Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Structure ; 31(10): 1275-1281.e4, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37527655

RESUMEN

Focused ion beam (FIB) is widely used for thinning frozen cells to produce lamellae for cryo-electron microscopy imaging and for protein structures study in vivo. However, FIB damages the lamellae and a quantitative experimental analysis of the damage is lacking. We used a 30-keV gallium FIB to prepare lamellae of a highly concentrated icosahedral virus sample. The viruses were grouped according to their distance from the surface of lamellae and reconstructed. Damage to the approximately 20-nm-thick outermost lamella surface was similar to that from exposure to 16 e-/Å2 in a 300-kV cryo-electron microscope at high-resolution range. The damage was negligible at a depth beyond 50 nm, which was reduced to 30 nm if 8-keV Ga+ was used during polishing. We designed extra steps in the reconstruction refinement to maximize undamaged signals and increase the resolution. The results demonstrated that low-energy beam polishing was essential for high-quality thinner lamellae.

2.
J Microsc ; 279(3): 234-241, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32043578

RESUMEN

Metallic materials are known to be very sensitive to Gallium (Ga) focused ion beam (FIB) processing. Crystal defects formed by FIB irradiation degrade the transmission electron microscope image quality, and it is difficult to distinguish original defects from FIB process-induced damage. A solution to this problem is the low acceleration voltage and low incident angle (LVLA) Argon ion milling, which can be incorporated as an extensional countermeasure for FIB damage removal and eventually for preparation of high-quality lamellae. The transmission electron microscope image quality of iron single crystal could be improved by removing crystal defects using the low acceleration voltage and low incident angle Argon ion milling finish. Lamella quality of the processing result was almost similar with that of the conventional electrolytic polishing. As a practical application of the process, low damage lamella of stainless cast steel could be prepared. Effectiveness of the FIB system equipped with the low acceleration voltage and low incident angle Argon ion milling function as a tool to make high-quality metallic material lamellae is illustrated.

3.
Micron ; 118: 43-49, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30583220

RESUMEN

It is well known that damage induced by impinging Ga+ ions during focused ion beam (FIB) milling of transmission electron microscopy (TEM) specimens can obfuscate subsequent TEM characterization, especially in the near-surface region of the TEM foil. Numerous strategies for minimizing this damage have been invoked, with the most common being the deposition of a Pt 'strap' at the area of interest. However, damage can still occur in the near-surface region during this Pt deposition step and the variation in the character and extent of this damage with applied Pt deposition parameter, especially in complex structural alloys, is not well characterized. In this study, the damage induced in an aerospace Al alloy (AA7075-T651) during five different Pt deposition protocols is examined using TEM. Results indicate significant variations in damage character and depth amongst the applied Pt deposition protocols, with damage being effectively eliminated using a combined electron-beam/ion-beam Pt deposition strategy. These experimental results are found to be in good agreement with Monte Carlo-based simulations of ion implantation and the implications of these findings on recent experiments in the fracture mechanics community are explored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA