Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mater Today Bio ; 17: 100503, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36457846

RESUMEN

A lack of promising targets leads to poor prognosis in patients with lung adenocarcinoma (LUAD). Therefore, it is urgent to identify novel therapeutic targets. The importance of the N6-methyladenosine (m6A) RNA modification has been demonstrated in various types of tumors; however, knowledge of m6A-related proteins in LUAD is still limited. Here, we found that insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), an m6A reader protein, is highly expressed in LUAD and associated with poor prognosis. IGF2BP3 desensitizes ferroptosis (a new form of regulated cell death) in a manner dependent on its m6A reading domain and binding capacity to m6A-methylated mRNAs encoding anti-ferroptotic factors, including but not limited to glutathione peroxidase 4 (GPX4), solute carrier family 3 member 2 (SLC3A2), acyl-CoA synthetase long chain family member 3 (ACSL3), and ferritin heavy chain 1 (FTH1). After IGF2BP3 overexpression, expression levels and mRNA stabilities of these anti-ferroptotic factors were successfully sustained. Notably, significant correlations between SLC3A2, ACSL3, and IGF2BP3 were revealed in clinical LUAD specimens, further establishing the essential role of IGF2BP3 in desensitizing ferroptosis. Inducing ferroptosis has been gradually accepted as an alternative strategy to treat tumors. Thus, IGF2BP3 could be a potential target for the future development of new biomaterial-associated therapeutic anti-tumor drugs.

2.
Comput Struct Biotechnol J ; 20: 6578-6585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467585

RESUMEN

Post-transcriptional modifications in RNAs regulate their biological behaviors and functions. N1-methyladenosine (m1A), which is dynamically regulated by writers, erasers and readers, has been found as a reversible modification in tRNA, mRNA, rRNA and long non-coding RNA (lncRNA). m1A modification has impacts on the RNA processing, structure and functions of targets. Increasing studies reveal the critical roles of m1A modification and its regulators in tumorigenesis. Due to the positive relevance between m1A and cancer development, targeting m1A modification and m1A-related regulators has been of attention. In this review, we summarized the current understanding of m1A in RNAs, covering the modulation of m1A modification in cancer biology, as well as the possibility of targeting m1A modification as a potential target for cancer diagnosis and therapy.

3.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36382190

RESUMEN

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

4.
Front Hum Neurosci ; 16: 904545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072887

RESUMEN

Background: The single nucleotide polymorphism (SNP) rs9939609 in the fat mass and obesity associated fat mass and obesity associated gene (FTO) gene has been linked with increased BMI in adults. Higher BMI has been associated with poor brain health and may exert deleterious effects on neurocognitive health through cerebral hypoperfusion. However, it is unclear if there is a relationship between the FTO genotype and cerebral perfusion, or whether FTO genotype moderates the effects of weight loss on cerebral perfusion. Using data from a randomized controlled behavioral weight loss trial in adults with overweight and obesity, we tested (1) whether carriers of the A allele for FTO rs9939609 demonstrate different patterns of resting cerebral blood flow (rCBF) compared to T carriers, and (2) whether the FTO genotype moderates the effects of weight loss on rCBF. We hypothesized that carriers of the A allele would exhibit lower resting CBF in frontal brain areas compared to T/T homozygotes at baseline, and that intervention-induced weight loss may partially remediate these differences. Methods and results: One hundred and five adults (75.2% female, mean age 44.9 years) with overweight or obesity were included in the analyses. These participants represent a subsample of participants in a larger randomized controlled trial (NCT01500356). A resting pseudo-continuous arterial spin labeling (pCASL) scan was acquired to examine rCBF. Age, sex, and BMI were included as covariates. At baseline, A carriers had greater rCBF in a diffuse cluster extending into the brainstem, motor cortex, and occipital lobe, but lower perfusion in the temporal lobe. We found no evidence that FTO moderated the effect of the intervention group assignment on rCBF changes. Conclusion: Overall, these results indicate that (a) individual variation in rCBF within a sample with overweight and obesity may be attributed to a common FTO variant, but (b) a weight loss intervention is effective at increasing rCBF, regardless of FTO genotype.

5.
Front Endocrinol (Lausanne) ; 13: 866116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157445

RESUMEN

The m6A methylation is the most numerous modification of mRNA in mammals, coordinated by RNA m6A methyltransferases, RNA m6A demethylases, and RNA m6A binding proteins. They change the RNA m6A methylation level in their specific manner. RNA m6A modification has a significant impact on lipid metabolic regulation. The "writer" METTL3/METTL14 and the "eraser" FTO can promote the accumulation of lipids in various cells by affecting the decomposition and synthesis of lipids. The "reader" YTHDF recognizes m6A methylation sites of RNA and regulates the target genes' translation. Due to this function that regulates lipid metabolism, RNA m6A methylation plays a pivotal role in metabolic diseases and makes it a great potential target for therapy.


Asunto(s)
Adenosina , Metabolismo de los Lípidos , Adenosina/genética , Adenosina/metabolismo , Animales , Metabolismo de los Lípidos/genética , Lípidos , Mamíferos/genética , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Mensajero/genética
6.
Front Neurosci ; 15: 763856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34795556

RESUMEN

The hypothalamus is a brain region that exhibits highly conserved anatomy across vertebrate species and functions as a central regulatory hub for many physiological processes such as energy homeostasis and circadian rhythm. Neurons in the arcuate nucleus of the hypothalamus are largely responsible for sensing of peripheral signals such as leptin and insulin, and are critical for the regulation of food intake and energy expenditure. While these neurons are mainly born during embryogenesis, accumulating evidence have demonstrated that neurogenesis also occurs in postnatal-adult mouse hypothalamus, particularly in the first two postnatal weeks. This second wave of active neurogenesis contributes to the remodeling of hypothalamic neuronal populations and regulation of energy homeostasis including hypothalamic leptin sensing. Radial glia cell types, such as tanycytes, are known to act as neuronal progenitors in the postnatal mouse hypothalamus. Our recent study unveiled a previously unreported radial glia-like neural stem cell (RGL-NSC) population that actively contributes to neurogenesis in the postnatal mouse hypothalamus. We also identified Irx3 and Irx5, which encode Iroquois homeodomain-containing transcription factors, as genetic determinants regulating the neurogenic property of these RGL-NSCs. These findings are significant as IRX3 and IRX5 have been implicated in FTO-associated obesity in humans, illustrating the importance of postnatal hypothalamic neurogenesis in energy homeostasis and obesity. In this review, we summarize current knowledge regarding postnatal-adult hypothalamic neurogenesis and highlight recent findings on the radial glia-like cells that contribute to the remodeling of postnatal mouse hypothalamus. We will discuss characteristics of the RGL-NSCs and potential actions of Irx3 and Irx5 in the regulation of neural stem cells in the postnatal-adult mouse brain. Understanding the behavior and regulation of neural stem cells in the postnatal-adult hypothalamus will provide novel mechanistic insights in the control of hypothalamic remodeling and energy homeostasis.

7.
Saudi J Biol Sci ; 27(2): 736-750, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32210695

RESUMEN

The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aß aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.

8.
Br J Nutr ; 121(11): 1247-1254, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30929646

RESUMEN

The present study investigated whether dietary patterns could interact with fat mass and obesity-associated (FTO) polymorphisms in relation to changes in BMI and waist circumference (WC) over 3⋅6 years of follow-up. Subjects were selected from participants of the Tehran Lipid and Glucose Study (n 4292, 43⋅2 % male). Dietary data were collected using a valid and reliable FFQ. Dietary patterns were determined using factor analysis. The genotypes of polymorphisms (rs1421085, rs1121980, rs17817449, rs8050136, rs9939973 and rs3751812) were determined. Genetic risk score (GRS) was calculated using the weighted method. Mean ages of men and women were 42·6 (sd 14) and 40⋅4 (sd 13) years, respectively. The healthy (e.g. vegetables and fruits) and the Western dietary patterns (WDP; e.g. soft drinks and fast foods) were extracted. In carriers of the risk alleles rs1121980, rs1421085, rs8050136, rs1781799 and rs3751812, BMI was approximately 2-fold higher in individuals in the higher quartile of WDP score, compared with the first quartile (P < 0⋅05). WC increased with increasing WDP score in carriers of the risk alleles rs1121980 and rs3751812, but not in individuals who did not carry any risk alleles. BMI and WC increased to a greater extent in the high GRS group while increasing quartiles of the WDP score, compared with the low GRS group (BMI change; Q1: 1⋅04 (se 0⋅34) v. Q4: 2⋅26 (se 0⋅36)) (WC change; Q1: 0⋅47 (se 0⋅32) v. Q4: 0⋅95 (se 0⋅34)) (P interaction < 0⋅05). These results suggest that adults with higher genetic predisposition to obesity are more susceptible to the harmful effects of adherence to the WDP, which emphasised the need to reduce the consumption of unhealthy foods for the prevention of obesity.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Índice de Masa Corporal , Dieta Occidental/efectos adversos , Obesidad/genética , Circunferencia de la Cintura/genética , Adulto , Alelos , Encuestas sobre Dietas , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Irán , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético , Factores de Riesgo
9.
Gene X ; 3: 100019, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32550549

RESUMEN

BACKGROUND: Energy restriction induces adaptations in resting energy expenditure (REE) and physical activity; inter-individual variability could be ascribed to genetic predisposition.The aim was to examine if changes in REE and physical activity as a result of weight loss were affected by candidate single nucleotide polymorphisms (SNPs). METHODS: 148 subjects (39 men, 109 women), mean ±â€¯SD age: 41 ±â€¯9 year; body mass index (BMI): 31.9 ±â€¯3.0 kg/m2, followed a very low energy diet for 8 weeks. SNPs were selected from six candidate genes: ADRB2, FTO, MC4R, PPARG2, PPARD and PPARGC1A. REE (ventilated hood) and physical activity (tri-axial accelerometer) were assessed before and after the diet. General linear modelling included gender, age and additional relevant covariates for all parameters. RESULTS: The heterozygotic genotype of FTO was associated with a higher amount of physical activity (1.71 Mcounts/d; CI 1.62-1.81) compared to the homozygotic major genotype (1.50 Mcounts/d; CI 1.40-1.59) (P < 0.001) while the homozygotic risk allele genotype was not different (1.56 Mcounts/d; CI 1.39-1.74) at baseline; moreover, a similar pattern was observed after energy restriction. Carrying the homozygotic minor genotype of ADRB2 was associated with a larger decrease in REE (P < 0.05) and greater adaptive thermogenesis (P < 0.05) after weight loss. CONCLUSION: Carrying the minor ADRB2 allele homozygous was associated with a larger diet induced metabolic adaptation in energy expenditure and suggest a central role for reduced lipid mobilization. Carrying the risk allele of FTO homozygous was not associated with lower physical activity at baseline or after weight loss. Heterozygous carriers of one FTO risk allele showed greater physical activity before and after weight loss which might protect them in part from the higher obesity risk associated with FTO.

10.
Br J Nutr ; 121(1): 93-99, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30311592

RESUMEN

The prevalence of childhood obesity has increased worldwide. Although it is considered a polygenic inheritance disease, little is known about its susceptibility when the additive effect is considered. The aim of this study is to investigate whether the genetic risk score (GRS) based on previously associated obesity polymorphisms (SNP) rs9939609 (fat mass and obesity-associated (FTO)), rs6548238 (transmembrane protein 18 (TMEM18)) and rs16835198 (fibronectin type III domain containing 5 (FNDC5)) could serve as a predictor for anthropometric characteristics in a sample of Brazilian children and adolescents. This is a cross-sectional study with 1471 children and adolescents aged 6-17 years. BMI, waist circumference (WC) and percentage of body fat and metabolic parameters were verified. In all, three SNP were genotyped by TaqMan™ allelic discrimination. The metabolic and anthropometric parameters were compared between the genotypes, and the unweighted and weighted GRS (GRS and wGRS, respectively) were created to test the additive effect of these genetic polymorphisms on anthropometric parameters. The prevalence of overweight plus obesity was 41 %. Significant associations were identified for FTO rs9939609, TMEM18 rs6548238 and FNDC5 rs16835198 and for GRS and wGRS with anthropometric phenotypes. The higher score of wGRS was associated with obesity (OR: 2·65, 95 % CI 1·40, 5·04, P=0·003) and with greater WC (OR: 2·91, 95 % CI 1·57, 5·40, P=0·001). Our results suggest that these genetic variants contribute to obesity susceptibility in children and adolescents and reinforce the idea that the additive effect may be useful to elucidate the genetic component of obesity.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Fibronectinas/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de la Membrana/genética , Obesidad Infantil/genética , Adolescente , Antropometría , Composición Corporal/genética , Índice de Masa Corporal , Brasil/epidemiología , Niño , Femenino , Genotipo , Humanos , Masculino , Obesidad Infantil/epidemiología , Polimorfismo de Nucleótido Simple/genética , Circunferencia de la Cintura/genética
11.
Br J Nutr ; 120(4): 454-463, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29893663

RESUMEN

Genetic variants associated with dietary intake may be important as factors underlying the development of obesity. We investigated the associations between the obesity candidate genes (fat mass and obesity-associated (FTO), melanocortin-4 receptor (MC4R), leptin (LEP) and leptin receptor) and total energy intake and percentage of energy from macronutrients and ultra-processed foods before and during pregnancy. A sample of 149 pregnant women was followed up in a prospective cohort in Rio de Janeiro, Brazil. A FFQ was administered at 5-13 and 30-36 weeks of gestation. Genotyping was performed using real-time PCR. Associations between polymorphisms and the outcomes were investigated through multiple linear regression and ANCOVA having pre-pregnancy dietary intake as a covariate. The A-allele of FTO-rs9939609 was associated with a -6·5 % (95 % CI -12·3, -0·4) decrease in the percentage of energy from protein and positively associated with the percentage of energy from carbohydrates before pregnancy (ß=2·6; 95 % CI 0·5, 4·8) and with a 13·3 % (95 % CI 0·7, 27·5) increase in the total energy intake during pregnancy. The C-allele of MC4R-rs17782313 was associated with a -7·6 % (95 % CI -13·8, -1·0) decrease in the percentage of energy from protein, and positively associated with the percentage of energy from ultra-processed foods (ß=5·4; 95 % CI 1·1, 9·8) during pregnancy. ANCOVA results revealed changes in dietary intake from pre-pregnancy to pregnancy for FTO-rs9939609 (percentage of energy from ultra-processed foods, P=0·03), MC4R-rs17782313 (total energy intake, P=0·02) and LEP-rs7799039 (total energy intake, P=0·04; percentage of energy from protein, P=0·04). These findings suggest significant associations between FTO-rs9939609, MC4R-rs17782313 and LEP-rs7799039 genes and the components of dietary intake in pregnant women.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dieta , Leptina/genética , Obesidad/genética , Receptor de Melanocortina Tipo 4/genética , Receptores de Leptina/genética , Adulto , Alelos , Carbohidratos de la Dieta/metabolismo , Femenino , Genotipo , Humanos , Modelos Lineales , Madres , Obesidad/metabolismo , Polimorfismo Genético , Polimorfismo de Nucleótido Simple , Embarazo , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Riesgo , Adulto Joven
12.
J Biomol Struct Dyn ; 36(13): 3388-3397, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28978264

RESUMEN

The binding of two flavonols with fat mass and obesity-associated protein (FTO) was studied using fluorescence spectroscopy, Stern-Volmer kinetics, UV-Vis absorption, and molecular docking. The quenching of FTO fluorescence was determined to be static with binding constants on the order of 104 M-1. The interaction was studied over three temperatures, and the binding was found to be exothermic with a positive change in entropy. Thermodynamic analysis and molecular modeling suggest that hydrophobic interaction and hydrogen bonding interaction are the main binding force in stabilizing the flavonol-FTO complex.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Flavonoles/química , Interacciones Hidrofóbicas e Hidrofílicas , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Enlace de Hidrógeno , Modelos Moleculares , Simulación del Acoplamiento Molecular , Obesidad/genética , Obesidad/patología , Unión Proteica/fisiología , Espectrometría de Fluorescencia , Termodinámica
13.
Br J Nutr ; 117(11): 1503-1510, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28659218

RESUMEN

Previous studies have shown associations of variants of the FTO gene with body weight, but none of these have involved Latin American populations with a high level of miscegenation, as is seen in the north-eastern Brazilian population. This study evaluated the association between SNP in the FTO gene and excess weight in Salvador, Bahia, Brazil. In addition, the effect of diet as a modifier on this association was also investigated. This cross-sectional study included 1191 participants aged 4-11 years, who were genotyped for 400 variants of the FTO gene. Direct anthropometric measures were made and dietary data were obtained by 24-h food recall. Multivariate logistic regression analyses were used to assess the associations of interest. Overall, 11·2 % of the individuals included in the study were overweight/obese. Interactions were identified between the percentage energy intake from proteins and obesity risk linked to the rs62048379 SNP (P interaction=0·01) and also between fat intake (PUFA:SFA ratio) and obesity risk linked to the rs62048379 SNP (P interaction=0·01). The T allele for the variant rs62048379 was positively associated with overweight/obesity in individuals whose percentage energy intake from protein was above the median (OR 2·00; 95 % CI 1·05, 3·82). The rs62048379 SNP was also associated with overweight/obesity in individuals whose PUFA:SFA ratio was below the median (OR 1·63; 95 % CI 1·05, 2·55). The association between FTO gene variants and excess body weight can be modulated by dietary characteristics, particularly by fatty acid distribution and dietary protein intake in children.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Peso Corporal , Dieta , Interacción Gen-Ambiente , Genotipo , Obesidad/genética , Polimorfismo de Nucleótido Simple , Alelos , Brasil , Niño , Preescolar , Estudios Transversales , Encuestas sobre Dietas , Ingestión de Energía , Conducta Alimentaria , Femenino , Humanos , Modelos Logísticos , Masculino , Sobrepeso/genética , Obesidad Infantil/genética , Grupos Raciales
14.
Nutr Res Rev ; 30(1): 106-117, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28294082

RESUMEN

Body mass and fat intake are multifactorial traits that have genetic and environmental components. The gene with the greatest effect on body mass is FTO (fat mass and obesity-associated), but several studies have shown that the effect of FTO (and of other genes) on body mass can be modified by the intake of nutrients. The so-called gene-environment interactions may also be important for the effectiveness of weight-loss strategies. Food choices, and thus fat intake, depend to some extent on individual preferences. The most important biological component of food preference is taste, and the role of fat sensitivity in fat intake has recently been pointed out. Relatively few studies have analysed the genetic components of fat intake or fatty acid sensitivity in terms of their relation to obesity. It has been proposed that decreased oral fatty acid sensitivity leads to increased fat intake and thus increased body mass. One of the genes that affect fatty acid sensitivity is CD36 (cluster of differentiation 36). However, little is known so far about the genetic component of fat sensing. We performed a literature review to identify the state of knowledge regarding the genetics of fat intake and its relation to body-mass determination, and to identify the priorities for further investigations.


Asunto(s)
Composición Corporal/genética , Grasas de la Dieta/administración & dosificación , Grasa Abdominal , Adiposidad , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Índice de Masa Corporal , Antígenos CD36/genética , Metabolismo Energético/genética , Ácidos Grasos/administración & dosificación , Preferencias Alimentarias , Interacción Gen-Ambiente , Ligamiento Genético , Humanos , Obesidad/genética , Polimorfismo Genético/genética , Gusto/genética , Pérdida de Peso/genética
15.
Nutrients ; 8(3): 128, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26950145

RESUMEN

In the past three decades, total fat and saturated fat intake as a percentage of total calories has continuously decreased in Western diets, while the intake of omega-6 fatty acid increased and the omega-3 fatty acid decreased, resulting in a large increase in the omega-6/omega-3 ratio from 1:1 during evolution to 20:1 today or even higher. This change in the composition of fatty acids parallels a significant increase in the prevalence of overweight and obesity. Experimental studies have suggested that omega-6 and omega-3 fatty acids elicit divergent effects on body fat gain through mechanisms of adipogenesis, browning of adipose tissue, lipid homeostasis, brain-gut-adipose tissue axis, and most importantly systemic inflammation. Prospective studies clearly show an increase in the risk of obesity as the level of omega-6 fatty acids and the omega-6/omega-3 ratio increase in red blood cell (RBC) membrane phospholipids, whereas high omega-3 RBC membrane phospholipids decrease the risk of obesity. Recent studies in humans show that in addition to absolute amounts of omega-6 and omega-3 fatty acid intake, the omega-6/omega-3 ratio plays an important role in increasing the development of obesity via both AA eicosanoid metabolites and hyperactivity of the cannabinoid system, which can be reversed with increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A balanced omega-6/omega-3 ratio is important for health and in the prevention and management of obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta/efectos adversos , Ácidos Grasos Omega-3/efectos adversos , Ácidos Grasos Omega-6/efectos adversos , Obesidad/epidemiología , Tejido Adiposo/fisiopatología , Adiposidad , Animales , Suplementos Dietéticos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Obesidad/genética , Obesidad/metabolismo , Obesidad/prevención & control , Fenotipo , Medición de Riesgo , Factores de Riesgo
16.
Biochem Biophys Rep ; 5: 476-481, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28955855

RESUMEN

Human AlkB homolog 3 (ALKBH3), a homolog of the Escherichia coli protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference in vitro and in vivo indicate that ALKBH3 is a promising molecular target for the treatment of prostate, pancreatic, and non-small cell lung cancer. Therefore, an inhibitor for ALKBH3 demethylase is expected to be a first-in-class molecular-targeted drug for cancer treatment. Here, we report the development of a novel, quantitative real-time PCR-based assay for ALKBH3 demethylase activity against 3-meC by highly active recombinant ALKBH3 protein using a silkworm expression system. This assay enables us to screen for inhibitors of ALKBH3 demethylase, which may result in the development of a novel molecular-targeted drug for cancer therapy.

17.
Br J Nutr ; 115(3): 440-8, 2016 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-26620191

RESUMEN

The interplay between the fat mass- and obesity-associated (FTO) gene variants and diet has been implicated in the development of obesity. The aim of the present analysis was to investigate associations between FTO genotype, dietary intakes and anthropometrics among European adults. Participants in the Food4Me randomised controlled trial were genotyped for FTO genotype (rs9939609) and their dietary intakes, and diet quality scores (Healthy Eating Index and PREDIMED-based Mediterranean diet score) were estimated from FFQ. Relationships between FTO genotype, diet and anthropometrics (weight, waist circumference (WC) and BMI) were evaluated at baseline. European adults with the FTO risk genotype had greater WC (AA v. TT: +1·4 cm; P=0·003) and BMI (+0·9 kg/m2; P=0·001) than individuals with no risk alleles. Subjects with the lowest fried food consumption and two copies of the FTO risk variant had on average 1·4 kg/m2 greater BMI (Ptrend=0·028) and 3·1 cm greater WC (Ptrend=0·045) compared with individuals with no copies of the risk allele and with the lowest fried food consumption. However, there was no evidence of interactions between FTO genotype and dietary intakes on BMI and WC, and thus further research is required to confirm or refute these findings.


Asunto(s)
Tejido Adiposo/metabolismo , Ingestión de Energía , Conducta Alimentaria , Interacción Gen-Ambiente , Obesidad/genética , Población Blanca/genética , Adiposidad/genética , Anciano , Anciano de 80 o más Años , Alelos , Índice de Masa Corporal , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Genotipo , Humanos , Estilo de Vida , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Circunferencia de la Cintura
18.
Mol Metab ; 4(4): 287-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25830092

RESUMEN

OBJECTIVE: Loss of function FTO mutations significantly impact body composition in humans and mice, with Fto-deficient mice reported to resist the development of obesity in response to a high-fat diet (HFD). We aimed to further explore the interactions between FTO and HFD and determine if FTO can influence the adverse metabolic consequence of HFD. METHODS: We studied mice deficient in FTO in two well validated models of leptin resistance (HFD feeding and central palmitate injection) to determine how Fto genotype may influence the action of leptin. Using transcriptomic analysis of hypothalamic tissue to identify relevant pathways affected by the loss of Fto, we combined data from co-immunoprecipitation, yeast 2-hybrid and luciferase reporter assays to identify mechanisms through which FTO can influence the development of leptin resistant states. RESULTS: Mice deficient in Fto significantly increased their fat mass in response to HFD. Fto (+/-) and Fto (-/-) mice remained sensitive to the anorexigenic effects of leptin, both after exposure to a HFD or after acute central application of palmitate. Genes encoding components of the NFкB signalling pathway were down-regulated in the hypothalami of Fto-deficient mice following a HFD. When this pathway was reactivated in Fto-deficient mice with a single low central dose of TNFα, the mice became less sensitive to the effect of leptin. We identified a transcriptional coactivator of NFкB, TRIP4, as a binding partner of FTO and a molecule that is required for TRIP4 dependent transactivation of NFкB. CONCLUSIONS: Our study demonstrates that, independent of body weight, Fto influences the metabolic outcomes of a HFD through alteration of hypothalamic NFкB signalling. This supports the notion that pharmacological modulation of FTO activity might have the potential for therapeutic benefit in improving leptin sensitivity, in a manner that is influenced by the nutritional environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA