Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2835: 59-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105906

RESUMEN

Organoids, three-dimensional, stem cell-based structures that mimic the cellular and functional architecture of tissues, have emerged as an innovative in vitro tool. They offer highly efficient models for studying both embryonic development and disease progression processes. Colon organoids can also be generated from biopsies obtained during a colonoscopy. However, the invasive nature of biopsy collection poses practical challenges and introduces biases when studying patients who are already afflicted. Therefore, the use of iPSC-derived colon organoids can be considered a more practical approach for researchers and patients alike. Numerous protocols have been published for generating colon organoids from iPSCs. While most of these protocols share a common developmental process, some are labor-intensive or require additional equipment. Taking these considerations into account, we present a cost-effective and straightforward yet functionally robust colon organoid protocol: (1) definitive endoderm differentiation, (2) hindgut endoderm differentiation, and (3) maturation of colon spheroids into mature organoids.


Asunto(s)
Diferenciación Celular , Colon , Células Madre Pluripotentes Inducidas , Organoides , Organoides/citología , Colon/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Cultivo de Célula/métodos , Endodermo/citología
2.
Stem Cell Reports ; 19(8): 1137-1155, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39094563

RESUMEN

Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.


Asunto(s)
Actomiosina , Angiomotinas , Diferenciación Celular , Tamaño de la Célula , Endodermo , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Endodermo/citología , Endodermo/metabolismo , Actomiosina/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Presión Osmótica , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Núcleo Celular/metabolismo
3.
Cell Commun Signal ; 22(1): 242, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664733

RESUMEN

BACKGROUND: Paired box 1 (PAX1) is a transcription factor and essential for the development of pharyngeal pouches-derived tissues, including thymus. PAX1 mutations are identified in Severe Combined Immunodeficiency (SCID) patients with Otofaciocervical Syndrome Type 2 (OTFCS2). However, despite the critical roles of PAX1 in embryonic development and diseases, detailed insights into its molecular mode of action are critically missing. METHODS: The repressing roles of PAX1 and SCID associated mutants on Wnt signaling pathway were investigated by luciferase reporter assays, qRT-PCR and in situ hybridization in HEK293FT, HCT116 cells and zebrafish embryos, respectively. Co-immunoprecipitation (co-IP) and western blotting assays were carried out to identify the molecular mechanisms underlying PAX1's role on Wnt signaling pathway. hESC based endoderm differentiation, flow cytometry, high-throughput sequencing data analysis, and qRT-PCR assays were utilized to determine the roles of PAX1 during endoderm differentiation. RESULTS: Here, we show that PAX1 represses canonical Wnt signaling pathway in vertebrate cells. Mechanically, PAX1 competes with SUMO E3 ligase PIASy to bind to TCF7L2, thus perturbing TCF7L2 SUMOylation level, further reducing its transcriptional activity and protein stability. Moreover, we reveal that PAX1 plays dual roles in hESC-derived definitive and foregut/pharyngeal endoderm cells, which give rise to the thymus epithelium, by inhibiting Wnt signaling. Importantly, our data show PAX1 mutations found in SCID patients significantly compromise the suppressing ability of PAX1 on Wnt signaling. CONCLUSIONS: Our study presents a novel molecular mode of action of PAX1 in regulation of canonical Wnt signaling and endoderm differentiation, thus providing insights for the molecular basis of PAX1 associated SCID, offering better understanding of the behavior of PAX1 in embryogenesis.


Asunto(s)
Diferenciación Celular , Endodermo , Vía de Señalización Wnt , Pez Cebra , Humanos , Vía de Señalización Wnt/genética , Diferenciación Celular/genética , Endodermo/metabolismo , Endodermo/citología , Animales , Pez Cebra/genética , Células HEK293 , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genética , Células HCT116 , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética
4.
Dev Cell ; 58(18): 1670-1687.e4, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37516106

RESUMEN

Metabolic remodeling is one of the earliest events that occur during cell differentiation. Here, we define fatty acid metabolism as a key player in definitive endoderm differentiation from human embryonic stem cells. Fatty acid ß-oxidation is enhanced while lipogenesis is decreased, and this is due to the phosphorylation of lipogenic enzyme acetyl-CoA carboxylase by AMPK. More importantly, inhibition of fatty acid synthesis by either its inhibitors or AMPK agonist significantly promotes human endoderm differentiation, while blockade of fatty acid oxidation impairs differentiation. Mechanistically, reduced de novo fatty acid synthesis and enhanced fatty acid ß-oxidation both contribute to the accumulation of intracellular acetyl-CoA, which guarantees the acetylation of SMAD3 and further causes nuclear localization to promote endoderm differentiation. Thus, our current study identifies a fatty acid synthesis/oxidation shift during early differentiation and presents an instructive role for fatty acid metabolism in regulating human endoderm differentiation.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Lipogénesis , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Endodermo/metabolismo , Diferenciación Celular , Ácidos Grasos/metabolismo , Proteína smad3/metabolismo
5.
Genome Biol ; 24(1): 92, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095549

RESUMEN

BACKGROUND: Extensive studies have revealed the function and mechanism of lncRNAs in development and differentiation, but the majority have focused on those lncRNAs adjacent to protein-coding genes. In contrast, lncRNAs located in gene deserts are rarely explored. Here, we utilize multiple differentiation systems to dissect the role of a desert lncRNA, HIDEN (human IMP1-associated "desert" definitive endoderm lncRNA), in definitive endoderm differentiation from human pluripotent stem cells. RESULTS: We show that desert lncRNAs are highly expressed with cell-stage-specific patterns and conserved subcellular localization during stem cell differentiation. We then focus on the desert lncRNA HIDEN which is upregulated and plays a vital role during human endoderm differentiation. We find depletion of HIDEN by either shRNA or promoter deletion significantly impairs human endoderm differentiation. HIDEN functionally interacts with RNA-binding protein IMP1 (IGF2BP1), which is also required for endoderm differentiation. Loss of HIDEN or IMP1 results in reduced WNT activity, and WNT agonist rescues endoderm differentiation deficiency caused by the depletion of HIDEN or IMP1. Moreover, HIDEN depletion reduces the interaction between IMP1 protein and FZD5 mRNA and causes the destabilization of FZD5 mRNA, which is a WNT receptor and necessary for definitive endoderm differentiation. CONCLUSIONS: These data suggest that desert lncRNA HIDEN facilitates the interaction between IMP1 and FZD5 mRNA, stabilizing FZD5 mRNA which activates WNT signaling and promotes human definitive endoderm differentiation.


Asunto(s)
Diferenciación Celular , Endodermo , Receptores Frizzled , ARN Largo no Codificante , Proteínas de Unión al ARN , Humanos , Diferenciación Celular/genética , Receptores Frizzled/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética
6.
Biol Open ; 12(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36504260

RESUMEN

In recent decades, study of the actions of bioactive lipids such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) has increased since they are involved in regulating many processes, including self-renewal of embryonic stem cells, embryo development and cancer. Phospholipid phosphatase type 3 (PLPP3) has been shown to be a key player in regulating the balance of these lipids and, in consequence, their signaling. Different lines of evidence suggest that PLPP3 could play a role in endoderm development. To approach this hypothesis, we used mouse embryonic stem cells (ESC) as a model to study Plpp3 function in self-renewal and the transition towards differentiation. We found that lack of PLPP3 mainly affects endoderm formation during differentiation of suspension-formed embryoid bodies. PLPP3-deficient ESC strongly decrease the amount of FOXA2-expressing cells and fail to properly downregulate the expression of pluripotency factors when subjected to an endoderm-directed differentiation protocol. Impaired endoderm differentiation correlated with a transient reduction in nuclear localization of YAP1. These phenotypes were rescued by transiently restoring the expression of catalytically active hPLPP3. In conclusion, PLPP3 plays a role in downregulating pluripotency-associated factors and in endodermal differentiation. PLPP3 regulates proper lipid/YAP1 signaling required for endodermal differentiation.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias de Ratones , Animales , Ratones , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Lípidos
7.
Toxics ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35878297

RESUMEN

Environmental chemical exposures are a contributing factor to birth defects affecting infant morbidity and mortality. The USA EPA is committed to developing new approach methods (NAMs) to detect chemical risks to susceptible populations, including pregnant women. NAM-based coverage for cellular mechanisms associated with early human development could enhance identification of potential developmental toxicants (DevTox) for new and existing data-poor chemicals. The human pluripotent stem cell test (hPST) is an in vitro test method for rapidly identifying potential human developmental toxicants that employs directed differentiation of embryonic stem cells to measure reductions in SOX17 biomarker expression and nuclear localization. The objective of this study was to expand on the hPST principles to develop a model platform (DevTox GLR) that utilizes the transgenic RUES2-GLR cell line expressing fluorescent reporter fusion protein biomarkers for SOX17 (endoderm marker), BRA (mesoderm marker), and SOX2 (ectoderm and pluripotency marker). Initial assay adaption to definitive endoderm (DevTox GLR-Endo) was performed to emulate the hPST SOX17 endpoint and enable comparative evaluation of concordant chemical effects. Assay duration was reduced to two days and screening throughput scaled to 384-well format for enhanced speed and efficiency. Assay performance for 66 chemicals derived from reference and training set data resulted in a balanced accuracy of 72% (79% sensitivity and 65% specificity). The DevTox GLR-Endo assay demonstrates successful adaptation of the hPST concept with increased throughput, shorter assay duration, and minimal endpoint processing. The DevTox GLR model platform expands the in vitro NAM toolbox to rapidly identify potential developmental hazards and mechanistically characterize toxicant effects on pathways and processes associated with early human development.

8.
Cell Rep ; 39(7): 110818, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584683

RESUMEN

Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation in vitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation in vitro and mouse gastrulation in vivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency. Functional perturbation with small molecules reveals that inhibition of HDAC1 and -3, but not HDAC2, induces mesoderm while impeding endoderm and early cardiac progenitor specification. These data identify unique biological functions of the structurally homologous enzymes HDAC1-3 in influencing hPSC differentiation from pluripotency toward mesendodermal and cardiac progenitor populations.


Asunto(s)
Endodermo , Histona Desacetilasas , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Endodermo/citología , Endodermo/enzimología , Endodermo/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/enzimología , Células Madre Pluripotentes/metabolismo
9.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35409280

RESUMEN

The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 (Pdx1). We have also evidenced that Pdx1 expression is associated with the release of polycomb repressive complex 2 (PRC2) and P300 from the Pdx1 promoter; these events were accompanied by epigenetic changes to histones and site-specific changes in the DNA methylation. Here, we investigate the role of EGR-1 on Pdx1 regulation in mESCs. This study reveals that EGR-1 plays a negative role in Pdx1 expression and shows that the binding capacity of EGR-1 to the Pdx1 promoter depends on the methylation level of its DNA binding site and its acetylation state. These results suggest that targeting EGR-1 at early differentiation stages might be relevant for directing pluripotent cells into Pdx1-dependent cell lineages.


Asunto(s)
Endodermo , Células Madre Embrionarias de Ratones , Animales , Diferenciación Celular/genética , Células Madre Embrionarias , Endodermo/metabolismo , Ratones , Óxido Nítrico/metabolismo
10.
Trends Cell Biol ; 32(2): 151-164, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34607773

RESUMEN

The endoderm, one of the three primary germ layers, gives rise to lung, liver, stomach, intestine, colon, pancreas, bladder, and thyroid. These endoderm-originated organs are subject to many life-threatening diseases. However, primary cells/tissues from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells (hPSCs), therefore, hold great promise for generating endodermal cells and their derivatives for the development of new therapeutics against these human diseases. Although a wealth of research has provided crucial information on the mechanisms underlying endoderm differentiation from hPSCs, increasing evidence has shown that metabolism, in connection with epigenetics, actively regulates endoderm differentiation in addition to the conventional endoderm inducing signals. Here we review recent advances in metabolic and epigenetic regulation of endoderm differentiation.


Asunto(s)
Diferenciación Celular , Endodermo , Epigénesis Genética , Diferenciación Celular/genética , Endodermo/citología , Endodermo/metabolismo , Humanos , Células Madre Pluripotentes
11.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769484

RESUMEN

Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype-genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.


Asunto(s)
Fibroblastos/metabolismo , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Neoplasia Endocrina Múltiple Tipo 1/patología , Mutación , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Adulto , Sistemas CRISPR-Cas , Células Cultivadas , Femenino , Humanos , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasia Endocrina Múltiple Tipo 1/metabolismo , Proteínas Proto-Oncogénicas/genética
12.
Front Cell Dev Biol ; 9: 655145, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898455

RESUMEN

3-hydroxybutyrate dehydrogenase-2 (Bdh2), a short-chain dehydrogenase, catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore, playing a key role in iron homeostasis, energy metabolism and apoptosis. However, the function of Bdh2 in embryonic stem cells (ESCs) remains unknown. To gain insights into the role of Bdh2 on pluripotency and cell fate decisions of mouse ESCs, we generated Bdh2 homozygous knockout lines for both mouse advanced embryonic stem cell (ASC) and ESC using CRISPR/Cas9 genome editing technology. Bdh2 deficiency in both ASCs and ESCs had no effect on expression of core pluripotent transcription factors and alkaline phosphatase activity, suggesting dispensability of Bdh2 for self-renewal and pluripotency of ESCs. Interestingly, cells with Bdh2 deficiency exhibited potency of endoderm differentiation in vitro; with upregulated endoderm associated genes revealed by RNA-seq and RT-qPCR. We further demonstrate that Bdh2 loss inhibited expression of multiple methyltransferases (DNMTs) at both RNA and protein level, suggesting that Bdh2 may be essentially required to maintain DNA methylation in ASCs and ESCs. Overall, this study provides valuable data and resources for understanding how Bdh2 regulate earliest cell fate decision and DNA methylation in ASCs/ESCs.

13.
Turk J Biol ; 45(1): 56-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33597822

RESUMEN

Cell division and death play an important role in embryonic development. Cell specialization is accompanied with slow proliferation and quiescence. Cell death is important for morphogenesis. Gene expression changes during differentiation is coordinated by lineage-specific transcription factors and chromatin factors. It is not yet fully understood how alterations in gene expression and cell cycle/death mechanisms are connected. We previously identified a chromatin protein Arid4b as a critical factor for meso/endoderm differentiation of mouse embryonic stem cells (mESCs). The differentiation defect of Arid4b-deficient mESCs might be due to misregulation of cell proliferation or death. Here, we identified a role for Arid4b in cell cycle rewiring at the onset of differentiation. Arid4b-deficient differentiating cells have less proliferative capacity and their cell cycle profile is more similar to mESC stage than the differentiating wild-type cells. We found no evidence of increased DNA damage or checkpoint activation. Our investigation of cell death mechanisms found no contribution from autophagy but revealed a slight increase in Caspase-3 activation implying early apoptosis in Arid4b-deficient differentiating cells. Taken together, our data suggest Arid4b regulates cell cycle alterations during exit from pluripotency. Future studies will be instrumental in understanding whether these changes directly contribute to Arid4b-dependent differentiation control.

14.
Cell Stem Cell ; 28(4): 748-763.e7, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33450185

RESUMEN

Histone crotonylation is a non-acetyl histone lysine modification that is as widespread as acetylation. However, physiological functions associated with histone crotonylation remain almost completely unknown. Here we report that histone crotonylation is crucial for endoderm differentiation. We demonstrate that key crotonyl-coenzyme A (CoA)-producing enzymes are specifically induced in endodermal cells during differentiation of human embryonic stem cells (hESCs) in vitro and in mouse embryos, where they function to increase histone crotonylation and enhance endodermal gene expression. Chemical enhancement of histone crotonylation promotes endoderm differentiation of hESCs, whereas deletion of crotonyl-CoA-producing enzymes reduces histone crotonylation and impairs meso/endoderm differentiation in vitro and in vivo. Our study uncovers a histone crotonylation-mediated mechanism that promotes endodermal commitment of pluripotent stem cells, which may have important implications for therapeutic strategies against a number of human diseases.


Asunto(s)
Histonas , Células Madre Embrionarias Humanas , Acetilación , Animales , Diferenciación Celular , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Lisina/metabolismo , Ratones , Procesamiento Proteico-Postraduccional
15.
Biochem Biophys Res Commun ; 527(3): 811-817, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32446562

RESUMEN

The ability of human embryonic stem cells (hESCs) to proliferate unlimitedly and give rise to all tissues makes these cells a promising source for cell replacement therapies. To realize the full potential of hESCs in cell therapy, it is necessary to interrogate regulatory pathways that influence hESC maintenance and commitment. Here, we reveal that pharmacological attenuation of p38 mitogen-activated protein kinase (p38-MAPK) in hESCs concomitantly augments some characteristics associated with pluripotency and the expressions of early lineage markers. Moreover, this blockage capacitates hESCs to differentiate towards an endoderm lineage at the expense of other lineages upon spontaneous hESC differentiation. Notably, hESCs pre-treated with p38-MAPK inhibitor exhibit significantly improved pancreatic progenitor directed differentiation. Together, our findings suggest a new approach to the robust endoderm differentiation of hESCs and potentially enables the facile derivation of various endoderm-derived lineages such as pancreatic cells.


Asunto(s)
Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Línea Celular , Endodermo/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Páncreas/citología , Páncreas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Cells ; 8(12)2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31817235

RESUMEN

For the production and bio-banking of differentiated derivatives from human pluripotent stem cells (hPSCs) in large quantities for drug screening and cellular therapies, well-defined and robust procedures for differentiation and cryopreservation are required. Definitive endoderm (DE) gives rise to respiratory and digestive epithelium, as well as thyroid, thymus, liver, and pancreas. Here, we present a scalable, universal process for the generation of DE from human-induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs). Optimal control during the differentiation process was attained in chemically-defined and xeno-free suspension culture, and high flexibility of the workflow was achieved by the introduction of an efficient cryopreservation step at the end of DE differentiation. DE aggregates were capable of differentiating into hepatic-like, pancreatic, intestinal, and lung progenitor cells. Scale-up of the differentiation process using stirred-tank bioreactors enabled production of large quantities of DE aggregates. This process provides a useful advance for versatile applications of DE lineages, in particular for cell therapies and drug screening.


Asunto(s)
Técnicas de Cultivo Celular por Lotes/métodos , Diferenciación Celular , Linaje de la Célula , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Técnicas de Cultivo Celular por Lotes/instrumentación , Reactores Biológicos , Línea Celular , Criopreservación/métodos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
17.
Stem Cell Reports ; 9(5): 1395-1405, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29107594

RESUMEN

Current in vitro islet differentiation protocols suffer from heterogeneity and low efficiency. Induced pluripotent stem cells (iPSCs) derived from pancreatic beta cells (BiPSCs) preferentially differentiate toward endocrine pancreas-like cells versus those from fibroblasts (FiPSCs). We interrogated genome-wide open chromatin in BiPSCs and FiPSCs via ATAC-seq and identified ∼8.3k significant, differential open chromatin sites (DOCS) between the two iPSC subtypes (false discovery rate [FDR] < 0.05). DOCS where chromatin was more accessible in BiPSCs (Bi-DOCS) were significantly enriched for known regulators of endodermal development, including bivalent and weak enhancers, and FOXA2 binding sites (FDR < 0.05). Bi-DOCS were associated with genes related to pancreas development and beta-cell function, including transcription factors mutated in monogenic diabetes (PDX1, NKX2-2, HNF1A; FDR < 0.05). Moreover, Bi-DOCS correlated with enhanced gene expression in BiPSC-derived definitive endoderm and pancreatic progenitor cells. Bi-DOCS therefore highlight genes and pathways governing islet-lineage commitment, which can be exploited for differentiation protocol optimization, diabetes disease modeling, and therapeutic purposes.


Asunto(s)
Reprogramación Celular , Cromatina/genética , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 3-beta del Hepatocito/genética , Células Madre Pluripotentes Inducidas/citología , Células Secretoras de Insulina/citología , Células Cultivadas , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares , Unión Proteica , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra
18.
Methods Mol Biol ; 1341: 173-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26205323

RESUMEN

Human embryonic stem cells (ESCs) show a characteristic feature in that they are highly dependent on methionine metabolism. Undifferentiated human ESCs cannot survive under condition that methionine is deprived from culture medium. We describe here a procedure for definitive endoderm differentiation from human ESCs, in which human ESCs are subject to 10 days' (d) differentiation combined with methionine deprivation between differentiation days (d) 8 to (d) 10. Methionine deprivation results in elimination of undifferentiated cells from the culture with no significant loss of definitive endoderm cells, as compared to those cultured under complete condition throughout the whole culture period.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Endodermo/citología , Células Madre Embrionarias Humanas/citología , Línea Celular , Endodermo/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Metionina/metabolismo
19.
Methods Mol Biol ; 1357: 375-81, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25417065

RESUMEN

Here, we describe a procedure of human iPS cells differentiation into the definitive endoderm, further into albumin-expressing and albumin-secreting hepatocyte, using M15, a mesonephros- derived cell line. Approximately 90 % of human iPS cells differentiated into SOX17-positive definitive endoderm then approximately 50 % of cells became albumin-positive cells, and secreted ALB protein. This M15 feeder system for endoderm and hepatic differentiation is a simple and efficient method, and useful for elucidating molecular mechanisms for hepatic fate decision, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Técnicas de Reprogramación Celular/métodos , Reprogramación Celular , Endodermo/citología , Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Línea Celular , Linaje de la Célula , Células Cultivadas , Medios de Cultivo/farmacología , Humanos , Mitomicina/farmacología , Factores de Transcripción SOXF/análisis , Albúmina Sérica/biosíntesis
20.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25349457

RESUMEN

Mouse epiblast stem cells (EpiSCs) display temporal differences in the upregulation of Mixl1 expression during the initial steps of in vitro differentiation, which can be correlated with their propensity for endoderm differentiation. EpiSCs that upregulated Mixl1 rapidly during differentiation responded robustly to both Activin A and Nodal in generating foregut endoderm and precursors of pancreatic and hepatic tissues. By contrast, EpiSCs that delayed Mixl1 upregulation responded less effectively to Nodal and showed an overall suboptimal outcome of directed differentiation. The enhancement in endoderm potency in Mixl1-early cells may be accounted for by a rapid exit from the progenitor state and the efficient response to the induction of differentiation by Nodal. EpiSCs that readily differentiate into the endoderm cells are marked by a distinctive expression fingerprint of transforming growth factor (TGF)-ß signalling pathway genes and genes related to the endoderm lineage. Nodal appears to elicit responses that are associated with transition to a mesenchymal phenotype, whereas Activin A promotes gene expression associated with maintenance of an epithelial phenotype. We postulate that the formation of definitive endoderm (DE) in embryoid bodies follows a similar process to germ layer formation from the epiblast, requiring an initial de-epithelialization event and subsequent re-epithelialization. Our results show that priming EpiSCs with the appropriate form of TGF-ß signalling at the formative phase of endoderm differentiation impacts on the further progression into mature DE-derived lineages, and that this is influenced by the initial characteristics of the cell population. Our study also highlights that Activin A, which is commonly used as an in vitro surrogate for Nodal in differentiation protocols, does not elicit the same downstream effects as Nodal, and therefore may not effectively mimic events that take place in the mouse embryo.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Endodermo/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/embriología , Subunidades beta de Inhibinas/metabolismo , Proteína Nodal/metabolismo , Animales , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica/genética , Estratos Germinativos/citología , Proteínas de Homeodominio/metabolismo , Ratones , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA