Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Intervalo de año de publicación
1.
Bone Rep ; 21: 101769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706522

RESUMEN

The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.

2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731821

RESUMEN

In contrast to cats and dogs, here we report that the α2-adrenergic receptor antagonist yohimbine is emetic and corresponding agonists clonidine and dexmedetomidine behave as antiemetics in the least shrew model of vomiting. Yohimbine (0, 0.5, 0.75, 1, 1.5, 2, and 3 mg/kg, i.p.) caused vomiting in shrews in a bell-shaped and dose-dependent manner, with a maximum frequency (0.85 ± 0.22) at 1 mg/kg, which was accompanied by a key central contribution as indicated by increased expression of c-fos, serotonin and substance P release in the shrew brainstem emetic nuclei. Our comparative study in shrews demonstrates that clonidine (0, 0.1, 1, 5, and 10 mg/kg, i.p.) and dexmedetomidine (0, 0.01, 0.05, and 0.1 mg/kg, i.p.) not only suppress yohimbine (1 mg/kg, i.p.)-evoked vomiting in a dose-dependent manner, but also display broad-spectrum antiemetic effects against diverse well-known emetogens, including 2-Methyl-5-HT, GR73632, McN-A-343, quinpirole, FPL64176, SR141716A, thapsigargin, rolipram, and ZD7288. The antiemetic inhibitory ID50 values of dexmedetomidine against the evoked emetogens are much lower than those of clonidine. At its antiemetic doses, clonidine decreased shrews' locomotor activity parameters (distance moved and rearing), whereas dexmedetomidine did not do so. The results suggest that dexmedetomidine represents a better candidate for antiemetic potential with advantages over clonidine.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2 , Antieméticos , Clonidina , Dexmedetomidina , Vómitos , Yohimbina , Animales , Masculino , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Antagonistas de Receptores Adrenérgicos alfa 2/farmacología , Antieméticos/farmacología , Antieméticos/uso terapéutico , Clonidina/farmacología , Clonidina/análogos & derivados , Clonidina/uso terapéutico , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Modelos Animales de Enfermedad , Eméticos/farmacología , Musarañas , Vómitos/tratamiento farmacológico , Vómitos/inducido químicamente , Yohimbina/farmacología
3.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518777

RESUMEN

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Tronco Encefálico , Conducta Alimentaria , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Animales , Tronco Encefálico/fisiología , Tronco Encefálico/metabolismo , Ratones , Masculino , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ingestión de Alimentos/fisiología , Ratones Endogámicos C57BL , Femenino
4.
Neuroendocrinology ; 114(3): 302-312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194945

RESUMEN

INTRODUCTION: Previous work showed that increasing the electrical activity of inhibitory neurons in the dorsal vagal complex (DVC) is sufficient to increase whole-body glucose concentration in normoglycemic mice. Here we tested the hypothesis that deactivating GABAergic neurons in the dorsal hindbrain of hyperglycemic mice decreases synaptic inhibition of parasympathetic motor neurons in the dorsal motor nucleus of the vagus (DMV) and reduces systemic glucose levels. METHODS: Chemogenetic activation or inactivation of GABAergic neurons in the nucleus tractus solitarius (NTS) was used to assess effects of modulating parasympathetic output on blood glucose concentration in normoglycemic and hyperglycemic mice. Patch-clamp electrophysiology in vitro was used to assess cellular effects of chemogenetic manipulation of NTS GABA neurons. RESULTS: Chemogenetic activation of GABAergic NTS neurons in normoglycemic mice increased their action potential firing, resulting in increased inhibitory synaptic input to DMV motor neurons and elevated blood glucose concentration. Deactivation of GABAergic DVC neurons in normoglycemic mice altered their electrical activity but did not alter systemic glucose levels. Conversely, stimulation of GABAergic DVC neurons in mice that were hyperglycemic subsequent to treatment with streptozotocin changed their electrical activity but did not alter whole-body glucose concentration, while deactivation of this inhibitory circuit significantly decreased circulating glucose concentration. Peripheral administration of a brain impermeant muscarinic acetylcholine receptor antagonist abolished these effects. CONCLUSION: Disinhibiting vagal motor neurons decreases hyperglycemia in a mouse model of type 1 diabetes. This inhibitory brainstem circuit emerges as a key parasympathetic regulator of whole-body glucose homeostasis that undergoes functional plasticity in hyperglycemic conditions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Glucosa , Ratones , Animales , Glucosa/farmacología , Glucemia , Ratones Obesos , Modelos Animales de Enfermedad , Núcleo Solitario/fisiología , Neuronas GABAérgicas/fisiología
5.
Mol Metab ; 79: 101861, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142970

RESUMEN

OBJECTIVE: The dorsal vagal complex (DVC) of the hindbrain is a major point of integration for central and peripheral signals that regulate a wide variety of metabolic functions to maintain energy balance. The REV-ERB nuclear receptors are important modulators of molecular metabolism, but their role in the DVC has yet to be established. METHODS: Male REV-ERBα/ß floxed mice received stereotaxic injections of a Cre expressing virus to the DVC to create the DVC REV-ERBα/ß double knockout (DVC RDKO). Control littermates received stereotaxic injections to the DVC of a green fluorescent protein expressing virus. Animals were maintained on a normal chow diet or a 60% high-fat diet to observe the metabolic phenotype arising from DVC RDKO under healthy and metabolically stressed conditions. RESULTS: DVC RDKO animals on high-fat diet exhibited increased weight gain compared to control animals maintained on the same diet. Increased weight gain in DVC RDKO animals was associated with decreased basal metabolic rate and dampened signature of brown adipose tissue activity. RDKO decreased gene expression of calcitonin receptor in the DVC and tyrosine hydroxylase in the brown adipose tissue. CONCLUSIONS: These results suggest a previously unappreciated role of REV-ERB nuclear receptors in the DVC for maintaining energy balance and metabolic rate potentially through indirect sympathetic outflow to the brown adipose tissue.


Asunto(s)
Tejido Adiposo Pardo , Rombencéfalo , Animales , Masculino , Ratones , Tejido Adiposo Pardo/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Rombencéfalo/metabolismo , Aumento de Peso
6.
Nutrients ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242151

RESUMEN

The g-protein coupled receptor GPR-160, recently identified as a putative receptor for the cocaine and amphetamine-regulated transcript (CART) peptide, shows abundant expression in the energy-balance control nuclei, including the dorsal vagal complex (DVC). However, its physiological role in the control of food intake has yet to be fully explored. Here, we performed a virally mediated, targeted knockdown (KD) of Gpr160 in the DVC of male rats to evaluate its physiological role in control of feeding. Our results indicate that DVC Gpr160 KD affects meal microstructure. Specifically, DVC Gpr160 KD animals consumed more frequent, but shorter meals during the dark phase and showed decreased caloric intake and duration of meals during the light phase. Cumulatively, however, these bidirectional effects on feeding resulted in no difference in body weight gain. We next tested the role of DVC GPR-160 in mediating the anorexigenic effects of exogenous CART. Our results show that DVC Gpr160 KD partially attenuates CART's anorexigenic effects. To further characterize Gpr160+ cells in the DVC, we utilized single-nucleus RNA sequencing data to uncover abundant GPR-160 expression in DVC microglia and only minimal expression in neurons. Altogether, our results suggest that DVC CART signaling may be mediated by Gpr160+ microglia, which in turn may be modulating DVC neuronal activity to control food intake.


Asunto(s)
Núcleo Solitario , Nervio Vago , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Nervio Vago/metabolismo , Neuronas
7.
Front Physiol ; 14: 1074979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875016

RESUMEN

Background/aims: Psychological and physiological stress can cause gastrointestinal motility disorders. Acupuncture has a benign regulatory effect on gastrointestinal motility. However, the mechanisms underlying these processes remain unclear. Methods: Herein, we established a gastric motility disorder (GMD) model in the context of restraint stress (RS) and irregular feeding. The activity of emotional center-central amygdala (CeA) GABAergic neurons and gastrointestinal center-dorsal vagal complex (DVC) neurons were recorded by electrophysiology. Virus tracing and patch clamp analysis of the anatomical and functional connection between the CeAGABA → dorsal vagal complex pathways were performed. Optogenetics inhibiting or activating CeAGABA neurons or the CeAGABA → dorsal vagal complex pathway were used to detect changes in gastric function. Results: We found that restraint stress induced delayed gastric emptying and decreased gastric motility and food intake. Simultaneously, restraint stress activated CeA GABAergic neurons, inhibiting dorsal vagal complex neurons, with electroacupuncture (EA) reversing this phenomenon. In addition, we identified an inhibitory pathway in which CeA GABAergic neurons project into the dorsal vagal complex. Furthermore, the use of optogenetic approaches inhibited CeAGABA neurons and the CeAGABA → dorsal vagal complex pathway in gastric motility disorder mice, which enhanced gastric movement and gastric emptying, whereas activation of the CeAGABA and CeAGABA → dorsal vagal complex pathway mimicked the symptoms of weakened gastric movement and delayed gastric emptying in naïve mice. Conclusion: Our findings indicate that the CeAGABA → dorsal vagal complex pathway may be involved in regulating gastric dysmotility under restraint stress conditions, and partially reveals the mechanism of electroacupuncture.

8.
Mol Metab ; 66: 101614, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244663

RESUMEN

OBJECTIVE: Pancreatic insulin was discovered a century ago, and this discovery led to the first lifesaving treatment for diabetes. While still controversial, nearly one hundred published reports suggest that insulin is also produced in the brain, with most focusing on hypothalamic or cortical insulin-producing cells. However, specific function for insulin produced within the brain remains poorly understood. Here we identify insulin expression in the hindbrain's dorsal vagal complex (DVC), and determine the role of this source of insulin in feeding and metabolism, as well as its response to diet-induced obesity in mice. METHODS: To determine the contribution of Ins2-producing neurons to feeding behavior in mice, we used the cross of transgenic RipHER-cre mouse and channelrhodopsin-2 expressing animals, which allowed us to optogenetically stimulate neurons expressing Ins2 in vivo. To confirm the presence of insulin expression in Rip-labeled DVC cells, in situ hybridization was used. To ascertain the specific role of insulin in effects discovered via optogenetic stimulation a selective, CNS applied, insulin receptor antagonist was used. To understand the physiological contribution of insulin made in the hindbrain a virogenetic knockdown strategy was used. RESULTS: Insulin gene expression and presence of insulin-promoter driven fluorescence in rat insulin promoter (Rip)-transgenic mice were detected in the hypothalamus, but also in the DVC. Insulin mRNA was present in nearly all fluorescently labeled cells in DVC. Diet-induced obesity in mice altered brain insulin gene expression, in a neuroanatomically divergent manner; while in the hypothalamus the expected obesity-induced reduction was found, in the DVC diet-induced obesity resulted in increased expression of the insulin gene. This led us to hypothesize a potentially divergent energy balance role of insulin in these two brain areas. To determine the acute impact of activating insulin-producing neurons in the DVC, optic stimulation of light-sensitive channelrhodopsin 2 in Rip-transgenic mice was utilized. Optogenetic photoactivation induced hyperphagia after acute activation of the DVC insulin neurons. This hyperphagia was blocked by central application of the insulin receptor antagonist S961, suggesting the feeding response was driven by insulin. To determine whether DVC insulin has a necessary contribution to feeding and metabolism, virogenetic insulin gene knockdown (KD) strategy, which allows for site-specific reduction of insulin gene expression in adult mice, was used. While chow-fed mice failed to reveal any changes of feeding or thermogenesis in response to the KD, mice challenged with a high-fat diet consumed less food. No changes in body weight were identified, possibly resulting from compensatory reduction in thermogenesis. CONCLUSIONS: Together, our data suggest an important role for hindbrain insulin and insulin-producing cells in energy homeostasis.


Asunto(s)
Insulina , Receptor de Insulina , Animales , Ratones , Ratas , Channelrhodopsins/metabolismo , Conducta Alimentaria , Hiperfagia/metabolismo , Insulina/metabolismo , Ratones Transgénicos , Obesidad/metabolismo , Receptor de Insulina/metabolismo , Rombencéfalo/metabolismo
9.
Front Physiol ; 13: 931167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36117684

RESUMEN

The dorsal vagal complex (DVC) is a key hub for integrating blood-borne, central, and vagal ascending signals that convey important information on metabolic and homeostatic state. Research implicates the DVC in the termination of food intake and the transition to satiety, and consequently it is considered a brainstem satiety centre. In natural and laboratory settings, animals have distinct times of the day or circadian phases at which they prefer to eat, but if and how circadian signals affect DVC activity is not well understood. Here, we evaluate how intrinsic circadian signals regulate molecular and cellular activity in the area postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus (DMV) of the DVC. The hierarchy and potential interactions among these oscillators and their response to changes in diet are considered a simple framework in which to model these oscillators and their interactions is suggested. We propose possible functions of the DVC in the circadian control of feeding behaviour and speculate on future research directions including the translational value of knowledge of intrinsic circadian timekeeping the brainstem.

10.
Mol Metab ; 62: 101525, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35691527

RESUMEN

OBJECTIVE: Neuropeptide FF (NPFF) group peptides belong to the evolutionary conserved RF-amide peptide family. While they have been assigned a role as pain modulators, their roles in other aspects of physiology have received much less attention. NPFF peptides and their receptor NPFFR2 have strong and localized expression within the dorsal vagal complex that has emerged as the key centre for regulating glucose homeostasis. Therefore, we investigated the role of the NPFF system in the control of glucose metabolism and the histochemical and molecular identities of NPFF and NPFFR2 neurons. METHODS: We examined glucose metabolism in Npff-/- and wild type (WT) mice using intraperitoneal (i.p.) glucose tolerance and insulin tolerance tests. Body composition and glucose tolerance was further examined in mice after 1-week and 3-week of high-fat diet (HFD). Using RNAScope double ISH, we investigated the neurochemical identity of NPFF and NPFFR2 neurons in the caudal brainstem, and the expression of receptors for peripheral factors in NPFF neurons. RESULTS: Lack of NPFF signalling in mice leads to improved glucose tolerance without significant impact on insulin excursion after the i.p. glucose challenge. In response to an i.p. bolus of insulin, Npff-/- mice have lower glucose excursions than WT mice, indicating an enhanced insulin action. Moreover, while HFD has rapid and potent detrimental effects on glucose tolerance, this diet-induced glucose intolerance is ameliorated in mice lacking NPFF signalling. This occurs in the absence of any significant impact of NPFF deletion on lean or fat masses, suggesting a direct effect of NPFF signalling on glucose metabolism. We further reveal that NPFF neurons in the subpostrema area (SubP) co-express receptors for peripheral factors involved in glucose homeostasis regulation such as insulin and GLP1. Furthermore, Npffr2 is expressed in the glutamatergic NPFF neurons in the SubP, and in cholinergic neurons of the dorsal motor nucleus of the vagus (DMV), indicating that central NPFF signalling is likely modulating vagal output to innervated peripheral tissues including those important for glucose metabolic control. CONCLUSIONS: NPFF signalling plays an important role in the regulation of glucose metabolism. NPFF neurons in the SubP are likely to receive peripheral signals and mediate the control of whole-body glucose homeostasis via centrally vagal pathways. Targeting NPFF and NPFFR2 signalling may provide a new avenue for treating type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Oligopéptidos , Animales , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Homeostasis , Insulinas/metabolismo , Ratones , Oligopéptidos/metabolismo
11.
IBRO Neurosci Rep ; 13: 38-46, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35711244

RESUMEN

Hindbrain A2 noradrenergic neurons assimilate estrogenic and metabolic cues. In female mammals, negative- versus positive-feedback patterns of estradiol (E) secretion impose divergent regulation of the gonadotropin-releasing hormone (GnRH)-pituitary-gonadal (HPG) neuroendocrine axis. Current research used retrograde tracing, dual-label immunocytochemistry, single-cell laser-microdissection, and multiplex qPCR methods to address the premise that E feedback modes uniquely affect metabolic regulation of A2 neurons involved in HPG control. Ovariectomized female rats were given E replacement to replicate plasma hormone levels characteristic of positive (high-E dose) or negative (low-E dose) feedback. Animals were either full-fed (FF) or subjected to short-term, e.g., 18-h food deprivation (FD). After FF or FD, rostral preoptic area (rPO)-projecting A2 neurons were characterized by the presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunostaining. FD augmented or suppressed mRNAs encoding the catecholamine enzyme dopamine-beta-hydroxylase (DßH) and the metabolic-sensory biomarker glucokinase (GCK), relative to FF controls, in nGKRP-immunoreactive (ir)-positive A2 neurons from low-E or high-E animals, respectively. Yet, these transcript profiles were unaffected by FD in nGKRP-ir-negative A2 neurons at either E dosage level. FD altered estrogen receptor (ER)-alpha and ATP-sensitive potassium channel subunit sulfonylurea receptor-1 gene expression in nGKRP-ir-positive neurons from low-E, but not high-E animals. Results provide novel evidence that distinct hindbrain A2 neuron populations exhibit altered versus unaffected transmission to the rPO during FD-associated metabolic imbalance, and that the direction of change in this noradrenergic input is controlled by E feedback mode. These A2 cell types are correspondingly distinguished by FD-sensitive or -insensitive GCK, which correlates with the presence versus absence of nGKRP-ir. Further studies are needed to determine how E signal volume regulates neurotransmitter and metabolic sensor responses to FD in GKRP-expressing A2 neurons.

12.
IBRO Neurosci Rep ; 12: 228-239, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35746965

RESUMEN

Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.

13.
Front Pharmacol ; 13: 848673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444553

RESUMEN

Temsirolimus is a prodrug form of sirolimus (rapamycin). With its analogs (everolimus, ridaforolimus, and rapamycin), it forms a group of anticancer agents that block the activity of one of the two mammalian targets of rapamycin (mTOR) complexes, mTORC1. We investigated the emetic potential of varying doses (0, 0.5, 1, 2.5, 5, 10, 20, and 40 mg/kg, i.p.) of temsirolimus in the least shrew. Temsirolimus caused a bell-shaped and dose-dependent increase in both the mean vomit frequency and the number of shrews vomiting with maximal efficacy at 10 mg/kg (p < 0.05 and p < 0.02, respectively). Its larger doses (20 or 40 mg/kg) had no significant emetic effect. We also evaluated the emetic potential of its analogs (5, 10, and 20 mg/kg, i.p.), all of which exhibited a similar emetic profile. Our observational studies indicated that temsirolimus can reduce the shrew motor activity at 40 mg/kg, and subsequently, we examined the motor effects of its lower doses. At 10 and 20 mg/kg, it did not affect the spontaneous locomotor activity (distance moved) but attenuated the mean rearing frequency in a U-shaped manner at 10 mg/kg (p < 0.05). We then determined the broad-spectrum antiemetic potential of a 20 mg/kg (i.p.) dose of temsirolimus against diverse emetogens, including selective and nonselective agonists of 1) dopaminergic D2/3 receptors (apomorphine and quinpirole); 2) serotonergic 5-HT3 receptors [5-HT (serotonin) and 2-methyl-5-HT]; 3) cholinergic M1 receptors (pilocarpine and McN-A-343); 4) substance P neurokinin NK1 receptors (GR73632); 5) the L-type calcium (Ca2+) channel (LTCC) (FPL64176); 6) the sarcoplasmic endoplasmic reticulum Ca2+ ATPase inhibitor, thapsigargin; 7) the CB1 receptor inverse agonist/antagonist, SR141716A; and 8) the chemotherapeutic cisplatin. Temsirolimus prevented vomiting evoked by the aforementioned emetogens with varying degrees. The mechanisms underlying the pro- and antiemetic effects of temsirolimus evaluated by immunochemistry for c-fos expression demonstrated a c-fos induction in the AP and NTS, but not DMNX with the 10 mg/kg emetic dose of temsirolimus, whereas its larger antiemetic dose (20 mg/kg) had no significant effect. Our study is the first to provide preclinical evidence demonstrating the promising antiemetic potential of high doses of temsirolimus and possibly its analogs in least shrews.

14.
Br J Pharmacol ; 179(4): 600-624, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34519026

RESUMEN

Glucagon-like-peptide-1 (GLP-1) derived from gut enteroendocrine cells and a discrete population of neurons in the caudal medulla acts through humoral and neural pathways to regulate satiety, gastric motility and pancreatic endocrine function. These physiological attributes contribute to GLP-1 having a potent therapeutic action in glycaemic regulation and chronic weight management. In this review, we provide an overview of the neural circuits targeted by endogenous versus exogenous GLP-1 and related drugs. We also highlight candidate subpopulations of neurons and cellular mechanisms responsible for the acute and chronic effects of GLP-1 and GLP-1 receptor agonists on energy balance and glucose metabolism. Finally, we present potential future directions to translate these findings towards the development of effective therapies for treatment of metabolic disease. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Asunto(s)
Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón , Glucemia , Encéfalo/metabolismo , Metabolismo Energético , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas
15.
Front Physiol ; 12: 742838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34759836

RESUMEN

The dorsal motor nucleus of the vagus (DMV) contains preganglionic motor neurons important for interpreting sensory input from the periphery, integrating that information, and coding the appropriate parasympathetic (vagal) output to target organs. Despite the critical role of hormonal regulation of vagal motor output, few studies examine the role of neurosteroids in the regulation of the DMV. Of the few examinations, no studies have investigated the potential impact of allopregnanolone (Allo), a neuroactive progesterone-derivative, in the regulation of neurotransmission on the DMV. Since DMV neuronal function is tightly regulated by GABAA receptor activity and Allo is an endogenous GABAA receptor ligand, the present study used in vitro whole cell patch clamp to investigate whether Allo alters GABAergic neurotransmission to DMV neurons. Although Allo did not influence GABAergic neurotransmission during initial application (5-20 min), a TTX-insensitive prolongment of decay time and increase in frequency of GABAergic currents was established after Allo was removed from the bath for at least 30 min (LtAllo). Inhibition of protein kinase C (PKC) abolished these effects, suggesting that PKC is largely required to mediate Allo-induced inhibition of the DMV. Using mice that lack the δ-subunit of the GABAA receptor, we further confirmed that PKC-dependent activity of LtAllo required this subunit. Allo also potentiated GABAA receptor activity after a repeated application of δ-subunit agonist, suggesting that the presence of Allo encodes stronger δ-subunit-mediated inhibition over time. Using current clamp recording, we demonstrated that LtAllo-induced inhibition is sufficient to decrease action potential firing and excitability within DMV neurons. We conclude that the effects of LtAllo on GABAergic inhibition are dependent on δ-subunit and PKC activation. Taken together, DMV neurons can undergo long lasting Allo-dependent GABAA receptor plasticity.

16.
Am J Physiol Gastrointest Liver Physiol ; 321(5): G576-G587, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643086

RESUMEN

The gastrointestinal tract has its own "brain," the enteric nervous system or ENS, that executes routine housekeeping functions of digestion. The dorsal vagal complex in the central nervous system (CNS) brainstem, however, organizes vagovagal reflexes and establishes interconnections between the entire neuroaxis of the CNS and the gut. Thus, the dorsal vagal complex links the "CNS brain" to the "ENS brain." This brain-gut connectome provides reflex adjustments that optimize digestion and assimilation of nutrients and fluid. Vagovagal circuitry also generates the plasticity and adaptability needed to maintain homeostasis to coordinate among organs and to react to environmental situations. Arguably, this dynamic flexibility provided by the vagal circuitry may, in some circumstances, lead to or complicate maladaptive disorders.


Asunto(s)
Encéfalo/fisiología , Sistema Nervioso Entérico/fisiología , Tracto Gastrointestinal/inervación , Reflejo , Nervio Vago/fisiología , Animales , Humanos , Plasticidad Neuronal
17.
Front Pharmacol ; 12: 736842, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566660

RESUMEN

Gq and Gßγ protein-dependent phospholipase C (PLC) activation is extensively involved in G protein-coupled receptor (GPCR)-mediated signaling pathways which are implicated in a wide range of physiological and pathological events. Stimulation of several GPCRs, such as substance P neurokinin 1-, dopamine D2/3-, histamine H1- and mu-opioid receptors, can lead to vomiting. The aim of this study was to investigate the role of PLC in vomiting through assessment of the emetic potential of a PLC activator (m-3M3FBS), and the antiemetic efficacy of a PLC inhibitor (U73122), in the least shrew model of vomiting. We find that a 50 mg/kg (i.p.) dose of m-3M3FBS induces vomiting in ∼90% of tested least shrews, which was accompanied by significant increases in c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem dorsal vagal complex, indicating activation of brainstem emetic nuclei in m-3M3FBS-evoked emesis. The m-3M3FBS-evoked vomiting was reduced by pretreatment with diverse antiemetics including the antagonists/inhibitors of: PLC (U73122), L-type Ca2+ channel (nifedipine), IP3R (2-APB), RyR receptor (dantrolene), ERK1/2 (U0126), PKC (GF109203X), the serotoninergic type 3 receptor (palonosetron), and neurokinin 1 receptor (netupitant). In addition, the PLC inhibitor U73122 displayed broad-spectrum antiemetic effects against diverse emetogens, including the selective agonists of serotonin type 3 (2-Methyl-5-HT)-, neurokinin 1 receptor (GR73632), dopamine D2/3 (quinpirole)-, and muscarinic M1 (McN-A-343) receptors, the L-type Ca2+ channel (FPL64176), and the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. In sum, PLC activation contributes to emesis, whereas PLC inhibition suppresses vomiting evoked by diverse emetogens.

18.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R250-R259, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259025

RESUMEN

The peptide hormone amylin reduces food intake and body weight and is an attractive candidate target for novel pharmacotherapies to treat obesity. However, the short half-life of native amylin and amylin analogs like pramlintide limits these compounds' potential utility in promoting sustained negative energy balance. Here, we evaluate the ability of the novel long-acting amylin/calcitonin receptor agonist ZP5461 to reduce feeding and body weight in rats, and also test the role of calcitonin receptors (CTRs) in the dorsal vagal complex (DVC) of the hindbrain in the energy balance effects of chronic ZP5461 administration. Acute dose-response studies indicate that systemic ZP5461 (0.5-3 nmol/kg) robustly suppresses energy intake and body weight gain in chow- and high-fat diet (HFD)-fed rats. When HFD-fed rats received chronic systemic administration of ZP5461 (1-2 nmol/kg), the compound initially produced reductions in energy intake and weight gain but failed to produce sustained suppression of intake and body weight. Using virally mediated knockdown of DVC CTRs, the ability of chronic systemic ZP5461 to promote early reductions in intake and body weight gain was determined to be mediated in part by activation of DVC CTRs, implicating the DVC as a central site of action for ZP5461. Future studies should address other dosing regimens of ZP5461 to determine whether an alternative dose/frequency of administration would produce more sustained body weight suppression.


Asunto(s)
Agonistas de los Receptores de Amilina/farmacología , Depresores del Apetito/farmacología , Ingestión de Alimentos/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Receptores de Calcitonina/agonistas , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/efectos de los fármacos , Rombencéfalo/efectos de los fármacos , Nervio Vago/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Ingestión de Energía/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Receptores de Calcitonina/genética , Receptores de Calcitonina/metabolismo , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/genética , Receptores de Polipéptido Amiloide de Islotes Pancreáticos/metabolismo , Rombencéfalo/metabolismo , Transducción de Señal , Factores de Tiempo , Nervio Vago/metabolismo
19.
eNeuro ; 8(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33495245

RESUMEN

Vagal and spinal sensory endings in the wall of the hepatic portal and superior mesenteric veins (PMV) provide the brain with chemosensory information important for energy balance and other functions. To determine their medullary neuronal targets, we injected the transsynaptic anterograde viral tracer HSV-1 H129-772 (H129) into the PMV wall or left nodose ganglion (LNG) of male rats, followed by immunohistochemistry (IHC) and high-resolution imaging. We also determined the chemical phenotype of H129-infected neurons, and potential vagal and spinal axon terminal appositions in the dorsal motor nucleus of the vagus (DMX) and the nucleus of the solitary tract (NTS). PMV wall injections generated H129-infected neurons in both nodose ganglia and in thoracic dorsal root ganglia (DRGs). In the medulla, cholinergic preganglionic parasympathetic neurons in the DMX were virtually the only targets of chemosensory information from the PMV wall. H129-infected terminal appositions were identified on H129-infected somata and dendrites in the DMX, and on H129-infected DMX dendrites that extend into the NTS. Sensory transmission via vagal and possibly spinal routes from the PMV wall therefore reaches DMX neurons via axo-somatic appositions in the DMX and axo-dendritic appositions in the NTS. However, the dearth of H129-infected NTS neurons indicates that sensory information from the PMV wall terminates on DMX neurons without engaging NTS neurons. These previously underappreciated direct sensory routes into the DMX enable a vago-vagal and possibly spino-vagal reflexes that can directly influence visceral function.


Asunto(s)
Venas Mesentéricas , Ganglio Nudoso , Animales , Masculino , Neuronas , Ratas , Núcleo Solitario , Nervio Vago
20.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34987476

RESUMEN

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Área Postrema/efectos de los fármacos , Factor 1 de Crecimiento de Fibroblastos/farmacología , Neuronas/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Área Postrema/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Solitario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA