Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharm Sin B ; 12(2): 939-951, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35256956

RESUMEN

The lung is one of the most common sites for cancer metastasis. Collagens in the lung provide a permissive microenvironment that supports the colonization and outgrowth of disseminated tumor cells. Therefore, down-regulating the production of collagens may contribute to the inhibition of lung metastasis. It has been suggested that miR-29 exhibits effective anti-fibrotic activity by negatively regulating the expression of collagens. Indeed, our clinical lung tumor data shows that miR-29a-3p expression negatively correlates with collagen I expression in lung tumors and positively correlates with patients' outcomes. However, suitable carriers need to be selected to deliver this therapeutic miRNA to the lungs. In this study, we found that the chemotherapy drug cisplatin facilitated miR-29a-3p accumulation in the exosomes of lung tumor cells, and this type of exosomes exhibited a specific lung-targeting effect and promising collagen down-regulation. To scale up the preparation and simplify the delivery system, we designed a lung-targeting liposomal nanovesicle (by adjusting the molar ratio of DOTAP/cholesterol-miRNAs to 4:1) to carry miR-29a-3p and mimic the exosomes. This liposomal nanovesicle delivery system significantly down-regulated collagen I secretion by lung fibroblasts in vivo, thus alleviating the establishment of a pro-metastatic environment for circulating lung tumor cells.

2.
Acta Pharmaceutica Sinica B ; (6): 939-951, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-929336

RESUMEN

The lung is one of the most common sites for cancer metastasis. Collagens in the lung provide a permissive microenvironment that supports the colonization and outgrowth of disseminated tumor cells. Therefore, down-regulating the production of collagens may contribute to the inhibition of lung metastasis. It has been suggested that miR-29 exhibits effective anti-fibrotic activity by negatively regulating the expression of collagens. Indeed, our clinical lung tumor data shows that miR-29a-3p expression negatively correlates with collagen I expression in lung tumors and positively correlates with patients' outcomes. However, suitable carriers need to be selected to deliver this therapeutic miRNA to the lungs. In this study, we found that the chemotherapy drug cisplatin facilitated miR-29a-3p accumulation in the exosomes of lung tumor cells, and this type of exosomes exhibited a specific lung-targeting effect and promising collagen down-regulation. To scale up the preparation and simplify the delivery system, we designed a lung-targeting liposomal nanovesicle (by adjusting the molar ratio of DOTAP/cholesterol-miRNAs to 4:1) to carry miR-29a-3p and mimic the exosomes. This liposomal nanovesicle delivery system significantly down-regulated collagen I secretion by lung fibroblasts in vivo, thus alleviating the establishment of a pro-metastatic environment for circulating lung tumor cells.

3.
Data Brief ; 31: 105866, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32637484

RESUMEN

The formyl peptide receptor 2 (FPR2) belongs to the family of seven-transmembrane G protein-coupled receptors (GPCR) and are expressed by many different cells but mainly studied in immune cells. FPR2 is involved in host defense against bacterial infections and clearance of damaged cells through the oxidative burst and chemotaxis of neutrophils. In addition, FPR2 has also been implicated as an immunomodulator in sterile inflammations, e.g. inflammatory joint diseases. Here we present data regarding FPR2 expression in human articular chondrocytes, isolated from healthy individuals and osteoarthritic patients, on both mRNA and protein level using qPCR and Imagestream flow cytometry. We also present data after receptor stimulation and monitoring of production of nitric oxide, reactive oxygen species, IL-6, IL-8 and MMP-3. The presented data show that human articular chondrocytes from patients with osteoarthritis as well as from healthy individuals express FPR2 both at mRNA and protein level. The biological relevance of FPR2 expression in chondrocytes needs to be further investigated.

4.
Regen Ther ; 15: 202-209, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426220

RESUMEN

BACKGROUND: The process of wound healing is complex. Increasing evidences have shown that lncRNA MALAT1 is abundant in fibroblasts and may be engaged in wound healing process. Therefore, we explored the mechanism of MALAT1 affecting wound healing. METHODS: The expression levels of MALAT1, miR-141-3p as well as ZNF217 in human fibroblast cells (HFF-1) were quantified by qRT-PCR. HFF-1 proliferation was measured by MTT, while migration was detected by wound healing assay. SMAD2 activation and matrix proteins expression were detected by western blotting. The interaction between miR-141-3p and MALAT1 or ZNF217 was further confirmed using the luciferase reporter gene assay. In vivo wound healing was assessed by full-thickness wound healing model on C57BL/6 mice. RESULT: Knockdown of MALAT1 as well as overexpression miR-141-3p remarkably inhibited the proliferation, migration and matrix protein expression in HFF-1 cells. MALAT1 directly targeted and inhibited the expression of miR-141-3p. MiR-141-3p suppressed the activation of TGF-ß2/SMAD2 signaling pathway by targeting ZNF217. Knockdown of MALAT1 inhibited wound healing process in mice. CONCLUSIONS: MALAT1 up-regulates ZNF217 expression by targeting miR-141-3p, thus enhances the activity of TGF-ß2/SMAD2 signaling pathway and promotes wound healing process. This investigation shed new light on the understanding of the role of MALAT1 in wound healing, and may provide potential target for the diagnosis or therapy of chronic wounds.

5.
JACC Basic Transl Sci ; 4(2): 188-199, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31061921

RESUMEN

Cardiomyocyte-specific increases in phosphorylated Hsp20 (S16D-Hsp20) to levels similar to those observed in human failing hearts are associated with early fibrotic remodeling and depressed left ventricular function, symptoms which progress to heart failure and early death. The underlying mechanisms appear to involve translocation of phosphorylated Hsp20 to the nucleus and upregulation of interleukin (IL)-6, which subsequently activates cardiac fibroblasts in a paracrine fashion through transcription factor STAT3 signaling. Accordingly, treatment of S16D-Hsp20 mice with a rat anti-mouse IL-6 receptor monoclonal antibody (MR16-1) attenuated interstitial fibrosis and preserved cardiac function. These findings suggest that phosphorylated Hsp20 may be a potential therapeutic target in heart failure.

6.
IBRO Rep ; 6: 1-17, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30582064

RESUMEN

In the developing central nervous system (CNS), extracellular matrix (ECM) molecules have regulating roles such as in brain development, neural-circuit maturation, and synaptic-function control. However, excluding the perineuronal net (PNN) area, the distribution, constituent elements, and expression level of granular ECM molecules (diffuse ECM) present in the mature CNS remain unclear. Diffuse ECM molecules in the CNS share the components of PNNs and are likely functional. As cortical functions are greatly region-dependent, we hypothesized that ECM molecules would differ in distribution, expression level, and components in a region- and layer-dependent manner. We examined the layer-specific expression of several chondroitin sulfate proteoglycans (aggrecan, neurocan, and brevican), tenascin-R, Wisteria floribunda agglutinin (WFA)-positive molecules, hyaluronic acid, and link protein in the somatosensory and piriform cortices of mature mice. Furthermore, we investigated expression changes in WFA-positive molecules due to aging. In the somatosensory cortex, PNN density was particularly high at layer 4 (L4), but not all diffuse ECM molecules were highly expressed at L4 compared to the other layers. There was almost no change in tenascin-R and hyaluronic acid in any somatosensory-cortex layer. Neurocan showed high expression in L1 of the somatosensory cortex. In the piriform cortex, many ECM molecules showed higher expression in L1 than in the other layers. However, hyaluronic acid showed high expression in deep layers. Here, we clarified that ECM molecules differ in constituent elements and expression in a region- and layer-dependent manner. Region-specific expression of ECM molecules is possibly related to functions such as region-specific plasticity and vulnerability.

7.
J Clin Exp Hepatol ; 7(4): 367-372, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29234202

RESUMEN

Matrix metalloproteinases (MMPs) are proteinases capable of degrading components of the extracellular matrix and numerous nonmatrix proteins. MMPs along with tissue inhibitors of MMPs, have been implicated in the pathogenesis of liver diseases. Although, the precise mechanism-of-actions of MMPs in various liver related disorders is largely unknown, however, data from diverse experimental models indicate that these proteinases influence cellular activities including proliferation and survival, gene expression, as well as multiple aspects of inflammation. Hence, MMP's are likely key players in the outcomes related to liver disease.

8.
Saudi J Biol Sci ; 24(4): 843-850, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28490956

RESUMEN

Diabetes mellitus is a major leading cause of end-stage renal failure, characterized by kidney inflammation and glomerular dysfunction, in worldwide. Kidney inflammation is associated to modifications in the expression levels of pro-inflammatory molecules, such as nuclear factor-κB (NFκB) and adhesion molecules, such as E-cadherin, leading to glomerular dysfunction. However, the relationships between these two processes in human diabetic nephropathy remain an open question. Since Psammomys obesus is an ideal animal model to study diabetes mellitus temporal evolution, we have used this model to study the correlation between kidney structural changes and modification on the expression levels of NFκB and E-cadherin over time. We have demonstrated that, after induction of diabetes metillus with a high energy diet (HED), P. obesus develops the characteristic symptoms of human disease. In detail, at the third month nuclear factor NFκB is expressed in the kidney of diabetic P. obesus and structural renal changes, such as mesangial expansion or interstitial fibrosis, are detectable; at 6 months, thickening of glomerular basement membrane, glomerular sclerosis, and tubular atrophy occurs; at 9 months, symptoms of the final stages of the disease, such as down expression of E-cadherin, happens. As a result of these observations we proposed that NFκB activation and E-cadherin down-expression are interlinked on diabetic kidney disease (DKD).

9.
Meta Gene ; 9: 52-5, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27222816

RESUMEN

Variants within the MMP3 (rs679620) and TIMP2 (rs4789932) genes have been associated with the risk of Achilles tendon pathology (ATP) in populations from South Africa and Australia. This study aimed to determine whether these variants were associated with the risk of ATP in British Caucasians. We recruited 118 cases with ATP, including a subset of 25 individuals with Achilles tendon rupture (RUP) and 131 controls. DNA samples were isolated from saliva and genotyped using qPCR. For the TIMP2 rs4789932 variant we found a significant (p = 0.038) difference in the genotype distribution frequency between males with ATP (CC, 39.4%; CT, 43.7%; TT, 16.9%) compared to male controls (CC, 20.7%; CT, 59.8%; TT, 19.5%). We also observed a difference in the TIMP2 rs4789932 genotype distribution between males with rupture compared to male controls (p = 0.038). The MMP3 rs679620 GG genotype was found to be overrepresented in the Achilles tendon rupture (RUP) group (AA, 24.0%; AG, 32.0%; GG, 44.0%) compared to controls (AA, 26.7%; AG, 54.2%; GG, 19.1%). In conclusion, the CT genotype of the TIMP2 rs4789932 variant was associated with lower risk of ATP in males. Furthermore, while we revealed differences for both variants in genotype distribution between the RUP and control groups, the sample size of the RUP group was small and confirmation would be required in additional cohorts. Finally, although both the TIMP2 rs4789932 and MMP3 rs679620 variants tentatively associated with ATP, there were differences in the direction of association compared to earlier work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA