Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 161, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285381

RESUMEN

BACKGROUND: Gait event detection is crucial for assessment, evaluation and provision of biofeedback during rehabilitation of walking. Existing online gait event detection algorithms mostly rely on add-on sensors, limiting their practicality. Instrumented treadmills offer a promising alternative by utilizing the Center of Pressure (CoP) signal for real-time gait event detection. However, current methods have limitations, particularly in detecting cross-step events during perturbed walking conditions. METHODS: We present and validate a CoP-based algorithm to detect gait events and cross-steps in real-time, which combines thresholding and logic techniques. The algorithm was evaluated on CoP datasets from healthy participants (age range 21-61 years), stroke survivors (age range 20-67 years), and people with unilateral transtibial amputation (age range 28-63 years) that underwent perturbation-based balance assessments, encompassing different walking speeds. Detected gait events from a simulated real-time processing operation were compared to offline identified counterparts in order to present related temporal absolute mean errors (AME) and success rate. RESULTS: The proposed algorithm demonstrated high accuracy in detecting gait events during native gait, as well as cross-step events during perturbed walking conditions. It successfully recognized the majority of cross-steps, with a detection success rate of 94%. However, some misclassifications or missed events occurred, mainly due to the complexity of cross-step events. AME for heel strikes (HS) during native gait and cross-step events averaged at 78 ms and 64 ms respectively, while toe off (TO) AME were 126 ms and 111 ms respectively. A statistically significant difference in the algorithm's success rate score in detecting gait events during cross-step intervals was observed across various walking speeds in a sample of 12 healthy participants, while there was no significant difference among groups. CONCLUSION: The proposed algorithm represents an advancement in gait event detection on instrumented treadmills. By leveraging the CoP signal, it successfully identifies gait events and cross-steps in the simulated real-time processing operation, providing valuable insights into human locomotion. The algorithm's ability to accommodate diverse CoP patterns enhance its applicability to a wide range of individuals and gait characteristics. The algorithm's performance was consistent across different populations, suggesting its potential for diverse clinical and research settings, particularly in the domains of gait analysis and rehabilitation practices.


Asunto(s)
Algoritmos , Humanos , Persona de Mediana Edad , Adulto , Anciano , Masculino , Femenino , Adulto Joven , Marcha/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Caminata/fisiología , Equilibrio Postural/fisiología , Presión
2.
Bioengineering (Basel) ; 11(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39199764

RESUMEN

The Dynamic Gait Event Identifier (DGEI) introduces a pioneering approach for real-time gait event detection that seamlessly aligns with the needs of embedded system design and optimization. DGEI creates a new standard for gait analysis by combining software and hardware co-design with real-time data analysis, using a combination of first-order difference functions and sliding window techniques. The method is specifically designed to accurately separate and analyze key gait events such as heel strike (HS), toe-off (TO), walking start (WS), and walking pause (WP) from a continuous stream of inertial measurement unit (IMU) signals. The core innovation of DGEI is the application of its dynamic feature extraction strategies, including first-order differential integration with positive/negative windows, weighted sleep time analysis, and adaptive thresholding, which together improve its accuracy in gait segmentation. The experimental results show that the accuracy rate of HS event detection is 97.82%, and the accuracy rate of TO event detection is 99.03%, which is suitable for embedded systems. Validation on a comprehensive dataset of 1550 gait instances shows that DGEI achieves near-perfect alignment with human annotations, with a difference of less than one frame in pulse onset times in 99.2% of the cases.

3.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339681

RESUMEN

Gait event detection is essential for controlling an orthosis and assessing the patient's gait. In this study, patients wearing an electromechanical (EM) knee-ankle-foot orthosis (KAFO) with a single IMU embedded in the thigh were subjected to gait event detection. The algorithm detected four essential gait events (initial contact (IC), toe off (TO), opposite initial contact (OIC), and opposite toe off (OTO)) and determined important temporal gait parameters such as stance/swing time, symmetry, and single/double limb support. These gait events were evaluated through gait experiments using four force plates on healthy adults and a hemiplegic patient who wore a one-way clutch KAFO and a pneumatic cylinder KAFO. Results showed that the smallest error in gait event detection was found at IC, and the largest error rate was observed at opposite toe off (OTO) with an error rate of -2.8 ± 1.5% in the patient group. Errors in OTO detection resulted in the largest error in determining the single limb support of the patient with an error of 5.0 ± 1.5%. The present study would be beneficial for the real-time continuous monitoring of gait events and temporal gait parameters for persons with an EM KAFO.


Asunto(s)
Tobillo , Ortesis del Pié , Adulto , Humanos , Marcha , Aparatos Ortopédicos , Articulación del Tobillo , Muslo , Fenómenos Biomecánicos , Caminata
4.
Heliyon ; 9(11): e21720, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027844

RESUMEN

Real-time gait event detection (GED) system can be utilized for gait analysis and tracking fitness activities. GED for various types of terrains (e.g., stair-walk, uneven surfaces, etc.) is still an open research problem. This study presents an inertial sensor-based approach for real-time GED system that works for diverse terrains in an uncontrolled environment. The GED system classifies three types of terrains, i.e., flat-walk, stair-ascend and stair-descend, with an average classification accuracy of 99%. It also accurately detects various gait events, including, toe-strike, heel-rise, toe-off, and heel-strike. It is computationally efficient, implemented on a low-cost microcontroller, works in real-time and can be used in portable rehabilitation devices for use in dynamic environments.

5.
Sensors (Basel) ; 23(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37766002

RESUMEN

Gait rehabilitation commonly relies on bodyweight unloading mechanisms, such as overhead mechanical support and underwater buoyancy. Lightweight and wireless inertial measurement unit (IMU) sensors provide a cost-effective tool for quantifying body segment motions without the need for video recordings or ground reaction force measures. Identifying the instant when the foot contacts and leaves the ground from IMU data can be challenging, often requiring scrupulous parameter selection and researcher supervision. We aimed to assess the use of machine learning methods for gait event detection based on features from foot segment rotational velocity using foot-worn IMU sensors during bodyweight-supported treadmill walking on land and underwater. Twelve healthy subjects completed on-land treadmill walking with overhead mechanical bodyweight support, and three subjects completed underwater treadmill walking. We placed IMU sensors on the foot and recorded motion capture and ground reaction force data on land and recorded IMU sensor data from wireless foot pressure insoles underwater. To detect gait events based on IMU data features, we used random forest machine learning classification. We achieved high gait event detection accuracy (95-96%) during on-land bodyweight-supported treadmill walking across a range of gait speeds and bodyweight support levels. Due to biomechanical changes during underwater treadmill walking compared to on land, accurate underwater gait event detection required specific underwater training data. Using single-axis IMU data and machine learning classification, we were able to effectively identify gait events during bodyweight-supported treadmill walking on land and underwater. Robust and automated gait event detection methods can enable advances in gait rehabilitation.


Asunto(s)
Pie , Extremidad Inferior , Humanos , Marcha , Caminata , Peso Corporal , Aprendizaje Automático
6.
Sensors (Basel) ; 23(12)2023 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-37420666

RESUMEN

Accurate real-time gait event detection is the basis for the development of new gait rehabilitation techniques, especially when utilizing robotics or virtual reality (VR). The recent emergence of affordable wearable technologies, especially inertial measurement units (IMUs), has brought forth various new methods and algorithms for gait analysis. In this paper, we highlight some advantages of using adaptive frequency oscillators (AFOs) over traditional gait event detection algorithms, implemented a real-time AFO-based algorithm that estimates the gait phase from a single head-mounted IMU, and validated our method on a group of healthy subjects. Gait event detection was accurate at two different walking speeds. The method was reliable for symmetric, but not asymmetric gait patterns. Our method could prove especially useful in VR applications since a head-mounted IMU is already an integral part of commercial VR products.


Asunto(s)
Marcha , Dispositivos Electrónicos Vestibles , Humanos , Análisis de la Marcha , Velocidad al Caminar , Algoritmos , Caminata
7.
Sensors (Basel) ; 23(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37514858

RESUMEN

Wearable sensors are able to monitor physical health in a home environment and detect changes in gait patterns over time. To ensure long-term user engagement, wearable sensors need to be seamlessly integrated into the user's daily life, such as hearing aids or earbuds. Therefore, we present EarGait, an open-source Python toolbox for gait analysis using inertial sensors integrated into hearing aids. This work contributes a validation for gait event detection algorithms and the estimation of temporal parameters using ear-worn sensors. We perform a comparative analysis of two algorithms based on acceleration data and propose a modified version of one of the algorithms. We conducted a study with healthy young and elderly participants to record walking data using the hearing aid's integrated sensors and an optical motion capture system as a reference. All algorithms were able to detect gait events (initial and terminal contacts), and the improved algorithm performed best, detecting 99.8% of initial contacts and obtaining a mean stride time error of 12 ± 32 ms. The existing algorithms faced challenges in determining the laterality of gait events. To address this limitation, we propose modifications that enhance the determination of the step laterality (ipsi- or contralateral), resulting in a 50% reduction in stride time error. Moreover, the improved version is shown to be robust to different study populations and sampling frequencies but is sensitive to walking speed. This work establishes a solid foundation for a comprehensive gait analysis system integrated into hearing aids that will facilitate continuous and long-term home monitoring.


Asunto(s)
Audífonos , Humanos , Anciano , Marcha , Caminata , Análisis de la Marcha , Velocidad al Caminar , Algoritmos
8.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850806

RESUMEN

Gait assessment is of interest to clinicians and researchers because it provides information about patients' functional mobility. Optoelectronic camera-based systems with gait event detection algorithms are considered the gold standard for gait assessment. Yet, the choice of the algorithm used to process data and extract the desired parameters from those detected gait events has an impact on the validity and reliability of the gait parameters computed. There are multiple techniques documented in the literature for computing gait events, including the analysis of the minimal position of the heel and toe markers, the computation of the relative distance between sacrum and foot markers, and the assessment of the smallest distance between the heel and toe markers. Validation studies conducted on these algorithms report variations in accuracy. Yet, these studies were conducted in different conditions, at varying gait velocities, and on different populations. The purpose of this study is to compare accuracy, precision, and robustness of three algorithms using motion capture data obtained from 25 healthy persons and 21 psoriatic arthritic patients walking at three distinct speeds on an instrumented treadmill. Errors in gait events recognition (heel strike-HS and toe-off-TO) and their impact on gait metrics (stance phase and stride length) are reported and compared to ground reaction force events measured with force plates. Over the 9114 collected steps across all walking speeds, more than 99% of gait events were recognized by all algorithms. On average, HS events were detected within 1.2 ms of the reference for two algorithms, while the third one detected HS late, with an average detection error of 40.7 ms. Yet, significant variations in accuracy were noted with gait speed; the performance decreased for all algorithms at slow speed. TO events were identified early by all algorithms, with an average error ranging from 16.0 to 100.0 ms. These gait events errors lead to 2-15% inaccuracies in stance phase assessment, while the impact on stride length remains below 0.3 cm. Overall, the algorithm based on the relative distance between the sacral and foot markers stood out for its accuracy, precision, and robustness at all walking speeds.


Asunto(s)
Marcha , Captura de Movimiento , Humanos , Reproducibilidad de los Resultados , Velocidad al Caminar , Algoritmos
9.
Artículo en Inglés | MEDLINE | ID: mdl-36833815

RESUMEN

Inertial measurement units (IMUs) have shown promising outcomes for estimating gait event detection (GED) and ground reaction force (GRF). This study aims to determine the best sensor location for GED and GRF prediction in gait using data from IMUs for healthy and medial knee osteoarthritis (MKOA) individuals. In this study, 27 healthy and 18 MKOA individuals participated. Participants walked at different speeds on an instrumented treadmill. Five synchronized IMUs (Physilog®, 200 Hz) were placed on the lower limb (top of the shoe, heel, above medial malleolus, middle and front of tibia, and on medial of shank close to knee joint). To predict GRF and GED, an artificial neural network known as reservoir computing was trained using combinations of acceleration signals retrieved from each IMU. For GRF prediction, the best sensor location was top of the shoe for 72.2% and 41.7% of individuals in the healthy and MKOA populations, respectively, based on the minimum value of the mean absolute error (MAE). For GED, the minimum MAE value for both groups was for middle and front of tibia, then top of the shoe. This study demonstrates that top of the shoe is the best sensor location for GED and GRF prediction.


Asunto(s)
Marcha , Osteoartritis de la Rodilla , Humanos , Fenómenos Biomecánicos , Caminata , Fenómenos Mecánicos , Extremidad Inferior
10.
Front Neurosci ; 16: 976594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570841

RESUMEN

Motion capture systems are widely accepted as ground-truth for gait analysis and are used for the validation of other gait analysis systems. To date, their reliability and limitations in manual labeling of gait events have not been studied. Objectives: Evaluate manual labeling uncertainty and introduce a hybrid stride detection and gait-event estimation model for autonomous, long-term, and remote monitoring. Methods: Estimate inter-labeler inconsistencies by computing the limits-of-agreement. Develop a hybrid model based on dynamic time warping and convolutional neural network to identify valid strides and eliminate non-stride data in inertial (walking) data collected by a wearable device. Finally, detect gait events within a valid stride region. Results: The limits of inter-labeler agreement for key gait events heel off, toe off, heel strike, and flat foot are 72, 16, 24, and 80 ms, respectively; The hybrid model's classification accuracy for stride and non-stride are 95.16 and 84.48%, respectively; The mean absolute error for detected heel off, toe off, heel strike, and flat foot are 24, 5, 9, and 13 ms, respectively, when compared to the average human labels. Conclusions: The results show the inherent labeling uncertainty and the limits of human gait labeling of motion capture data; The proposed hybrid-model's performance is comparable to that of human labelers, and it is a valid model to reliably detect strides and estimate the gait events in human gait data. Significance: This work establishes the foundation for fully automated human gait analysis systems with performances comparable to human-labelers.

11.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365930

RESUMEN

Elderly gait is a source of rich information about their physical and mental health condition. As an alternative to the multiple sensors on the lower body parts, a single sensor on the pelvis has a positional advantage and an abundance of information acquirable. This study aimed to improve the accuracy of gait event detection in the elderly using a single sensor on the waist and deep learning models. Data were gathered from elderly subjects equipped with three IMU sensors while they walked. The input taken only from the waist sensor was used to train 16 deep-learning models including a CNN, RNN, and CNN-RNN hybrid with or without the Bidirectional and Attention mechanism. The groundtruth was extracted from foot IMU sensors. A fairly high accuracy of 99.73% and 93.89% was achieved by the CNN-BiGRU-Att model at the tolerance window of ±6 TS (±6 ms) and ±1 TS (±1 ms), respectively. Advancing from the previous studies exploring gait event detection, the model demonstrated a great improvement in terms of its prediction error having an MAE of 6.239 ms and 5.24 ms for HS and TO events, respectively, at the tolerance window of ±1 TS. The results demonstrated that the use of CNN-RNN hybrid models with Attention and Bidirectional mechanisms is promising for accurate gait event detection using a single waist sensor. The study can contribute to reducing the burden of gait detection and increase its applicability in future wearable devices that can be used for remote health monitoring (RHM) or diagnosis based thereon.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Anciano , Algoritmos , Marcha , Pie
12.
Sensors (Basel) ; 22(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36433483

RESUMEN

Real-time gait event detection (GED) using inertial sensors is important for applications such as remote gait assessments, intelligent assistive devices including microprocessor-based prostheses or exoskeletons, and gait training systems. GED algorithms using acceleration and/or angular velocity signals achieve reasonable performance; however, most are not suited for real-time applications involving clinical populations walking in free-living environments. The aim of this study was to develop and evaluate a real-time rules-based GED algorithm with low latency and high accuracy and sensitivity across different walking states and participant groups. The algorithm was evaluated using gait data collected from seven able-bodied (AB) and seven lower-limb prosthesis user (LLPU) participants for three walking states (level-ground walking (LGW), ramp ascent (RA), ramp descent (RD)). The performance (sensitivity and temporal error) was compared to a validated motion capture system. The overall sensitivity was 98.87% for AB and 97.05% and 93.51% for LLPU intact and prosthetic sides, respectively, across all walking states (LGW, RA, RD). The overall temporal error (in milliseconds) for both FS and FO was 10 (0, 20) for AB and 10 (0, 25) and 10 (0, 20) for the LLPU intact and prosthetic sides, respectively, across all walking states. Finally, the overall error (as a percentage of gait cycle) was 0.96 (0, 1.92) for AB and 0.83 (0, 2.08) and 0.83 (0, 1.66) for the LLPU intact and prosthetic sides, respectively, across all walking states. Compared to other studies and algorithms, the herein-developed algorithm concurrently achieves high sensitivity and low temporal error with near real-time detection of gait in both typical and clinical populations walking over a variety of terrains.


Asunto(s)
Miembros Artificiales , Humanos , Marcha , Caminata , Algoritmos , Aceleración
13.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36236278

RESUMEN

Segmenting the gait cycle into multiple phases using gait event detection (GED) is a well-researched subject with many accurate algorithms. However, the algorithms that are able to perform accurate and robust GED for real-life environments and physical diseases tend to be too complex for their implementation on simple hardware systems limited in computing power and memory, such as those used in wearable devices. This study focuses on a numerical implementation of a reservoir computing (RC) algorithm called the echo state network (ESN) that is based on simple computational steps that are easy to implement on portable hardware systems for real-time detection. RC is a neural network method that is widely used for signal processing applications and uses a fast-training method based on a ridge regression adapted to the large quantity and variety of IMU data needed to use RC in various real-life environment GED. In this study, an ESN was used to perform offline GED with gait data from IMU and ground force sensors retrieved from three databases for a total of 28 healthy adults and 15 walking conditions. Our main finding is that despite its low complexity, ESN is robust for GED, with performance comparable to other state-of-the-art algorithms. Our results show the ESN is robust enough to obtain good detection results in all conditions if the algorithm is trained with variable data that match those conditions. The distribution of the mean absolute errors (MAE) between the detection times from the ESN and the force sensors were between 40 and 120 ms for 6 defined gait events (95th percentile). We compared our ESN with four different state-of-the-art algorithms from the literature. The ESN obtained a MAE not more than 10 ms above three other reference algorithms for normal walking indoor and outdoor conditions and yielded the 2nd lowest MAE and the 2nd highest true positive rate and specificity when applied to outdoor walking and running conditions. Our work opens the door to using the ESN as a GED for applications in wearable sensors for long-term patient monitoring.


Asunto(s)
Marcha , Caminata , Aceleración , Adulto , Algoritmos , Humanos , Procesamiento de Señales Asistido por Computador
14.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009893

RESUMEN

To expand the potential use of in-shoe motion sensors (IMSs) in daily healthcare or activity monitoring applications for healthy subjects, we propose a real-time temporal estimation method for gait parameters concerning bilateral lower limbs (GPBLLs) that uses a single IMS and is based on a gait event detection approach. To validate the established methods, data from 26 participants recorded by an IMS and a reference 3D motion analysis system were compared. The agreement between the proposed method and the reference system was evaluated by the intraclass correlation coefficient (ICC). The results showed that, by averaging over five continuous effective strides, all time parameters achieved precisions of no more than 30 ms and agreement at the "excellent" level, and the symmetry indexes of the stride time and stance phase time achieved precisions of 1.0% and 3.0%, respectively, and agreement at the "good" level. These results suggest our method is effective and shows promise for wide use in many daily healthcare or activity monitoring applications for healthy subjects.


Asunto(s)
Marcha , Zapatos , Fenómenos Biomecánicos , Pie , Voluntarios Sanos , Humanos , Extremidad Inferior
15.
Micromachines (Basel) ; 12(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34683200

RESUMEN

Exoskeleton robots are frequently applied to augment or assist the user's natural motion. Generally, each assisted joint corresponds to at least one specific motor to ensure the independence of movement between joints. This means that as there are more joints to be assisted, more motors are required, resulting in increasing robot weight, decreasing motor utilization, and weakening exoskeleton robot assistance efficiency. To solve this problem, the design and control of a lightweight soft exoskeleton that assists hip-plantar flexion of both legs in different phases during a gait cycle with only one motor is presented in this paper. Inspired by time-division multiplexing and the symmetry of walking motion, an actuation scheme that uses different time-periods of the same motor to transfer different forces to different joints is formulated. An automatic winding device is designed to dynamically change the loading path of the assistive force at different phases of the gait cycle. The system is designed to assist hip flexion and plantar flexion of both legs with only one motor, since there is no overlap between the hip flexion movement and the toe-offs movement of the separate legs during walking. The weight of the whole system is only 2.24 kg. PD iterative control is accomplished by an algorithm that utilizes IMUs attached on the thigh recognizing the maximum hip extension angle to characterize toe-offs indirectly, and two load cells to monitor the cable tension. In the study of six subjects, muscle fatigue of the rectus femoris, vastus lateralis, gastrocnemius and soleus decreased by an average of 14.69%, 6.66%, 17.71%, and 8.15%, respectively, compared to scenarios without an exoskeleton.

16.
Front Hum Neurosci ; 15: 720699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588967

RESUMEN

For interpreting outcomes of clinical gait analysis, an accurate estimation of gait events, such as initial contact (IC) and toe-off (TO), is essential. Numerous algorithms to automatically identify timing of gait events have been developed based on various marker set configurations as input. However, a systematic overview of the effect of the marker selection on the accuracy of estimating gait event timing is lacking. Therefore, we aim to evaluate (1) if the marker selection influences the accuracy of kinematic algorithms for estimating gait event timings and (2) what the best marker location is to ensure the highest event timing accuracy across various gait patterns. 104 individuals with cerebral palsy (16.0 ± 8.6 years) and 31 typically developing controls (age 20.6 ± 7.8) performed clinical gait analysis, and were divided into two out of eight groups based on the orientation of their foot, in sagittal and frontal plane at mid-stance. 3D marker trajectories of 11 foot/ankle markers were used to estimate the gait event timings (IC, TO) using five commonly used kinematic algorithms. Heatmaps, for IC and TO timing per group were created showing the median detection error, compared to detection using vertical ground reaction forces, for each marker. Our findings indicate that median detection errors can be kept within 7 ms for IC and 13 ms for TO when optimizing the choice of marker and detection algorithm toward foot orientation in midstance. Our results highlight that the use of markers located on the midfoot is robust for detecting gait events across different gait patterns.

17.
Sensors (Basel) ; 21(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064807

RESUMEN

Ageing, disease, and injuries result in movement defects that affect daily life. Gait analysis is a vital tool for understanding and evaluating these movement dysfunctions. In recent years, the use of virtual reality (VR) to observe motion and offer augmented clinical care has increased. Although VR-based methodologies have shown benefits in improving gait functions, their validity against more traditional methods (e.g., cameras or instrumented walkways) is yet to be established. In this work, we propose a procedure aimed at testing the accuracy and viability of a VIVE Virtual Reality system for gait analysis. Seven young healthy subjects were asked to walk along an instrumented walkway while wearing VR trackers. Heel strike (HS) and toe off (TO) events were assessed using the VIVE system and the instrumented walkway, along with stride length (SL), stride time (ST), stride width (SW), stride velocity (SV), and stance/swing percentage (STC, SWC%). Results from the VR were compared with the instrumented walkway in terms of detection offset for time events and root mean square error (RMSE) for gait features. An absolute offset between VR- and walkway-based data of (15.3 ± 12.8) ms for HS, (17.6 ± 14.8) ms for TOs and an RMSE of 2.6 cm for SW, 2.0 cm for SL, 17.4 ms for ST, 2.2 m/s for SV, and 2.1% for stance and swing percentage were obtained. Our findings show VR-based systems can accurately monitor gait while also offering new perspectives for VR augmented analysis.


Asunto(s)
Realidad Virtual , Marcha , Análisis de la Marcha , Humanos , Interfaz Usuario-Computador , Caminata
18.
Gait Posture ; 86: 64-69, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684617

RESUMEN

BACKGROUND: To analyse and interpret gait patterns in pathological paediatric populations, accurate determination of the timing of specific gait events (e.g. initial contract - IC, or toe-off - TO) is essential. As currently used clinical identification methods are generally subjective, time-consuming, or limited to steps with force platform data, several techniques have been proposed based on processing of marker kinematics. However, until now, validation and standardization of these methods for use in diverse gait patterns remains lacking. RESEARCH QUESTIONS: 1) What is the accuracy of available kinematics-based identification algorithms in determining the timing of IC and TO for diverse gait signatures? 2) Does automatic identification affect interpretation of spatio-temporal parameters?. METHODS: 3D kinematic and kinetic data of 90 children were retrospectively analysed from a clinical gait database. Participants were classified into 3 gait categories: group A (toe-walkers), B (flat IC) and C (heel IC). Five kinematic algorithms (one modified) were implemented for two different foot marker configurations for both IC and TO and compared with clinical (visual and force-plate) identification using Bland-Altman analysis. The best-performing algorithm-marker configuration was used to compute spatio-temporal parameters (STP) of all gait trials. To establish whether the error associated with this configuration would affect clinical interpretation, the bias and limits of agreement were determined and compared against inter-trial variability established using visual identification. RESULTS: Sagittal velocity of the heel (Group C) or toe marker configurations (Group A and B) was the most reliable indicator of IC, while the sagittal velocity of the hallux marker configuration performed best for TO. Biases for walking speed, stride time and stride length were within the respective inter-trial variability values. SIGNIFICANCE: Automatic identification of gait events was dependent on algorithm-marker configuration, and best results were obtained when optimized towards specific gait patterns. Our data suggest that correct selection of automatic gait event detection approach will ensure that misinterpretation of STPs is avoided.


Asunto(s)
Algoritmos , Marcha/fisiología , Trastornos del Movimiento/diagnóstico , Fenómenos Biomecánicos , Niño , Bases de Datos Factuales , Femenino , Humanos , Masculino , Estándares de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos
19.
Gait Posture ; 84: 87-92, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285383

RESUMEN

BACKGROUND: Gait event detection of the initial contact and toe off is essential for running gait analysis, allowing the derivation of parameters such as stance time. Heuristic-based methods exist to estimate these key gait events from tibial accelerometry. However, these methods are tailored to very specific acceleration profiles, which may offer complications when dealing with larger data sets and inherent biological variability. RESEARCH QUESTION: Can a structured machine learning approach achieve a more accurate prediction of running gait event timings from tibial accelerometry, compared to the previously utilised heuristic approaches? METHODS: Force-based event detection acted as the criterion measure in order to assess the accuracy, repeatability and sensitivity of the predicted gait events. 3D tibial acceleration and ground reaction force data from 93 rearfoot runners were captured. A heuristic method and two structured machine learning methods were employed to derive initial contact, toe off and stance time from tibial acceleration signals. RESULTS: Both a structured perceptron model (median absolute error of stance time estimation: 10.00 ±â€¯8.73 ms) and a structured recurrent neural network model (median absolute error of stance time estimation: 6.50 ±â€¯5.74 ms) significantly outperformed the existing heuristic approach (median absolute error of stance time estimation: 11.25 ±â€¯9.52 ms). Thus, results indicate that a structured recurrent neural network machine learning model offers the most accurate and consistent estimation of the gait events and its derived stance time during level overground running. SIGNIFICANCE: The machine learning methods seem less affected by intra- and inter-subject variation within the data, allowing for accurate and efficient automated data output during rearfoot overground running. Furthermore offering possibilities for real-time monitoring and biofeedback during prolonged measurements, even outside the laboratory.


Asunto(s)
Acelerometría/métodos , Fenómenos Biomecánicos/fisiología , Pie/fisiopatología , Análisis de la Marcha/métodos , Marcha/fisiología , Aprendizaje Automático/normas , Tibia/fisiopatología , Aceleración , Humanos
20.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182658

RESUMEN

Spatiotemporal parameters of gait serve as an important biomarker to monitor gait impairments as well as to develop rehabilitation systems. In this work, we developed a computationally-efficient algorithm (SDI-Step) that uses segmented double integration to calculate step length and step time from wearable inertial measurement units (IMUs) and assessed its ability to reliably and accurately measure spatiotemporal gait parameters. Two data sets that included simultaneous measurements from wearable sensors and from a laboratory-based system were used in the assessment. The first data set utilized IMU sensors and a GAITRite mat in our laboratory to monitor gait in fifteen participants: 9 young adults (YA1) (5 females, 4 males, age 23.6 ± 1 years), and 6 people with Parkinson's disease (PD) (3 females, 3 males, age 72.3 ± 6.6 years). The second data set, which was accessed from a publicly-available repository, utilized IMU sensors and an optoelectronic system to monitor gait in five young adults (YA2) (2 females, 3 males, age 30.5 ± 3.5 years). In order to provide a complete representation of validity, we used multiple statistical analyses with overlapping metrics. Gait parameters such as step time and step length were calculated and the agreement between the two measurement systems for each gait parameter was assessed using Passing-Bablok (PB) regression analysis and calculation of the Intra-class Correlation Coefficient (ICC (2,1)) with 95% confidence intervals for a single measure, absolute-agreement, 2-way mixed-effects model. In addition, Bland-Altman (BA) plots were used to visually inspect the measurement agreement. The values of the PB regression slope were close to 1 and intercept close to 0 for both step time and step length measures. The results obtained using ICC (2,1) for step length showed a moderate to excellent agreement for YA (between 0.81 and 0.95) and excellent agreement for PD (between 0.93 and 0.98), while both YA and PD had an excellent agreement in step time ICCs (>0.9). Finally, examining the BA plots showed that the measurement difference was within the limits of agreement (LoA) with a 95% probability. Results from this preliminary study indicate that using the SDI-Step algorithm to process signals from wearable IMUs provides measurements that are in close agreement with widely-used laboratory-based systems and can be considered as a valid tool for measuring spatiotemporal gait parameters.


Asunto(s)
Análisis de la Marcha/instrumentación , Enfermedad de Parkinson/rehabilitación , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Algoritmos , Femenino , Humanos , Masculino , Enfermedad de Parkinson/diagnóstico , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA