Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39057868

RESUMEN

To obtain a high-performance extended gate field-effect transistor for pH detection, hafnium nitride (HfN) was first fabricated on an indium tin oxide on polyethylene terephthalate (ITO/PET) substrate using a high-power impulse magnetron sputter system (HiPIMS) in this study. It can be easily applied in biomedical diagnostic and environmental monitoring applications with the advantages of flexible, disposable, cost-effective, and reliable components. Various duty cycle conditions in HiPIMSs were designed to investigate the corresponding sensing performance and material properties including surface morphology and composition. As the duty cycle increased, the grain size of HfN increased. Additionally, X-ray photoelectron spectroscopy (XPS) analysis illustrated the presence of HfOxNy on the deposited HfN surface. Both behaviors could result in a better pH sensing performance based on the theory of the site-binding model. Subsequently, HfN with a 15% duty cycle exhibited excellent pH sensitivity and linearity, with values of 59.3 mV/pH and 99.8%, respectively; its hysteresis width and drift coefficient were -1 mV and 0.5 mV/h, respectively. Furthermore, this pH-sensing performance remained stable even after 2000 repeated bending cycles. These results indicate the potential and feasibility of this HiPIMS-deposited HfN for future wearable chemical applications.

2.
Mikrochim Acta ; 191(7): 400, 2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879615

RESUMEN

Ultrathin molecularly imprinted polymer (MIP) films were deposited on the surfaces of ZnO nanorods (ZNRs) and nanosheets (ZNSs) by electropolymerization to afford extended-gate field-effect transistor sensors for detecting phenytoin (PHT) in plasma. Molecular imprinting efficiency was optimized by controlling the contents of functional monomers and the template in the precursor solution. PHT sensing was performed in plasma solutions with various concentrations by monitoring the drain current as a function of drain voltage under an applied gate voltage of 1.5 V. The reliability and reproducibility of the fabricated sensors were evaluated through a solution treatment process for complete PHT removal and PHT adsorption-removal cycling, while selectivity was examined by analyzing responses to chemicals with structures analogous to that of PHT. Compared with the ZNS/extracted-MIP sensor and sensors with non-imprinted polymer (NIP) films, the ZNR/extracted-MIP sensor showed superior responses to PHT-containing plasma due to selective PHT adsorption, achieving an imprinting factor of 4.23, detection limit of 12.9 ng/mL, quantitation limit of 53.0 ng/mL, and selectivity coefficients of 3-4 (against tramadol) and ~ 5 (against diphenhydramine). Therefore, we believe that the MIP-based ZNR sensing platform is promising for the practical detection of PHT and other drugs and evaluation of their proper dosages.


Asunto(s)
Anticonvulsivantes , Límite de Detección , Polímeros Impresos Molecularmente , Fenitoína , Transistores Electrónicos , Óxido de Zinc , Anticonvulsivantes/sangre , Anticonvulsivantes/análisis , Polímeros Impresos Molecularmente/química , Óxido de Zinc/química , Fenitoína/sangre , Fenitoína/análisis , Fenitoína/química , Humanos , Impresión Molecular , Nanotubos/química , Adsorción , Reproducibilidad de los Resultados , Polímeros/química
3.
Talanta ; 275: 126178, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692052

RESUMEN

This study introduces a straightforward method for depositing InZnSnO films onto flexible polyimide substrates at room temperature, enabling their application in electrochemical pH sensing and the detection of epinephrine. A comprehensive analysis of these sensing films, spanning structural, morphological, compositional, and profiling characteristics, was conducted using diverse techniques, including X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy. The investigation into the influence of oxygen flow rates on the performance of InZnSnO sensitive films revealed a significant correlation between their structural properties and sensing capabilities. Notably, exposure to an oxygen flow rate of 30/2 (Ar/O2) the ratio of resulted in the InZnSnO sensitive film demonstrating outstanding pH sensitivity at 59.58 mV/pH within a broad pH range of 2-12, surpassing the performance observed with other oxygen flow rates. Moreover, under this specific condition, the film exhibited excellent stability, with a minimal drift rate of 0.14 mV/h at pH 7 and a low hysteresis voltage of 1.8 mV during a pH cycle of 7 â†’ 4→7 â†’ 10→7. Given the critical role of epinephrine in mammalian central nervous and hormone systems, monitoring its levels is essential for assessing human health. To facilitate the detection of epinephrine, we utilized the carboxyl group of 4-formylphenylboronic acid to enable a reaction with the amino group of the 3-aminopropyltriethoxysilane-coated InZnSnO film. Through optimization, the resulting InZnSnO-based flexible sensor displayed a broad and well-defined linear relationship within the concentration range of 10-7 to 0.1 µM. In practical applications, this sensor proved effective in analyzing epinephrine in human serum, showcasing notable selectivity, stability, and reproducibility. The promising outcomes of this study underscore the potential for future applications, leveraging the advantages of electrochemical sensors, including affordability, rapid response, and user-friendly operation.


Asunto(s)
Epinefrina , Transistores Electrónicos , Epinefrina/análisis , Epinefrina/química , Concentración de Iones de Hidrógeno , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Oxígeno/química , Oxígeno/análisis , Humanos , Límite de Detección , Óxido de Zinc/química
4.
Biosens Bioelectron ; 251: 116118, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382273

RESUMEN

Glycated albumin (GA), defined as the percentage of serum albumin glycation, is a mid-term glycemic control marker for diabetes. The concentrations of both glycated human serum albumin (GHSA) and total human serum albumin (HSA) are required to calculate GA. Here, we report the development of a GA sensor employing two albumin aptamers: anti-GHSA aptamer which is specific to GHSA and anti-HSA aptamer which recognizes both glycated and non-glycated HSA. We combine these aptamers with extended gate field effect transistors (EGFETs) to realize GA monitoring without the need to pretreat serum samples, and therefore suitable for point of care and home-testing applications. Using anti-GHSA aptamer-immobilized electrodes and EGFETs, we measured GHSA concentrations between 0.1-10 µM within 20 min. The sensor was able to measure GHSA concentration in the presence of BSA for a range of known GA levels (5-29%). With anti-HSA aptamer-immobilized electrodes and EGFETs, we measured total HSA concentrations from 1-17 µM. Furthermore, GHSA and total HSA concentrations of both healthy and diabetic-level samples were determined with GHSA and HSA sensors. The measured GHSA and total HSA concentrations in three samples were used to determine respective GA percentages, and our calculations agreed with GA levels determined by reference methods. Thus, we developed simple and rapid dual aptamer-based EGFET sensors to monitor GA through measuring GHSA and total HSA concentration, without the need for sample pretreatment, a mandatory step in the current standard of enzymatic GA monitoring.


Asunto(s)
Técnicas Biosensibles , Diabetes Mellitus , Humanos , Albúmina Sérica Glicada , Productos Finales de Glicación Avanzada , Albúmina Sérica , Albúmina Sérica Humana , Oligonucleótidos
5.
Biosens Bioelectron ; 249: 116016, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38217967

RESUMEN

Early chronic kidney disease (CKD) has strong concealment and lacks an efficient, non-invasive, and lable-free detection platform. Cystatin C (Cys C) in urine is closely related to the progress of CKD (especially at the early stage), which is an ideal endogenous marker to evaluate the impairment of renal function. Thus, the accurate detection of urinary Cys C (u-Cys C) is great significant for early prevention and treatment and delaying the course of the disease of CKD patients. Herein, we developed an extended-gate field-effect transistor (EG-FET) sensor for ultrasensitive detection of u-Cys C, which consists of a monolithic interface-engineered graphene EG electrode array and a commercially available MOSFET. Laser-induced graphene (LIG) loaded with sputtered Au NPs in the presence of adhesive Cr (Au NPs/Cr/LIG) boosts the electrical performance of the EG electrode. Meanwhile, Au NPs also serve as linkers to immobilize papain that can selectively form protein complexes with Cys C. Supported by the synergistic effect of multilevel interface-engineered graphene, our sensor exhibits a good linear correlation within the u-Cys C concentration range of 5 ag/µL to 50 ng/µL with low detection limit of 0.05 ag/µL. Our work makes accurate, specific and rapid detection of u-Cys C feasible and promising for early screening for CKD.


Asunto(s)
Técnicas Biosensibles , Líquidos Corporales , Grafito , Insuficiencia Renal Crónica , Humanos , Cistatina C/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/orina
6.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37896443

RESUMEN

In this project we investigated the extended-gate field-effect transistor (EGFET) structure used with ITO (Indium Tin Oxide)/PET (Polyethylene Terephthalate) sensitive films acting as the extended-gate part of an EGFET obtained from a combination of FETs from the CD4007 chip. We tested the device as a pH sensor by immersing the ITO/PET electrode in several chemical solutions of acidic and basic nature, including hydrogen peroxide, acetic acid, sulfuric acid, and ammonium hydroxide, at different concentrations. Using a Tektronix 4200A sourcemeter, we plotted the current-voltage (I-V) characteristics for the different chemical solutions, and we established a correlation to the pH changes. Results from the plotted I-V characteristics show a great dependance of the drain current (ID) on solution concentration. Furthermore, we measured the pH of each of the used solutions, and we established a relationship between the drain current and the pH value. Our results show a consistent decrease in the current with an increase in the pH value, although with different rates depending on the solution. The device showed high voltage sensitivity at 0.23 V per pH unit when tested in sulfuric acid.

7.
ACS Nano ; 17(21): 21984-21992, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37874899

RESUMEN

The expression of ß-amyloid peptides (Aß), a pathological indicator of Alzheimer's disease (AD), was reported to be inapparent in the early stage of AD. While peroxynitrite (ONOO-) is produced excessively and emerges earlier than Aß plaques in the progression of AD, it is thus significant to sensitively detect ONOO- for early diagnosis of AD and its pathological research. Herein, we unveiled an integrated sensor for monitoring ONOO-, which consisted of a commercially available field-effect transistor (FET) and a high-performance multi-engineered graphene extended-gate (EG) electrode. In the configuration of the presented EG electrode, laser-induced graphene (LIG) intercalated with MnO2 nanoparticles (MnO2/LIG) can improve the electrical properties of LIG and the sensitivity of the sensor, and graphene oxide (GO)-MnO2/Hemin nanozyme with ONOO- isomerase activity can selectively trigger the isomerization of ONOO- to NO3-. With this synergistic effect, our EG-FET sensor can respond to the ONOO- with high sensitivity and selectivity. Moreover, taking advantage of our EG-FET sensor, we modularly assembled a portable sensing platform for wireless tracking ONOO- levels in the brain tissue of AD transgenic mice at earlier stages before massive Aß plaques appeared, and we systematically explored the complex role of ONOO- in the occurrence and development of AD.


Asunto(s)
Enfermedad de Alzheimer , Grafito , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/patología , Ácido Peroxinitroso/química , Óxidos/química , Grafito/química , Compuestos de Manganeso , Ratones Transgénicos
8.
Biosens Bioelectron ; 241: 115701, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37757510

RESUMEN

We present a portable multiplexed biosensor platform based on the extended gate field-effect transistor and demonstrate its amplified response thanks to gold nanoparticle-based bioconjugates introduced as a part of the immunoassay. The platform comprises a disposable chip hosting an array of 32 extended gate electrodes, a readout module based on a single transistor operating in constant charge mode, and a multiplexer to scan sensing electrodes one-by-one. Although employing only off-the-shelf electronic components, our platform achieves sensitivities comparable to fully customized nanofabricated potentiometric sensors. In particular, it reaches a detection limit of 0.2 fM for the pure molecular assay when sensing horseradish peroxidase-linked secondary antibody (∼0.4 nM reached by standard microplate methods). Furthermore, with the gold nanoparticle bioconjugation format, we demonstrate ca. 5-fold amplification of the potentiometric response compared to a pure molecular assay, at the detection limit of 13.3 fM. Finally, we elaborate on the mechanism of this amplification and propose that nanoparticle-mediated disruption of the diffusion barrier layer is the main contributor to the potentiometric signal enhancement. These results show the great potential of our portable, sensitive, and cost-efficient biosensor for multidimensional diagnostics in the clinical and laboratory settings, including e.g., serological tests or pathogen screening.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Oro , Técnicas Biosensibles/métodos , Potenciometría , Inmunoensayo , Electrodos
9.
ACS Sens ; 8(8): 3174-3186, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37585601

RESUMEN

Cancer progresses silently to the terminal stage of the impossible operable condition. There are many limitations in the treatment options of cancer, but diagnosis in an early stage can improve survival rates and low recurrence. Exosomes are the biomolecules released from cancer cells and are promising candidates for clinical diagnosis. Among them, the cluster of differentiation 9 (CD9) protein is an important exosomal biomarker that can be used for exosome determination. Therefore, here, a CD9 aptamer was first synthesized and applied to an extended-gate field-effect transistor (EGFET)-type biosensor containing a disposable sensing membrane to suggest the possibility of detecting exosomes in a clinical environment. Systematically evaluating ligands using the exponential enrichment (SELEX) technique was performed to select nucleic acid sequences that can specifically target the CD9 protein. Exosomes were detected according to the electrical signal changes on a membrane, which is an extended gate using an Au microelectrode. The fabricated biosensor showed a limit of detection (LOD) of 10.64 pM for CD9 proteins, and the detection range was determined from 10 pM to 1 µM in the buffer. In the case of the clinical test, the LOD and detection ranges of exosomes in human serum samples were 6.41 × 102 exosomes/mL and 1 × 103 to 1 × 107 exosomes/mL, respectively, showing highly reliable results with low error rates. These findings suggest that the proposed aptasensor can be a powerful tool for a simple and early diagnosis of exosomes.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Humanos , Exosomas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Aptámeros de Nucleótidos/metabolismo , Tetraspanina 29/metabolismo
10.
Mikrochim Acta ; 190(7): 280, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392256

RESUMEN

A novel extended-gate field-effect transistor (FET) photoelectrochemical (EGFET PEC) sensor was designed for highly sensitive detection of L-cysteine (L-Cys). TiO2 was initially modified on the ITO electrode by the sol-gel dip-coating method and calcined to produce TiO2/ITO. Then, CdS was synthesized on the TiO2 surface by hydrothermal method to obtain the CdS-TiO2 heterojunction material. CdS/TiO2/ITO was connected to the gate of the FET to obtain an EGFET PEC sensor. Under the irradiation of a xenon lamp simulating visible light, the CdS/TiO2 heterojunction composite absorbs light energy to produce photogenerated electron-hole pairs, which have strong photocatalytic oxidation activity and oxidize L-Cys covalently identified by Cd(II) through CdS covalent. These pairs generate a photovoltage that controls the current between the source and the drain to detect L-Cys. Under the optimized experimental conditions, the optical drain current (ID) of the sensor exhibited a good linear relationship with the logarithm of L-Cys in the range of 5.0 × 10-9-1.0 × 10-6 mol/L, and the detection limit was 1.3 × 10-9 mol/L (S/N = 3), which is lower than the values reported by other detection methods. Results showed that the CdS/TiO2/ITO EGFET PEC sensor revealed high sensitivity and good selectivity. The sensor has been used to determine L-Cys in urine samples.


Asunto(s)
Cisteína , Electrones , Electrodos , Luz
11.
Sensors (Basel) ; 22(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35957458

RESUMEN

In this research, a microfluid-based extended gate field-effect transistor (EGFET) biosensor with an on-chip sensing window (OCSW) was fabricated. The detection window was composed of six metal layers, and a ruthenium dioxide (RuO2) film was spattered on the surface and functionalized with lactase to detect lactic acid (LA). To detect LA in a more diversified way, a microfluidic system was integrated with the biosensor. Moreover, a special package was used to seal the sensing window and microfluidic tube and insulate it from other parts to prevent water molecule invasion and chip damage. The sensitivity analysis of the EGFET biosensor was studied by a semiconductor parameter analyzer (SPA). The static and dynamic measurements of the EGFET with sensing windows on a chip were analyzed. The sensing characteristics of the EGFET biosensor were verified by the experimental results. The proposed biosensor is suitable for wearable applications due to the advantages of its low weight, low voltage, and simple manufacturing process.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Técnicas Biosensibles/métodos , Ácido Láctico
12.
Biosens Bioelectron ; 208: 114203, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395618

RESUMEN

A conducting molecularly imprinted polymer (MIP) film was integrated with an extended-gate field-effect transistor (EG-FET) transducer to determine epitopes of matrix metalloproteinase-1 (MMP-1) protein biomarker of idiopathic pulmonary fibrosis (IPF) selectively. Most suitable epitopes for imprinting were selected with Basic Local Alignment Search Tool software. From a pool of MMP-1 epitopes, the two, i.e., MIAHDFPGIGHK and HGYPKDIYSS, the relatively short ones, most promising for MMP-1 determination, were selected, mainly considering their advantageous outermost location in the protein molecule and stability against aggregation. MIPs templated with selected epitopes of the MMP-1 protein were successfully prepared by potentiodynamic electropolymerization and simultaneously deposited as thin films on electrodes. The chemosensors, constructed of MIP films integrated with EG-FET, proved useful in determining these epitopes even in a medium as complex as a control serum. The limit of detection for the MIAHDFPGIGHK and HGYPKDIYSS epitope was ∼60 and 20 nM, respectively. Moreover, the chemosensors selectively recognized whole MMP-1 protein in the 50-500 nM concentration range in buffered control serum samples.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Epítopos , Metaloproteinasa 1 de la Matriz , Polímeros Impresos Molecularmente
13.
Biosens Bioelectron ; 201: 113977, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026544

RESUMEN

In this article, the TiN sensitive film as a sensing membrane was deposited onto n+-type Si substrate by a DC sputtering technique for extended-gate field-effect transistor (EGFET) pH sensors and detection of cardiac troponin-I (cTn-I) in the patient sera for the first time. The crystal structure, Raman spectrum, element profile, surface roughness, and surface morphology of the TiN sensitive film were characterized by X-ray diffraction, Raman spectroscopy, secondary ion mass spectroscopy, atomic force microscopy, and scanning electron microscopy, respectively. The sensing performance of the TiN sensitive film is correlated with its relative structural feature. A high sensitivity of 57.49 mV/pH, a small hysteresis voltage of ∼1 mV, and a low drift rate of 0.31 mV/h were obtained in the TiN sensitive film. In addition, the pH sensitivity of this TiN EGFET sensor was preserved approximately 57 mV/pH after operation time of 180 days. Subsequently, the cTn-I antibodies with carboxyl groups activated by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) along with N-hydroxysuccinimide (NHS) were immobilized on the TiN sensitive film functionalizing with 3-aminopropyl triethoxysilane (APTES). After obtaining the successful immobilization of cTn-I antibodies on the TiN EGFET biosensor, the cTn-I antigen specifically binds with its relative antibody. The cTn-I EGFET biosensor showed a high sensitivity of 21.88 mV/pCcTn-I in a wide dynamic range of 0.01-100 ng/mL. Furthermore, the concentrations of cTn-I in patient sera measured by our TiN EGFET biosensors are comparable to those determined by commercial enzyme-linked immuno-sorbent assay kits.


Asunto(s)
Técnicas Biosensibles , Troponina , Humanos , Troponina/sangre
14.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200213

RESUMEN

Chirality is an essential natural attribute of organisms. Chiral molecules exhibit differences in biochemical processes, pharmacodynamics, and toxicological properties, and their enantioselective recognition plays an important role in explaining life science processes and guiding drug design. Herein, we developed an ultra-sensitive enantiomer recognition platform based on an extended-gate metal-oxide semiconductor field-effect-transistor (Nafion-GO@BSA-EG-MOSFET) that achieved effective chiral resolution of ultra-sensitive Lysine (Lys) and α-Methylbenzylamine (α-Met) enantiodiscrimination at the femtomole level. Bovine serum albumin (BSA) was immobilized on the surface of graphene oxide (GO) through amide bond coupling to prepare the GO@BSA complex. GO@BSA was drop-cast on deposited Au surfaces with a Nafion solution to afford the extended-gate sensing unit. Effective recognition of chiral enantiomers of mandelic acid (MA), tartaric acid (TA), tryptophan (Trp), Lys and α-Met was realized. Moreover, the introduction of GO reduced non-specific adsorption, and the chiral resolution concentration of α-Met reached the level of picomole in a 5-fold diluted fetal bovine serum (FBS). Finally, the chiral recognition mechanism of the as-fabricated sensor was proposed.


Asunto(s)
Grafito , Albúmina Sérica Bovina , Óxidos , Triptófano
15.
Biosens Bioelectron ; 169: 112589, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32942142

RESUMEN

New thiophene-carbazole functional and cross-linking monomers electropolymerizing at potentials sufficiently low for molecular imprinting of an electroactive aripiprazole antipsychotic drug were herein designed and synthesized. Numerous conducting molecularly imprinted polymer (MIP) films are deposited by electropolymerization at relatively low potentials by electro-oxidation of pyrrole, aniline, phenol, or 3,4-ethylenedioxythiophene (EDOT). However, their interactions with templates are not sufficiently strong. Hence, it is necessary to introduce additional recognizing sites in these cavities to increase their affinity to the target molecules. For that, functional monomers derivatized with substituents forming stable complexes with the templates are used. However, oxidation potentials of these derivatives are often, disadvantageously, higher than that of parent monomers. Therefore, we designed and synthesized new functional and cross-linking monomers, which are oxidized at sufficiently low potentials. The deposited MIP and non-imprinted polymer (NIP) films were characterized by PM-IRRAS and UV-vis spectroscopy and imaged with AFM. The structure of the aripiprazole pre-polymerization complex with functional monomers was optimized with density functional theory (DFT), and aripiprazole interactions with imprinted cavities were simulated with molecular mechanics (MM) and molecular dynamics (MD). MIP-aripiprazole film-coated electrodes were used as extended gates for selective determination of aripiprazole with the extended-gate field-effect transistor (EG-FET) chemosensor. The linear dynamic concentration range was 30-300 pM, and the limit of detection was 22 fM. An apparent imprinting factor of the MIP-1 was IF = 4.95. The devised chemosensor was highly selective to glucose, urea, and creatinine interferences. The chemosensor was successfully applied for aripiprazole determination in human plasma. The results obtained were compared to those of the validated HPLC-MS method.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Aripiprazol , Carbazoles , Humanos , Estrés Oxidativo , Tiofenos
16.
ACS Appl Mater Interfaces ; 11(9): 9265-9276, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30714713

RESUMEN

We present an improved approach for the preparation of highly selective and homogeneous molecular cavities in molecularly imprinted polymers (MIPs) via the combination of surface imprinting and semi-covalent imprinting. Toward that, first, a colloidal crystal mold was prepared via the Langmuir-Blodgett (LB) technique. Then, human chorionic gonadotropin (hCG) template protein was immobilized on the colloidal crystal mold. Later, hCG derivatization with electroactive functional monomers via amide chemistry was performed. In a final step, optimized potentiostatic polymerization of 2,3'-bithiophene enabled depositing an MIP film as the macroporous structure. This synergistic strategy resulted in the formation of molecularly imprinted cavities exclusively on the internal surface of the macropores, which were accessible after dissolution of silica molds. The recognition of hCG by the macroporous MIP film was transduced with the help of electric transducers, namely, extended-gate field-effect transistors (EG-FET) and capacitive impedimetry (CI). These readout strategies offered the ability to create chemosensors for the label-free determination of the hCG hormone. Other than the simple confirmation of pregnancy, hCG assay is a common tool for the diagnosis and follow-up of ectopic pregnancy or trophoblast tumors. Concentration measurements with these EG-FET and CI-based devices allowed real-time measurements of hCG in the range of 0.8-50  and 0.17-2.0 fM, respectively, in 10 mM carbonate buffer (pH = 10). Moreover, the selectivity of chemosensors with respect to protein interferences was very high.


Asunto(s)
Gonadotropina Coriónica/análisis , Técnicas Electroquímicas/métodos , Impresión Molecular , Conductividad Eléctrica , Técnicas Electroquímicas/instrumentación , Galvanoplastia , Oro/química , Humanos , Proteínas Inmovilizadas/química , Polimerizacion , Polímeros/química , Porosidad , Reproducibilidad de los Resultados , Propiedades de Superficie , Tiofenos/química
17.
Biosens Bioelectron ; 109: 50-62, 2018 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-29525669

RESUMEN

Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided.


Asunto(s)
Técnicas Biosensibles , Receptores Artificiales/química , Transistores Electrónicos , Humanos
18.
Biosens Bioelectron ; 94: 155-161, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28284074

RESUMEN

Nanostructured artificial receptor materials with unprecedented hierarchical structure for determination of human serum albumin (HSA) are designed and fabricated. For that purpose a new hierarchical template is prepared. This template allowed for simultaneous structural control of the deposited molecularly imprinted polymer (MIP) film on three length scales. A colloidal crystal templating with optimized electrochemical polymerization of 2,3'-bithiophene enables deposition of an MIP film in the form of an inverse opal. Thickness of the deposited polymer film is precisely controlled with the number of current oscillations during potentiostatic deposition of the imprinted poly(2,3'-bithiophene) film. Prior immobilization of HSA on the colloidal crystal allows formation of molecularly imprinted cavities exclusively on the internal surface of the pores. Furthermore, all binding sites are located on the surface of the imprinted cavities at locations corresponding to positions of functional groups present on the surface of HSA molecules due to prior derivatization of HSA molecules with appropriate functional monomers. This synergistic strategy results in a material with superior recognition performance. Integration of the MIP film as a recognition unit with a sensitive extended-gate field-effect transistor (EG-FET) transducer leads to highly selective HSA determination in the femtomolar concentration range.


Asunto(s)
Técnicas Biosensibles/métodos , Impresión Molecular , Albúmina Sérica Humana/aislamiento & purificación , Humanos , Polímeros/química , Tiofenos/química
19.
Biosens Bioelectron ; 79: 627-35, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26761618

RESUMEN

An elevated concentration of d-arabitol in urine, especially compared to that of l-arabitol or creatinine, is indicative of a fungal infection. For that purpose, we devised, fabricated, and tested chemical sensors determining d-arabitol. These chemosensors comprised the quartz crystal resonator (QCR) or extended-gate field-effect transistor (EG-FET) transducers integrated with molecularly imprinted polymer (MIP) film recognition units. To this end, we successfully applied a covalent approach to molecular imprinting, which involved formation of weak reversible covalent bonds between vicinal hydroxyl groups of arabitol and boronic acid substituents of the bithiophene functional monomer used. The MIP films were synthesized and simultaneously deposited on gold electrodes of quartz crystal resonators (Au-QCRs) or Au-glass slides by oxidative potentiodynamic electropolymerization. With the QCR and EG-FET chemosensors, the d-arabitol concentration was determined under flow-injection analysis and stagnant-solution binding conditions, respectively. Selectivity with respect to common interferences, and l-arabitol in particular, of the devised chemosensors was superior. Limits of detection and linear dynamic concentration ranges of the QCR and EG-FET chemosensors were 0.15 mM and 0.15 to 1.25 mM as well as 0.12 mM and 0.12 to 1.00 mM, respectively, being lower than the d-arabitol concentrations in urine of patients with invasive candidiasis (>220 µM). Therefore, the devised chemosensors are suitable for early diagnosis of fungal infections caused by Candida sp. yeasts.


Asunto(s)
Candidiasis/diagnóstico , Candidiasis/orina , Impresión Molecular/métodos , Alcoholes del Azúcar/orina , Diagnóstico Precoz , Análisis de Inyección de Flujo/métodos , Humanos , Límite de Detección , Polímeros/química , Alcoholes del Azúcar/análisis , Tiofenos/química , Transductores , Transistores Electrónicos , Urinálisis/métodos
20.
Biomed Microdevices ; 17(6): 111, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553100

RESUMEN

This study developed a packaging method to integrate the extended-gate field-effect transistor (EGFET) into a microfluidic chip as a biological sensor. In addition, we present two immobilization approaches for the bio-recognition that are appropriate to this chip, allowing it to measure the concentrations of hydrogen ions, glucose, urea, and specific proteins in a solution. Alginate-calcium microcubes were used to embed the enzymes and magnetic powder (enzyme carrier). When the sensing chip needs the enzyme for the catalytic reaction, the alginate microcubes containing the corresponding enzymes enter through the flow channel and are immobilized on the EGFET surface with an external magnet. High sensing performance of the chip is achieved, with 37.45 mV/mM for measuring hydrogen ions at pH 6-8 with a linearity of 0.9939, 7.00 mV/mM for measuring glucose with a linearity of 0.9962, and 8.01 mV/mM for measuring urea with a linearity of 0.9809. In addition, based on the principle of the immunoassay, the magnetic beads with the specific antibody were used to capture the target protein in the sample. Then, negatively charged DNA fragments bound to a secondary antibody were used to amplify the signal for EGFET measurement. The magnetic beads with completed immune response bonding were then fixed on the surface of the sensor by an external magnetic field. Therefore, the measured object can directly contact the sensor surface, and quantitative detection of the protein concentration can be achieved. Apolipoprotein A1 (APOA1) was detected as a target protein, with a minimum detection limit of approximately 12.5 ng/mL.


Asunto(s)
Biomarcadores/análisis , Glucemia/análisis , Microfluídica/métodos , Proteínas/análisis , Urea/sangre , Alginatos/química , Apolipoproteína A-I/sangre , Técnicas Biosensibles/instrumentación , Fragmentación del ADN , Diseño de Equipo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Humanos , Concentración de Iones de Hidrógeno , Inmunoensayo , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA