Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Elife ; 132024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984715

RESUMEN

The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteolisis , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Ubiquitina/metabolismo , Animales , Conformación Proteica , Ratones , Ubiquitinas
2.
Apoptosis ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824477

RESUMEN

The upregulation of programmed death ligand 1 (PD-L1) plays a crucial role in facilitating cancer cells to evade immune surveillance through immunosuppression. However, the precise regulatory mechanisms of PD-L1 in hepatocellular carcinoma (HCC) remain undefined. The correlation between PD-L1 and ubiquitin-like molecules (UBLs) was studied using sequencing data from 20 HCC patients in our center, combined with TCGA data. Specifically, the association between FAT10 and PD-L1 was further validated at both the protein and mRNA levels in HCC tissues from our center. Subsequently, the effect of FAT10 on tumor progression and immune suppression was examined through both in vivo and in vitro experiments. Utilizing sequencing data, qPCR, and Western blotting assays, we confirmed that FAT10 was highly expressed in HCC tissues and positively correlated with PD-L1 expression. Additionally, in vitro experiments demonstrated that the overexpression of FAT10 fostered the proliferation, migration, and invasion of HCC cells. Furthermore, the overexpression of FAT10 in HCC cells led to an increase in PD-L1 expression, resulting in the inhibition of T cell proliferation and the enhancement of HCC cell resistance to T cell-mediated cytotoxicity. Moreover, in vivo experiments utilizing the C57BL/6 mouse model revealed that overexpression of FAT10 effectively suppressed the infiltration of CD8 + GZMB + and CD8 + Ki67 + T cells, as well as reduced serum levels of TNF-α and IFN-γ. Mechanistically, we further identified that FAT10 upregulates PD-L1 expression via activating the PI3K/AKT/mTOR pathway, but not in a ubiquitin-like modification. In conclusion, our findings indicate that FAT10 promotes immune evasion of HCC via upregulating PD-L1 expression, suggesting its potential as a novel target to enhance the efficiency of immunotherapy in HCC.

3.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853827

RESUMEN

The ubiquitin-like protein ISG15 (interferon-stimulated gene 15) regulates the host response to bacterial and viral infections through its conjugation to proteins (ISGylation) following interferon production. ISGylation is antagonized by the highly specific cysteine protease USP18, which is the major deISGylating enzyme. However, mechanisms underlying USP18's extraordinary specificity towards ISG15 remains elusive. Here, we show that USP18 interacts with its paralog USP41, whose catalytic domain shares 97% identity with USP18. However, USP41 does not act as a deISGylase, which led us to perform a comparative analysis to decipher the basis for this difference, revealing molecular determinants of USP18's specificity towards ISG15. We found that USP18 C-terminus, as well as a conserved Leucine at position 198, are essential for its enzymatic activity and likely act as functional surfaces based on AlphaFold predictions. Finally, we propose that USP41 antagonizes conjugation of the understudied ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) from substrates in a catalytic-independent manner. Altogether, our results offer new insights into USP18's specificity towards ISG15, while identifying USP41 as a negative regulator of FAT10 conjugation.

4.
Future Oncol ; : 1-10, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864667

RESUMEN

Aim: FAT10, a ubiquitin-like modifier protein, influences apoptosis, DNA damage response and tumor growth, with unclear effects on cancer prognosis. Methods: We reviewed FAT10 expression's impact on malignancy prognosis through a systematic review and meta-analysis, including studies up to September 2023 from PubMed, EMBASE and Web of Science. Results: From 18 studies involving 2513 patients, FAT10 overexpression significantly reduced overall and disease-free survival across various tumors, indicating correlations with advanced disease stage, poor differentiation, lymph node metastasis and larger tumor size. Conclusion: FAT10's overexpression suggests a negative prognostic value in cancer, meriting further investigation.PROSPERO Registration Number: CRD42023431287.


This study investigated a protein called FAT10, which is involved in how cells behave, including how cancer cells grow and survive. It analyzed previous research to see if high levels of FAT10 in patients with cancer can help predict how serious their cancer is and how it might progress. After reviewing 18 studies involving 2513 patients, we found that patients with more FAT10 in their cells often had a worse outlook, including a higher chance of the cancer returning and a shorter overall survival time. This pattern existed for different types of cancer. Our findings suggest that measuring FAT10 levels could be helpful for doctors to better understand a patient's cancer and choose the best treatment. However, more studies are needed to confirm our results.

5.
Am J Cancer Res ; 14(4): 1523-1544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726263

RESUMEN

Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.

6.
Sci China Life Sci ; 67(7): 1413-1426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38565741

RESUMEN

Endocrine therapy that blocks estrogen signaling is the most effective treatment for patients with estrogen receptor positive (ER+) breast cancer. However, the efficacy of agents such as tamoxifen (Tam) is often compromised by the development of resistance. Here we report that cytokines-activated nuclear IKKα confers Tam resistance to ER+ breast cancer by inducing the expression of FAT10, and that the expression of FAT10 and nuclear IKKα in primary ER+ human breast cancer was correlated with lymphotoxin ß (LTB) expression and significantly associated with relapse and metastasis in patients treated with adjuvant mono-Tam. IKKα activation or enforced FAT10 expression promotes Tam-resistance while loss of IKKα or FAT10 augments Tam sensitivity. The induction of FAT10 by IKKα is mediated by the transcription factor Pax5, and coordinated via an IKKα-p53-miR-23a circuit in which activation of IKKα attenuates p53-directed repression of FAT10. Thus, our findings establish IKKα-to-FAT10 pathway as a new therapeutic target for the treatment of Tam-resistant ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Quinasa I-kappa B , Transducción de Señal , Tamoxifeno , Animales , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Citocinas/metabolismo , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quinasa I-kappa B/metabolismo , Células MCF-7 , Transducción de Señal/efectos de los fármacos , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
7.
Metabolism ; 151: 155720, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37926201

RESUMEN

BACKGROUND AND AIMS: Peroxisome Proliferator-Activated Receptor α (PPARα) is a key regulator of hepatic lipid metabolism and therefore a promising therapeutic target against Metabolic-dysfunction Associated Steatotic Liver Diseases (MASLD). However, its expression and activity decrease during disease progression and several of its agonists did not achieve sufficient efficiency in clinical trials with, surprisingly, a lack of steatosis improvement. Here, we identified the Human leukocyte antigen-F Adjacent Transcript 10 (FAT10) as an inhibitor of PPARα lipid metabolic activity during MASLD progression. APPROACH AND RESULTS: In vivo, the expression of FAT10 is upregulated in human and murine MASLD livers upon disease progression and correlates negatively with PPARα expression. The increase of FAT10 occurs in hepatocytes in which both proteins interact. FAT10 silencing in vitro in hepatocytes increases PPARα target gene expression, promotes fatty acid oxidation and decreases intra-cellular lipid droplet content. In line, FAT10 overexpression in hepatocytes in vivo inhibits the lipid regulatory activity of PPARα in response to fasting and agonist treatment in conditions of physiological and pathological hepatic lipid overload. CONCLUSIONS: FAT10 is induced during MASLD development and interacts with PPARα resulting in a decreased lipid metabolic response of PPARα to fasting or agonist treatment. Inhibition of the FAT10-PPARα interaction may provide a means to design potential therapeutic strategies against MASLD.


Asunto(s)
Hígado Graso , Enfermedades Metabólicas , Animales , Humanos , Ratones , Progresión de la Enfermedad , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , PPAR alfa/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo
8.
Biochem Biophys Res Commun ; 676: 115-120, 2023 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506472

RESUMEN

Myosin phosphatase (MP) is an enzyme complex that regulates muscle contraction and plays important roles in various physiological and pathological conditions. Myosin phosphatase targeting subunit (MYPT) 2, a subunit of MP, interacts with protein phosphatase 1c to regulate its phosphatase activity. MYPT2 exists in various isoforms that differ in the composition of essential motifs that contribute to its function. However, regulatory mechanisms underlying these isoforms are poorly understood. Human leukocyte antigen-F adjacent transcript 10 (FAT10) is a ubiquitin-like modifier that not only targets proteins for proteasomal degradation but also stabilizes its interacting proteins. In this study, we investigated the effect of the interaction between FAT10 and MYPT2 isoform a (the canonical full-length form of MYPT2) or MYPT2 isoform f (the natural truncated form of MYPT2). FAT10 interacted with both MYPT2 isoforms a and f; however, only MYPT2 isoform f was increased by FAT10, whereas MYPT2 isoform a remained unaffected by FAT10. We further confirmed that, in contrast to MYPT2 isoform a, MYPT2 isoform f undergoes rapid degradation via the ubiquitin-proteasome pathway and that FAT10 stabilizes MYPT2 isoform f by inhibiting its ubiquitination. Therefore, our findings suggest that the interaction between FAT10 and MYPT2 isoforms leads to distinct stabilization effects on each isoform, potentially modulating MP activity.


Asunto(s)
Ubiquitina , Ubiquitinas , Humanos , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Fosfatasa 1/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
9.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37445840

RESUMEN

The extracellular ubiquitin-proteasome system is involved in sperm binding to and/or penetration of the vitelline coat (VC), a proteinaceous egg coat, during fertilization of the ascidian (Urochordata) Halocynthia roretzi. It is also known that the sperm receptor on the VC, HrVC70, is ubiquitinated and degraded by the sperm proteasome during the sperm penetration of the VC and that a 700-kDa ubiquitin-conjugating enzyme complex is released upon sperm activation on the VC, which is designated the "sperm reaction". However, the de novo function of ubiquitin-activating enzyme (UBA/E1) during fertilization is poorly understood. Here, we show that PYR-41, a UBA inhibitor, strongly inhibited the fertilization of H. roretzi. cDNA cloning of UBA1 and UBA6 from H. roretzi gonads was carried out, and their 3D protein structures were predicted to be very similar to those of human UBA1 and UBA6, respectively, based on AlphaFold2. These two genes were transcribed in the ovary and testis and other organs, among which the expression of both was highest in the ovary. Immunocytochemistry showed that these enzymes are localized on the sperm head around a mitochondrial region and the follicle cells surrounding the VC. These results led us to propose that HrUBA1, HrUBA6, or both in the sperm head mitochondrial region and follicle cells may be involved in the ubiquitination of HrVC70, which is responsible for the fertilization of H. roretzi.


Asunto(s)
Fertilización , Urocordados , Animales , Femenino , Masculino , Humanos , Fertilización/fisiología , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Urocordados/genética , Urocordados/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
10.
Dig Dis Sci ; 68(8): 3312-3323, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37310562

RESUMEN

BACKGROUND: Emerging evidence showed that FAT10 is a vital regulator of tumor occurrence and development. The molecular mechanisms underlying the specific role of FAT10 in colorectal cancer (CRC) are not yet known. AIMS: To investigate whether FAT10 participates in the proliferation, invasion and metastasis of CRC. METHODS: This study investigated the function and clinical significance of FAT10 protein expression in CRC. Furthermore, over-expression and knockdown experiments of FAT10 were developed to explore their effects on CRC cell migration and proliferation. Moreover, a molecular mechanism of FAT10 regulate calpain small subunit 1(Capn4) was explored. RESULTS: In this research, the FAT10 expression level was elevated in CRC tissues compared to corresponding normal tissues. In addition, the elevated FAT10 expression level is significantly linked to advanced clinical stage and poor CRC prognosis. Furthermore, a very high expression of FAT10 was observed in CRC cells, and FAT10 overexpression significantly enhanced the in vivo proliferation, invasion, and metastasis of the cells, whereas knockdown of FAT10 inhibited all these cellular factors in both in vivo and in vitro environments. Moreover, the outcomes of this study suggested that FAT10 enhances colorectal cancer progression through enhancement of Capn4 expression, leading to the progression of various human tumors, as reported by previous research. The mechanism via which FAT10 promotes CRC cells proliferation, invasion, and metastasis involves modification of the ubiquitination and degradation processes of Capn4. CONCLUSION: FAT10 is a vital regulator of the tumorigenesis and advancement of CRC, thus serving as a promising pharmaceutical target for treating CRC patients.


Asunto(s)
Carcinogénesis , Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Proliferación Celular/fisiología , Neoplasias Colorrectales/genética , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
11.
J Adv Res ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37328057

RESUMEN

INTRODUCTION: The efficacy of anti-vascular endothelial growth factor (VEGF) therapy is limited. However, the key factors involved in limiting the efficacy of anti-VEGF therapy and the underlying mechanisms remain unclear. OBJECTIVES: To investigate the effects and mechanisms of human leukocyte antigen F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, in limiting the efficacy of anti-VEGF therapy in hepatocellular carcinoma (HCC) cells. METHODS: FAT10 was knocked out in HCC cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. Bevacizumab (BV), an anti-VEGF monoclonal antibody, was used to evaluate the efficacy of anti-VEGF therapy in vivo. Mechanisms of FAT10 action were assessed by RNA sequencing, glutathione S-transferase pulldown assays and in vivo ubiquitination assays. RESULTS: FAT10 accelerated VEGF-independent angiogenesis in HCC cells which limited BV efficacy and BV-aggravated hypoxia and inflammation promoted FAT10 expression. FAT10 overexpression increased levels of proteins involved in several signaling pathways in HCC cells, resulting in upregulation of VEGF and multiple non-VEGF proangiogenic factors. Upregulation of multiple FAT10-mediated non-VEGF signals compensated for the inhibition of VEGF signaling by BV, enhancing VEGF-independent angiogenesis and promoting HCC growth. CONCLUSIONS: Our preclinical findings identify FAT10 in HCC cells as a key factor limiting the efficacy of anti-VEGF therapy and elucidate its underlying mechanisms. This study provides new mechanistic insights into the development of antiangiogenic therapies.

12.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220167, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122222

RESUMEN

The protein expression and function changes from the slow-delayed rectifying K+ current, IKs, are tightly associated with ventricular cardiac arrhythmias. Human leukocyte antigen F-associated transcript 10 (FAT10), a member of the ubiquitin-like-modifier family, exerts a protective effect against myocardial ischaemia. However, whether or how FAT10 influences the function of IKs remains unclear. Here, human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Fat10 knockout HEK293 (Fat10-/-) cells through CRISPR-Cas9 technology were used to evaluate the novel modulation of FAT10 in IKs function. Patch-clamp studies showed that the overexpression of FAT10 significantly enhanced the current density of IKs both in hiPSC-CMs and HEK293-Fat10-/- cells. In addition, a shortened action potential duration (APD) was seen from hiPSC-CMs transfected with the ad-Fat10 virus. Then, a series of molecular approaches from neonatal rat cardiomyocytes, H9C2 cells and HEK293 cells were used to determine the regulatory mechanism of FAT10 in IKs. First, western blot assays indicated that the expression of Kv7.1, the alpha-subunit of IKs, was increased when FAT10 was overexpressed. Furthermore, immunofluorescence and co-immunoprecipitation assays demonstrated that FAT10 could interact with Kv7.1. Notably, FAT10 impedes Kv7.1 ubiquitination and degradation, thereby stabilizing its expression. Finally, a hypoxia model of hiPSC-CMs was established, and the overexpression of FAT10 showed a protective effect against hypoxia-induced decreases in the current density of IKs. Taken together, these findings revealed a novel role of FAT10 in the regulation of the IKs potassium channel by competing for Kv7.1 ubiquitination, which provides a new electrophysiological insight that FAT10 could modulate Kv7.1. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Células Madre Pluripotentes Inducidas , Canales de Potasio , Humanos , Ratas , Animales , Canales de Potasio/metabolismo , Canales de Potasio/farmacología , Células HEK293 , Ubiquitinación , Hipoxia/metabolismo , Antígenos HLA/metabolismo , Antígenos HLA/farmacología , Potenciales de Acción/fisiología , Células Madre Pluripotentes Inducidas/fisiología
13.
Int J Med Sci ; 20(4): 557-565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37057207

RESUMEN

Background and objectives: Hepatic stellate cell (HSC) activation is the cardinal factor due to the accumulation of extracellular matrix proteins during the development of liver fibrosis. The aim of the present study was to find new targets for developing drugs to treat liver fibrosis, by screening the key genes involved in the activation of hepatic stellate cells. Methods: Differentially expressed genes were identified through TCGA database. RT-PCR, immunohistochemistry (IHC) assay, western blot, and ELISA were performed to evaluate the expression levels of FAT10 and fibrotic molecules. In vitro experiments were conducted to investigate the signaling pathways and biological functions of FAT10 in LX-2 cell lines. Results: In the present study, expression profiles obtained from the Gene Expression Omnibus (GEO) were used to explore the different genes expression between HSCs treated with or without carbon tetrachloride (CCl4). Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) was selected for further investigations. In animal model of carbon tetrachloride-induced liver fibrosis, the expression of FAT10 on activated HSCs is upregulated. In vitro, silencing FAT10 reduced TGF-ß1-induced ECM activation and accumulation in LX-2 cells, and also suppressed the inflammatory response of LX-2 cells. Further Transwell results suggested that knockdown of FAT10 could inhibit TGF-ß1-induced LX-2 cell migration and invasion. Mechanistically, FAT10 promotes its fibrotic activity through regulating sirtuin 1 (SIRT1), with a concomitant activation of ECM. Conclusions: These findings indicated an unexpected role of FAT10 in liver fibrosis development, suggesting that silencing FAT10 might represent a new strategy for the treatment of fibrotic liver diseases.


Asunto(s)
Células Estrelladas Hepáticas , Sirtuina 1 , Ubiquitinas , Animales , Humanos , Tetracloruro de Carbono , Fibrosis , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/genética , Cirrosis Hepática/tratamiento farmacológico , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitinas/genética
14.
Anim Cells Syst (Seoul) ; 27(1): 53-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926204

RESUMEN

The WAVE regulatory complex (WRC) is involved in various cellular processes by regulating actin polymerization. The dysregulation of WRC components is associated with cancer development. ABI family member 3 (ABI3)/new molecule including SH3 (NESH) is one of the WRC components and it has been reported that ABI3 phosphorylation can affect WRC function. Although several residues of ABI3 have been reported to be possible phosphorylation sites, it is still unclear which residues are important for the function of ABI3. Furthermore, it is unclear how the phosphorylated form of ABI3 is regulated. Here, we demonstrate that ABI3 is stabilized by its interaction with human leukocyte antigen-F adjacent transcript 10 (FAT10). Using phospho-dead or phospho-mimetic mutants of ABI3, we showed that serine 213 and 216 are important phosphorylation sites of ABI3. In particular, FAT10 has a higher affinity for the phosphorylated form of ABI3 than the non-phosphorylated form, and it stabilizes the phosphorylated form more than the non-phosphorylated form through this differential affinity. The interaction between FAT10 and the phosphorylated form of ABI3 promoted cancer cell migration. Therefore, our results suggest that FAT10 stabilizes the phosphorylated form of ABI3, which may lead to WRC activation, thereby promoting cancer cell migration.

15.
Int J Biol Sci ; 19(3): 881-896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778114

RESUMEN

Cardiac fibrosis after myocardial ischemic (MI) injury is a key factor in heart function deterioration. We recently showed that ubiquitin-like protein human HLA-F adjacent transcript (FAT10) plays a novel role in ischemic cardiovascular diseases, but its function in cardiac fibrosis remains unknown. The present study aims to detail the pathophysiological function of FAT10 in MI injury-induced cardiac fibrosis and its underlying mechanism. In vivo, a systemic FAT10 deficiency mouse (Fat10 -/-) model was established which exhibited excessive cardiac fibrosis and deleterious cardiac function after MI when compared to wild-type mice. Cardiac fibrotic-related proteins (α-SMA, collagen I and collagen III) content were increased in MI-Fat10 -/- mice. Similarly, cardiac FAT10 restoration in Fat10-/- mice suppressed fibrosis and improved cardiac function. In vitro, FAT10 overexpression exert a protective effect against the transforming growth ß1 (TGF-ß1)-induced proliferation, migration and differentiation in cardiac fibroblast (CFs), primary CFs from Fat10-/- mice and human induced pluripotent stem cell-derived CFs (hiPSC-CFs). Furthermore, immunoprecipitation-mass spectrometry (IP-MS) data demonstrated that FAT10 might mediate Smad3, a critical factor in cardiac fibrosis. Combined with rescue assays both in vivo and vitro, the protective effects of FAT10 against cardiac fibrosis was detected to be dependent on Smad3. In depth, Smad3 as a FAT10 specific substrate, FAT10 specifically bind to the K378 site of Smad3 directly via its C-terminal glycine residues and mediated the degradation of Smad3 through the FAT10-proteasome system instead of ubiquitin. In conclusion, we here show that FAT10 is a novel regulator against cardiac fibrosis after MI by mediating Smad3 degradation through FAT10-mediated proteasome system. Our study confirms the cardioprotective role of FAT10 in the heart, and providing a new prospective insight into the regulation of cardiac fibrosis after MI.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Proteína smad3 , Ubiquitinas , Animales , Humanos , Ratones , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis , Células Madre Pluripotentes Inducidas/metabolismo , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
16.
Front Pharmacol ; 13: 972320, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386217

RESUMEN

Human leukocyte antigen F locus adjacent transcript 10 (FAT10) is a ubiquitin-like protein that targets proteins for degradation. TNFα and IFNγ upregulate FAT10, which increases susceptibility to inflammation-driven diseases like nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC). It is well established that inflammation contributes to fatty liver disease, but how inflammation contributes to upregulation and what genes are involved is still poorly understood. New evidence shows that FAT10 plays a role in mitophagy, autophagy, insulin signaling, insulin resistance, and inflammation which may be directly associated with fatty liver disease development. This review will summarize the current literature regarding FAT10 role in developing liver diseases and potential therapeutic targets for nonalcoholic/alcoholic fatty liver disease and hepatocellular carcinoma.

17.
Onco Targets Ther ; 15: 1171-1181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238133

RESUMEN

Purpose: For locally advanced rectal cancer, neoadjuvant concurrent chemoradiotherapy (CCRT) allows tumor downstaging and makes curative radical proctectomy possible. However, we lack a genetic biomarker to predict cancer prognosis or treatment response. We investigated the association between ubiquitin D (UBD) expression and clinical outcomes in rectal cancer patients receiving CCRT. Patients and Methods: We analyzed the genes associated with the protein modification process (GO:0036211) and identified the UBD gene as the most relevant among the top 7 differentially expressed genes associated with CCRT resistance. We collected tissue specimens from 172 rectal cancer patients who had received CCRT followed by a curative proctectomy. We examine the relationship between UBD expression and patient characteristics, pathological findings, and patient survival, such as metastasis-free survival (MeFS) and disease-specific survival. Results: Upregulated UBD expression was associated with lower pre-CCRT tumor T stage (P = 0.009), lower post-CCRT tumor T stage (P < 0.001), lower post-CCRT nodal stage (P < 0.001), less vascular invasion (P = 0.015), and better tumor regression (P < 0.001). Using univariate analysis, we found that high UBD expression was correlated with better disease-free survival (DFS) (P < 0.0001), local recurrence-free survival (LRFS) (P < 0.0001) and MeFS (P < 0.0001). Moreover, multivariate analysis demonstrated that high UBD expression was associated with superior DFS (P < 0.001), LRFS (P = 0.01), and MeFS (P = 0.004). Conclusion: UBD upregulation was linked to better clinical prognosis, favorable pathological features, and good treatment response in rectal cancer patients undergoing CCRT. These results suggest UBD is a biomarker for rectal cancer.

18.
Aging (Albany NY) ; 14(18): 7527-7546, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36152057

RESUMEN

Renal fibrosis is the pathological hallmark of chronic kidney disease that is influenced by numerous factors. Arrest of renal tubular epithelial cells (RTECs) in G2/M phase is closely correlated with the progression of renal fibrosis; however, the mechanisms mediating these responses remain poorly defined. In this study, we observed that human leukocyte antigen-F adjacent transcript 10 (FAT10) deficiency abolished hypoxia-induced upregulation of checkpoint kinase 1 (CHK1) expression in RTECs derived from FAT10+/+ and FAT10-/- mice. Further investigations revealed that FAT10 contributes to CHK1-mediated G2/M arrest and production of pro-fibrotic cytokines in RTECs exposed to hypoxia. Mechanistically, FAT10 directly interacted with and stabilized the deubiquitylating enzyme ubiquitin specific protease 7 (USP7) to mediate CHK1 upregulation, thereby promoting CHK1-mediated G2/M arrest in RTECs. In animal model, FAT10 expression was upregulated in the obstructed kidneys of mice induced by unilateral ureteric obstruction injury, and FAT10-/- mice exhibited reduced unilateral ureteric obstruction injury induced-renal fibrosis compared with FAT10+/+ mice. Furthermore, in a cohort of patients with calculi-related chronic kidney disease, upregulated FAT10 expression was positively correlated with renal fibrosis and the USP7/CHK1 axis. These novel findings indicate that FAT10 prolongs CHK1-mediated G2/M arrest via USP7 to promote renal fibrosis, and inhibition of the FAT10/USP7/CHK1 axis might be a plausible therapeutic approach to alleviate renal fibrosis in chronic kidney disease.


Asunto(s)
Insuficiencia Renal Crónica , Ubiquitinas , Animales , Apoptosis , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Hipoxia/metabolismo , Ratones , Insuficiencia Renal Crónica/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Ubiquitinas/metabolismo
19.
Cells ; 11(14)2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883685

RESUMEN

Gamma-interferon (γ-IFN) significantly inhibits infection by replication-defective viral vectors derived from the human immunodeficiency virus type 1 (HIV-1) or murine leukemia virus (MLV) but the underlying mechanism remains unclear. Previously we reported that knockdown of γ-IFN-inducible lysosomal thiolreductase (GILT) abrogates the antiviral activity of γ-IFN in TE671 cells but not in HeLa cells, suggesting that other γ-IFN-inducible host factors are involved in its antiviral activity in HeLa cells. We identified cellular factors, the expression of which are induced by γ-IFN in HeLa cells, using a microarray, and analyzed the effects of 11 γ-IFN-induced factors on retroviral vector infection. Our results showed that the exogenous expression of FAT10, IFI6, or IDO1 significantly inhibits both HIV-1- and MLV-based vector infections. The antiviral activity of γ-IFN was decreased in HeLa cells, in which the function of IDO1, IFI6, FAT10, and GILT were simultaneously inhibited. IDO1 is an enzyme that metabolizes an essential amino acid, tryptophan. However, IDO1 did not restrict retroviral vector infection in Atg3-silencing HeLa cells, in which autophagy did not occur. This study found that IDO1, IFI6, FAT10, and GILT are involved in the antiviral activity of γ-IFN, and IDO1 inhibits retroviral infection by inducing autophagy.


Asunto(s)
Infecciones por VIH , VIH-1 , Infecciones por Retroviridae , Antirretrovirales/farmacología , Antivirales/farmacología , Autofagia , Infecciones por VIH/tratamiento farmacológico , VIH-1/metabolismo , Células HeLa , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/metabolismo , Interferón gamma/farmacología , Virus de la Leucemia Murina , Proteínas Mitocondriales , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Ubiquitinas/farmacología
20.
Front Mol Biosci ; 9: 805887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300113

RESUMEN

Background: Skin Cutaneous Melanoma (SKCM) is the deadliest cutaneous neoplasm. Previous studies have proposed ubiquitin-like protein FAT10 plays key roles in the initiation and progression of several types of human cancer, but little is known about the interrelation between FAT10 gene expression, tumor immunity, and prognosis of patients with SKCM. Methods: Here, we first performed pan-cancer analysis for FAT10's expression and prognosis using the Cancer Genome Atlas and the Genotype-Tissue Expression data. Subsequently, we investigated the mRNA expression level, prognostic value, and gene-gene interaction network of FAT10 in SKCM using the Oncomine databases, GEPIA, TIMER, UALCAN, and starBase. The relationship between FAT10 expression and tumor immune invasion was studied by using the TIMER database. Additionally, the expression and functional status of FAT10 in SKCM were evaluated by the single-cell RNA sequencing and CancerSEA databases. Results: In this study, we found that FAT10 expression was increased in SKCM and was correlated with a better survival rate in patients with SKCM. Moreover, we identified FAT10 level was significantly positively associated with immune infiltrates, biomarkers of immune cells, and immune checkpoint expression, and negatively correlated with tumor cell invasion and DNA damage, indicating that increased FAT10 expression in SKCM was a favorable response to immune checkpoint inhibitors. Conclusion: Our findings suggest that upregulation of FAT10 correlated with better prognosis and tumor immune infiltration in SKCM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA