Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Struct Biol X ; 9: 100102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38962493

RESUMEN

Microcrystal electron diffraction (MicroED) has emerged as a powerful technique for unraveling molecular structures from microcrystals too small for X-ray diffraction. However, a significant hurdle arises with plate-like crystals that consistently orient themselves flat on the electron microscopy grid. If the normal of the plate correlates with the axes of the crystal lattice, the crystal orientations accessible for measurement are restricted because the crystal cannot be arbitrarily rotated. This limits the information that can be acquired, resulting in a missing cone of information. We recently introduced a novel crystallization strategy called suspended drop crystallization and proposed that crystals in a suspended drop could effectively address the challenge of preferred crystal orientation. Here we demonstrate the success of the suspended drop approach in eliminating the missing cone in two samples that crystallize as thin plates: bovine liver catalase and the SARS­CoV­2 main protease (Mpro). This innovative solution proves indispensable for crystals exhibiting systematic preferred orientations, unlocking new possibilities for structure determination by MicroED.

2.
J Struct Biol ; 216(2): 108097, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772448

RESUMEN

Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Oro , Microscopía por Crioelectrón/métodos , Oro/química , Tomografía con Microscopio Electrónico/métodos , Escherichia coli/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Manejo de Especímenes/métodos
3.
Nanomaterials (Basel) ; 14(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202571

RESUMEN

Our paper introduces a simulation-based framework designed to interpret differential phase contrast (DPC) magnetic imaging within the transmission electron microscope (TEM). We investigate patterned magnetic membranes, particularly focusing on nano-patterned Co70Fe30 thin-film membranes fabricated via focused ion beam (FIB) milling. Our direct magnetic imaging reveals regular magnetic domain patterns in these carefully prepared systems. Notably, the observed magnetic structure aligns precisely with micromagnetic simulations based on the dimensions of the underlying nanostructures. This agreement emphasizes the usefulness of micromagnetic simulations, not only for the interpretation of DPC data, but also for the prediction of possible microstructures in magnetic sensor systems with nano-patterns.

4.
Small Methods ; 7(9): e2300258, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37248805

RESUMEN

A quantitative four-dimensional scanning transmission electron microscopy (4D-STEM) imaging technique (q4STEM) for local thickness estimation across amorphous specimen such as obtained by focused ion beam (FIB)-milling of lamellae for (cryo-)TEM analysis is presented. This study is based on measuring spatially resolved diffraction patterns to obtain the angular distribution of electron scattering, or the ratio of integrated virtual dark and bright field STEM signals, and their quantitative evaluation using Monte Carlo simulations. The method is independent of signal intensity calibrations and only requires knowledge of the detector geometry, which is invariant for a given instrument. This study demonstrates that the method yields robust thickness estimates for sub-micrometer amorphous specimen using both direct detection and light conversion 2D-STEM detectors in a coincident FIB-SEM and a conventional SEM. Due to its facile implementation and minimal dose reauirements, it is anticipated that this method will find applications for in situ thickness monitoring during lamella fabrication of beam-sensitive materials.

5.
IUCrJ ; 10(Pt 4): 430-436, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37223996

RESUMEN

In this work, a novel crystal growth method termed suspended drop crystallization has been developed. Unlike traditional methods, this technique involves mixing protein and precipitant directly on an electron microscopy grid without any additional support layers. The grid is then suspended within a crystallization chamber designed in-house, allowing for vapor diffusion to occur from both sides of the drop. A UV-transparent window above and below the grid enables the monitoring of crystal growth via light, UV or fluorescence microscopy. Once crystals have formed, the grid can be removed and utilized for X-ray crystallography or microcrystal electron diffraction (MicroED) directly without having to manipulate the crystals. To demonstrate the efficacy of this method, crystals of the enzyme proteinase K were grown and its structure was determined by MicroED following focused ion beam/scanning electron microscopy milling to render the sample thin enough for cryoEM. Suspended drop crystallization overcomes many of the challenges associated with sample preparation, providing an alternative workflow for crystals embedded in viscous media, sensitive to mechanical stress and/or subject to preferred orientation on electron microscopy grids.


Asunto(s)
Proteínas , Cristalización/métodos , Proteínas/química , Cristalografía por Rayos X , Endopeptidasa K , Microscopía por Crioelectrón/métodos
6.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37034718

RESUMEN

Palytoxin (PTX) is a potent neurotoxin found in marine animals that can cause serious symptoms such as muscle contractions, haemolysis of red blood cells and potassium leakage. Despite years of research, very little is known about the mechanism of PTX. However, recent advances in the field of cryoEM, specifically the use of microcrystal electron diffraction (MicroED), have allowed us to determine the structure of PTX. It was discovered that PTX folds into a hairpin motif and is able to bind to the extracellular gate of Na,K-ATPase, which is responsible for maintaining the electrochemical gradient across the plasma membrane. These findings, along with molecular docking simulations, have provided important insights into the mechanism of PTX and can potentially aid in the development of molecular agents for treating cases of PTX exposure.

7.
Nanomaterials (Basel) ; 13(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839136

RESUMEN

We report a simple and robust fiber specklegram refractive index sensor with a multimode fiber-single mode fiber-multimode fiber structure based on focused ion beam milling. In this work, a series of fluid channels are etched on the single-mode fiber by using focused ion beam milling to enhance the interaction between light and matter, and a deep learning model is employed to demodulate the sensing signal according to the speckle patterns collected from the output end of the multimode fiber. The feasibility and effectiveness of the proposed scheme were verified by rigorous experiments, and the test results showed that the demodulation accuracy and speed could reach 99.68% and 4.5 ms per frame, respectively, for the refractive index range of 1.3326 to 1.3679. The proposed sensing scheme has the advantages of low cost, easy implementation, and a simple measurement system, and it is expected to find applications in various chemical and biological sensing.

8.
Adv Biol Regul ; 87: 100923, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280452

RESUMEN

Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.


Asunto(s)
Tomografía con Microscopio Electrónico , Células Eucariotas , Humanos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos
9.
Bio Protoc ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36561119

RESUMEN

Cryo-electron tomography (cryo-ET) is a formidable technique to observe the inner workings of vitrified cells at a nanometric resolution in near-native conditions and in three-dimensions. One consequent drawback of this technique is the sample thickness, for two reasons: i) achieving proper vitrification of the sample gets increasingly difficult with sample thickness, and ii) cryo-ET relies on transmission electron microscopy (TEM), requiring thin samples for proper electron transmittance (<500 nm). For samples exceeding this thickness limit, thinning methods can be used to render the sample amenable for cryo-ET. Cryo-focused ion beam (cryo-FIB) milling is one of them and despite having hugely benefitted the fields of animal cell biology, virology, microbiology, and even crystallography, plant cells are still virtually unexplored by cryo-ET, in particular because they are generally orders of magnitude bigger than bacteria, viruses, or animal cells (at least 10 µm thick) and difficult to process by cryo-FIB milling. Here, we detail a preparation method where abaxial epidermal onion cell wall peels are separated from the epidermal cells and subsequently plunge frozen, cryo-FIB milled, and screened by cryo-ET in order to acquire high resolution tomographic data for analyzing the organization of the cell wall. This protocol was validated in: Curr Biol (2022), DOI: 10.1016/j.cub.2022.04.024.

10.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36502027

RESUMEN

This paper presents the results of beam investigations on semiconductor IR lasers using novel detectors based on thermocouples. The work covers the design, the fabrication of detectors, and the experimental validation of their sensitivity to IR radiation. The principle of operation of the manufactured detectors is based on the Seebeck effect (the temperature difference between hot and cold junctions induced voltage appearance). The devices were composed of several thermocouples arranged in a linear array. The nano- and microscale thermocouples (the hot junctions) were fabricated using a typical Si-compatible MEMS process enhanced with focused ion beam (FIB) milling. The performance of the hot junctions was tested, focusing on their sensitivity to IR radiation covering the near-infrared (NIR) radiation (λ = 976 nm). The output voltage was measured as a function of the detector position in the XY plane. The measurement results allowed for reconstructing the Gaussian-like intensity distribution of the incident light beam.


Asunto(s)
Láseres de Semiconductores , Semiconductores , Metales , Frío , Comercio
11.
Infect Immun ; 90(10): e0041022, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36190257

RESUMEN

Coxiella burnetii is an obligate intracellular bacterial pathogen that has evolved a unique biphasic developmental cycle. The infectious form of C. burnetii is the dormant small cell variant (SCV), which transitions to a metabolically active large cell variant (LCV) that replicates inside the lysosome-derived host vacuole. A Dot/Icm type IV secretion system (T4SS), which can deliver over 100 effector proteins to host cells, is essential for the biogenesis of the vacuole and intracellular replication. How the distinct C. burnetii life cycle impacts the assembly and function of the Dot/Icm T4SS has remained unknown. Here, we combine advanced cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging to visualize all developmental transitions and the assembly of the Dot/Icm T4SS in situ. Importantly, assembled Dot/Icm machines were not present in the infectious SCV. The appearance of the assembled Dot/Icm machine correlated with the transition of the SCV to the LCV intracellularly. Furthermore, temporal characterization of C. burnetii morphological changes revealed regions of the inner membrane that invaginate to form tightly packed stacks during the LCV-to-SCV transition at late stages of infection, which may enable the SCV-to-LCV transition that occurs upon infection of a new host cell. Overall, these data establish how C. burnetii developmental transitions control critical bacterial processes to promote intracellular replication and transmission.


Asunto(s)
Coxiella burnetii , Coxiella burnetii/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/metabolismo , Vacuolas/microbiología , Lisosomas/metabolismo , Interacciones Huésped-Patógeno
12.
Elife ; 112022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36005291

RESUMEN

Previously, we showed that high-resolution template matching can localize ribosomes in two-dimensional electron cryo-microscopy (cryo-EM) images of untilted Mycoplasma pneumoniae cells with high precision (Lucas et al., 2021). Here, we show that comparing the signal-to-noise ratio (SNR) observed with 2DTM using different templates relative to the same cellular target can correct for local variation in noise and differentiate related complexes in focused ion beam (FIB)-milled cell sections. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. 2DTM can distinguish related molecular populations without the need to generate 3D reconstructions from the data to be classified, permitting classification even when only a few target particles exist in a cell.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Microscopía por Crioelectrón/métodos , Funciones de Verosimilitud , Modelos Moleculares , Ribosomas , Saccharomyces cerevisiae
13.
J Struct Biol X ; 6: 100065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252838

RESUMEN

Advancements in the field of cryo-electron tomography have greatly contributed to our current understanding of prokaryotic cell organization and revealed intracellular structures with remarkable architecture. In this review, we present some of the prominent advancements in cryo-electron tomography, illustrated by a subset of structural examples to demonstrate the power of the technique. More specifically, we focus on technical advances in automation of data collection and processing, sample thinning approaches, correlative cryo-light and electron microscopy, and sub-tomogram averaging methods. In turn, each of these advances enabled new insights into bacterial cell architecture, cell cycle progression, and the structure and function of molecular machines. Taken together, these significant advances within the cryo-electron tomography workflow have led to a greater understanding of prokaryotic biology. The advances made the technique available to a wider audience and more biological questions and provide the basis for continued advances in the near future.

14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34873060

RESUMEN

The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.


Asunto(s)
Benchmarking/métodos , Microscopía por Crioelectrón/métodos , Manejo de Especímenes/métodos , Animales , Cristalización/métodos , Cristalografía , Electrones , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Moleculares
15.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34737233

RESUMEN

Mitochondria-cytoskeleton interactions modulate cellular physiology by regulating mitochondrial transport, positioning, and immobilization. However, there is very little structural information defining mitochondria-cytoskeleton interfaces in any cell type. Here, we use cryofocused ion beam milling-enabled cryoelectron tomography to image mammalian sperm, where mitochondria wrap around the flagellar cytoskeleton. We find that mitochondria are tethered to their neighbors through intermitochondrial linkers and are anchored to the cytoskeleton through ordered arrays on the outer mitochondrial membrane. We use subtomogram averaging to resolve in-cell structures of these arrays from three mammalian species, revealing they are conserved across species despite variations in mitochondrial dimensions and cristae organization. We find that the arrays consist of boat-shaped particles anchored on a network of membrane pores whose arrangement and dimensions are consistent with voltage-dependent anion channels. Proteomics and in-cell cross-linking mass spectrometry suggest that the conserved arrays are composed of glycerol kinase-like proteins. Ordered supramolecular assemblies may serve to stabilize similar contact sites in other cell types in which mitochondria need to be immobilized in specific subcellular environments, such as in muscles and neurons.


Asunto(s)
Citoesqueleto/ultraestructura , Mitocondrias/ultraestructura , Espermatozoides/ultraestructura , Animales , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Porcinos
16.
Methods Mol Biol ; 2302: 137-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33877626

RESUMEN

Microcrystal electron diffraction (MicroED) enables atomic resolution structures to be determined from vanishingly small crystals. Soluble proteins typically grow crystals that are tens to hundreds of microns in size for X-ray crystallography. But membrane protein crystals often grow crystals that are too small for X-ray diffraction and yet too large for MicroED. These crystals are often formed in thick, viscous media that challenge traditional cryoEM grid preparation. Here, we describe two approaches for preparing membrane protein crystals for MicroED data collection: application of a crystal slurry directly to EM grids, and focused ion beam milling in a Scanning Electron Microscope (FIB-SEM). We summarize the case of preparing an ion channel, NaK, and the workflow of focused ion-beam milling. By milling away the excess media and crystalline material, crystals of any size may be prepared for MicroED. Finally, an energy filter may be used to help minimize inelastic scattering leading to lower noise on recorded images.


Asunto(s)
Cristalografía por Rayos X/métodos , ATPasa Intercambiadora de Sodio-Potasio/química , Microscopía Electrónica de Transmisión , Modelos Moleculares , Peso Molecular , Conformación Proteica , Flujo de Trabajo
17.
EMBO J ; 40(7): e107410, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694216

RESUMEN

Motile cilia are molecular machines used by a myriad of eukaryotic cells to swim through fluid environments. However, available molecular structures represent only a handful of cell types, limiting our understanding of how cilia are modified to support motility in diverse media. Here, we use cryo-focused ion beam milling-enabled cryo-electron tomography to image sperm flagella from three mammalian species. We resolve in-cell structures of centrioles, axonemal doublets, central pair apparatus, and endpiece singlets, revealing novel protofilament-bridging microtubule inner proteins throughout the flagellum. We present native structures of the flagellar base, which is crucial for shaping the flagellar beat. We show that outer dense fibers are directly coupled to microtubule doublets in the principal piece but not in the midpiece. Thus, mammalian sperm flagella are ornamented across scales, from protofilament-bracing structures reinforcing microtubules at the nano-scale to accessory structures that impose micron-scale asymmetries on the entire assembly. Our structures provide vital foundations for linking molecular structure to ciliary motility and evolution.


Asunto(s)
Cola del Espermatozoide/ultraestructura , Animales , Axonema/ultraestructura , Movimiento Celular , Centriolos/ultraestructura , Cilios/fisiología , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Caballos , Masculino , Ratones , Ratones Endogámicos C57BL , Cola del Espermatozoide/fisiología , Porcinos
18.
Methods Cell Biol ; 162: 273-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33707016

RESUMEN

In situ cryo-electron tomography of cryo-focused ion beam (cryo-FIB) milled cells enables the study of cellular organelles in unperturbed conditions and close to the molecular resolution. However, due to the crowdedness of the cellular environment, the identification of individual macromolecular complexes either on organelles or inside the cytosol in cryo-electron tomograms is challenging. Cryo-correlative light and electron microscopy (cryo-CLEM) employs a fluorescently labeled feature of interest imaged by cryo-light microscopy that is correlated to cryo-electron microscopy maps of cryo-FIB milled lamellae using correlation markers discernable by both imaging methods. Here, we provide a protocol for a post-correlation on-lamella cryo-CLEM approach for localization of fluorescently labeled organelles of interest in cryo-lamellae after cryo-FIB milling and tomography of adherent plunge frozen cells.


Asunto(s)
Tomografía con Microscopio Electrónico , Electrones , Microscopía por Crioelectrón , Iones , Flujo de Trabajo
19.
Methods Mol Biol ; 2215: 83-111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33368000

RESUMEN

Electron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.g., focused ion beam milling (FIB-milling) and cryo-light microscopy, has extended the realm of cryo-ET to include transient molecular complexes embedded deep in thick samples (like eukaryotic cells) and enhanced the resolution of structures obtained by cryo-ET. In this chapter, we will present an outline of how to perform cryo-ET studies on a wide variety of biological samples including prokaryotic and eukaryotic cells and biological plant tissues. This outline will include sample preparation, data collection, and data processing as well as hybrid approaches like FIB-milling, cryosectioning, and cryo-correlated light and electron microscopy (cryo-CLEM).


Asunto(s)
Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Sustancias Macromoleculares/química , Células 3T3 , Animales , Arabidopsis/citología , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Crioultramicrotomía , Tomografía con Microscopio Electrónico/instrumentación , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Humanos , Ratones , Programas Informáticos , Manejo de Especímenes
20.
J Struct Biol ; 208(3): 107389, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536774

RESUMEN

Cryo-focused ion beam (FIB)-milling of biological samples can be used to generate thin electron-transparent slices from cells grown or deposited on EM grids. These so called cryo-lamellae allow high-resolution structural studies of the natural cellular environment by in situ cryo-electron tomography. However, the cryo-lamella workflow is a low-throughput technique and can easily be hindered by technical issues like the bending of the lamellae during the final cryo-FIB-milling steps. The severity of lamella bending seems to correlate with crinkling of the EM grid support film at cryogenic temperatures, which could generate tensions that may be transferred onto the thin lamella, leading to its bending and breakage. To protect the lamellae from such forces, we milled "micro-expansion joints" alongside the lamellae, creating gaps in the support that can act as physical buffers to safely absorb material motion. We demonstrate that the presence of micro-expansion joints drastically decreases bending of lamellae milled from eukaryotic cells grown and frozen on EM grids. Furthermore, we show that this adaptation does not create additional instabilities that could impede subsequent parts of the cryo-lamella workflow, as we obtained high-quality Volta phase plate tomograms revealing macromolecules in their natural structural context. The minimal additional effort required to implement micro-expansion joints in the cryo-FIB-milling workflow makes them a straightforward solution against cryo-lamella bending to increase the throughput of in situ structural biology studies.


Asunto(s)
Tomografía con Microscopio Electrónico/instrumentación , Secciones por Congelación/métodos , Animales , Tomografía con Microscopio Electrónico/métodos , Diseño de Equipo , Secciones por Congelación/instrumentación , Ratones , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA