonia in Wuhan. RESULTS: Among 1,259 clinical samples, 461 samples were positive for M. pneumoniae via quantitative polymerase chain reaction (qPCR). Furthermore, we found that while serological testing is not highly sensitive in detecting M. pneumoniae infection, but it may serve as an indicator for predicting severe cases. We successfully identified the adhesin P1 (P1) genotypes of 127 samples based on metagenomic and Sanger sequencing, with P1-type 1 (113/127, 88.98%) being the dominant genotype. No significant difference in pathogenicity was observed among different genotypes. The macrolide resistance rate of M. pneumoniae isolates was 96% (48/50) and all mutations were A2063G in domain V of 23S rRNA gene. There was no significant difference between the upper respiratory microbiome of patients with mild and severe symptoms. CONCLUSIONS: During the period of this study, the main circulating M. pneumoniae was P1-type 1, with a resistance rate of 96%. Key findings include the efficacy of qPCR in detecting M. pneumoniae, the potential of IgM titers exceeding 1:160 as indicators for illness severity, and the lack of a direct correlation between disease severity and genotypic characteristics or respiratory microenvironment. This study is the first to characterize the epidemic and genomic features of M. pneumoniae in Wuhan after the COVID-19 outbreak in 2020, which provides a scientific data basis for monitoring and infection prevention and control of M. pneumoniae in the post-pandemic era.


Asunto(s)
Mycoplasma pneumoniae , Neumonía por Mycoplasma , Niño , Humanos , Mycoplasma pneumoniae/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Epidemiología Molecular , Macrólidos/farmacología , Farmacorresistencia Bacteriana/genética , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/epidemiología , Neumonía por Mycoplasma/tratamiento farmacológico , ARN Ribosómico 23S/genética , Pandemias
8.
Trends Ecol Evol ; 39(1): 13-15, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040545

RESUMEN

The current biodiversity crisis demands scientifically based management. The generation of reference genomes is crucial in conservation, but is not enough to capture species diversity. By incorporating whole-genome sequencing (WGS) at the population level, Nigenda-Morales et al. provide key genomic information for the conservation of fin whale populations in the Pacific.


Asunto(s)
Genoma , Genómica , Biodiversidad
9.
Genes (Basel) ; 14(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38136972

RESUMEN

Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).


Asunto(s)
Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Genoma Humano , Provirus , Variación Genética/genética
10.
Pathogens ; 12(8)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37624021

RESUMEN

Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.

11.
Microorganisms ; 11(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512996

RESUMEN

Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.

12.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175960

RESUMEN

Infectious bursal disease virus (IBDV) is an immunosuppressive pathogen causing enormous economic losses to the poultry industry across the globe. As a double-stranded RNA virus, IBDV undergoes genetic mutation or recombination in replication during circulation among flocks, leading to the generation and spread of variant or recombinant strains. In particular, the recent emergence of variant IBDV causes severe immunosuppression in chickens, affecting the efficacy of other vaccines. It seems that the genetic mutation of IBDV during the battle against host response is an effective strategy to help itself to survive. Therefore, a comprehensive understanding of the viral genome diversity will definitely help to develop effective measures for prevention and control of infectious bursal disease (IBD). In recent years, considerable progress has been made in understanding the relation of genetic mutation and genomic recombination of IBDV to its pathogenesis using the reverse genetic technique. Therefore, this review focuses on our current genetic insight into the IBDV's genetic typing and viral genomic variation.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Vacunas Virales/genética , Genómica , Infecciones por Birnaviridae/prevención & control , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & control
13.
Gigascience ; 112022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085557

RESUMEN

Documenting genome diversity is important for the local biomedical communities and instrumental in developing precision and personalized medicine. Currently, tens of thousands of whole-genome sequences from Europe are publicly available, but most of these represent populations of developed countries of Europe. The uneven distribution of the available data is further impaired by the lack of data sharing. Recent whole-genome studies in Eastern Europe, one in Ukraine and one in Russia, demonstrated that local genome diversity and population structure from Eastern Europe historically had not been fully represented. An unexpected wealth of genomic variation uncovered in these studies was not so much a consequence of high variation within their population, but rather due to the "pioneer advantage." We discovered more variants because we were the first to prospect in the Eastern European genome pool. This simple comparison underscores the importance of removing the remaining geographic genome deserts from the rest of the world map of the human genome diversity.


Asunto(s)
Genoma Humano , Genómica , Europa (Continente) , Humanos , Difusión de la Información , Medicina de Precisión
14.
Hepatol Int ; 16(6): 1259-1272, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35927368

RESUMEN

BACKGROUND: Besides the prototypical hepatitis B virus (HBV) infectious particle, which contains a full-length double-stranded DNA (flDNA), additional circulating virus-like particles, which carry pregenomic RNA (pgRNA), spliced1RNA (sp1RNA) or spliced-derived DNA (defDNA) forms have been described. We aimed to determine the level of these four circulating forms in patients and to evaluate their impact on viral lifecycle. METHODS: Chronic HBV untreated patients (n = 162), included in the HEPATHER cohort, were investigated. Pangenomic qPCRs were set up to quantify the four circulating forms of HBV nucleic acids (HBVnaf). In vitro infection assays were performed to address the impact of HBVnaf. RESULTS: Hierarchical clustering individualized two clusters of HBVnaf diversity among patients: (1) cluster 1 (C1) showing a predominance of flDNA; (2) cluster 2 (C2) showing various proportions of the different forms. HBeAg-positive chronic hepatitis phase and higher viral load (7.0 ± 6.4 vs 6.6 ± 6.2 Log10 copies/ml; p < 0.001) characterized C2 compared to C1 patients. Among the different HBVnaf, pgRNA was more prevalent in C1 patients with high vs low HBV viral load (22.1% ± 2.5% vs 4.1% ± 1.8% of HBVnaf, p < 0.0001) but remained highly prevalent in C2 patients, whatever the level of replication. C2 patients samples used in infection assays showed that: (1) HBVnaf secretion was independent of the viral strain; (2) the viral cycle efficiency differed according to the proportion of HBVnaf in the inoculum, independently of cccDNA formation. Inoculum enrichment before infection suggests that pgRNA-containing particles drive this impact on viral replication. CONCLUSION: Besides the critical role of HBV replication in circulating HBVnaf diversity, our data highlight an impact of this diversity on the dynamics of viral cycle. CLINICAL TRIAL REGISTRATION: Patients were included from a prospective multicenter French national cohort (ANRS CO22 HEPATHER, NCT01953458).


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Ácidos Nucleicos , Humanos , Virus de la Hepatitis B/genética , Ácidos Nucleicos/uso terapéutico , Estudios Prospectivos , ADN Viral/genética , Hepatitis B Crónica/tratamiento farmacológico , Replicación Viral , ARN , ARN Viral/análisis
15.
Viruses ; 14(8)2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36016314

RESUMEN

The genus Polerovirus contains positive-sense, single-stranded RNA plant viruses that cause significant disease in many agricultural crops, including vegetable legumes. This study aimed to identify and determine the abundance of Polerovirus species present within Tasmanian pea crops and surrounding weeds that may act as virus reservoirs. We further sought to examine the genetic diversity of TuYV, the most commonly occurring polerovirus identified. Pea and weed samples were collected during 2019-2020 between October and January from thirty-four sites across three different regions (far northwest, north, and midlands) of Tasmania and tested by RT-PCR assay, with selected samples subject to next-generation sequencing. Results revealed that the presence of polerovirus infection and the prevalence of TuYV in both weeds and pea crops varied across the three Tasmanian cropping regions, with TuYV infection levels in pea crops ranging between 0 and 27.5% of tested plants. Overall, two species members from each genus, Polerovirus and Potyvirus, one member from each of Luteovirus, Potexvirus, and Carlavirus, and an unclassified virus from the family Partitiviridae were also found as a result of NGS data analysis. Analysis of gene sequences of the P0 and P3 genes of Tasmanian TuYV isolates revealed substantial genetic diversity within the collection, with a few isolates appearing more closely aligned with BrYV isolates. Questions remain around the differentiation of TuYV and BrYV species. Phylogenetic inconsistency in the P0 and P3 ORFs supports the concept that recombination may have played a role in TuYV evolution in Tasmania. Results of the evolutionary analysis showed that the selection pressure was higher in the P0 gene than in the P3 gene, and the majority of the codons for each gene are evolving under purifying selection. Future full genome-based analyses of the genetic variations will expand our understanding of the evolutionary patterns existing among TuYV populations in Tasmania.


Asunto(s)
Luteoviridae , Productos Agrícolas , Variación Genética , Pisum sativum , Filogenia , Enfermedades de las Plantas , Malezas
16.
Front Cell Infect Microbiol ; 12: 888804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811685

RESUMEN

Dengue virus (DENV) is the most common arbovirus, causing a significant burden on both the economy and global healthcare systems. The virus is transmitted by Aedes species of mosquitoes as a swarm of closely related virus genomes, collectively referred to as a quasispecies. The level of genomic diversity within this quasispecies varies as DENV moves through various ecological niches within its transmission cycle. Here, the factors that influence the level of DENV quasispecies diversity during the course of infection in the mosquito vectors are reviewed.


Asunto(s)
Aedes , Arbovirus , Virus del Dengue , Animales , Virus del Dengue/genética , Genoma Viral , Mosquitos Vectores
17.
Emerg Infect Dis ; 28(1): 111-117, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34932441

RESUMEN

Genomic changes in Mycoplasma pneumoniae caused by adaptation to environmental or ecologic pressures are poorly understood. We collected M. pneumoniae from children who had confirmed pneumonia in Taiwan during 2017-2020. We used whole-genome sequencing to compare these isolates with a worldwide collection of current and historical clinical strains for characterizing population structures. A phylogenetic tree for 284 strains showed that all sequenced strains consisted of 5 clades: T1-1 (sequence type [ST]1), T1-2 (mainly ST3), T1-3 (ST17), T2-1 (mainly ST2), and T2-2 (mainly ST14). We identified a putative recombination block containing 6 genes (MPN366‒371). Macrolide resistance involving 23S rRNA mutations was detected for each clade. Clonal expansion of macrolide resistance occurred mostly within subtype 1 strains, of which clade T1-2 showed the highest recombination rate and genome diversity. Functional characterization of recombined regions provided clarification of the biologic role of these recombination events in the evolution of M. pneumoniae.


Asunto(s)
Mycoplasma pneumoniae , Neumonía por Mycoplasma , Antibacterianos/farmacología , Niño , Farmacorresistencia Bacteriana/genética , Humanos , Macrólidos , Mycoplasma pneumoniae/genética , Filogenia , Neumonía por Mycoplasma/epidemiología , ARN Ribosómico 23S , Recombinación Genética
18.
Genes Genomics ; 44(1): 53-77, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34410625

RESUMEN

BACKGROUND: Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES: The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS: The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS: The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION: The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.


Asunto(s)
Variación Genética , Tamaño del Genoma/genética , Genoma Bacteriano/genética , Islas Genómicas/genética , Genómica/métodos , Pseudomonas aeruginosa/genética , Adulto , Bacteriemia/microbiología , Niño , Biología Computacional/métodos , Elementos Transponibles de ADN/genética , Humanos , México , Filogenia , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/patogenicidad , Análisis de Secuencia de ADN/métodos , Virulencia/genética
19.
Plant Direct ; 5(12): e364, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34938939

RESUMEN

Macadamia, a recently domesticated expanding nut crop in the tropical and subtropical regions of the world, is one of the most economically important genera in the diverse and widely adapted Proteaceae family. All four species of Macadamia are rare in the wild with the most recently discovered, M. jansenii, being endangered. The M. jansenii genome has been used as a model for testing sequencing methods using a wide range of long read sequencing techniques. Here, we report a chromosome level genome assembly, generated using a combination of Pacific Biosciences sequencing and Hi-C, comprising 14 pseudo-molecules, with a N50 of 52 Mb and a total genome assembly size of 758 Mb of which 56% is repetitive. Completeness assessment revealed that the assembly covered -97.1% of the conserved single copy genes. Annotation predicted 31,591 protein coding genes and allowed the characterization of genes encoding biosynthesis of cyanogenic glycosides, fatty acid metabolism, and anti-microbial proteins. Re-sequencing of seven other genotypes confirmed low diversity and low heterozygosity within this endangered species. Important morphological characteristics of this species such as small tree size and high kernel recovery suggest that M. jansenii is an important source of these commercial traits for breeding. As a member of a small group of families that are sister to the core eudicots, this high-quality genome also provides a key resource for evolutionary and comparative genomics studies.

20.
Saudi J Biol Sci ; 28(11): 6621-6630, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34764778

RESUMEN

Weeds and ornamental plants serve as a reservoir for geminiviruses and contribute to their dissemination, genome recombination and/or satellite capture. Ornamental sunflower (Helianthus spp.) plants exhibiting mild leaf curl symptoms were subjected to begomovirus and DNA-satellites isolation. The full-length genome of the isolated begomovirus clone (Od1-A) showed 96.8% nucleotide (nt) sequence identity with mesta yellow vein mosaic virus (MeYVMV; accession no. FR772081) whereas, alphasatellite (Od1-a) and betasatellite (Od1-b) clones showed their highest nt sequence identities at 97.4% and 98.2% with ageratum enation alphasatellite (AEA; accession no. FR772085) and papaya leaf curl betasatellite (PaLCuB; accession. no. LN878112), respectively. The evolutionary relationships, average evolutionary divergence and the recombination events were also inferred. The MeYVMV exhibited 9.5% average evolutionary divergence and its CP and Rep had 9.3% and 12.2%, concomitantly; the alphasatellite and the betasatellite had 8.3% and 5.2%, respectively. The nt substitution rates (site-1 year-1) were found to be 6.983 × 10-04 and 5.702 × 10-05 in the CP and Rep of MeYVMV, respectively. The dN/dS ratio and the Tajima D value of MeYVMV CP demonstrated its possible role in host switching. The absolute quantification of the begomovirus demonstrated that mild symptoms might have a correlation with low virus titer. This is the first identification of MeYVMV and associated DNA-satellites from ornamental sunflower in Pakistan. The role of sequence divergence, recombination and importance of MeYVMV along with DNA-satellites in extending its host range is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA