Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Anal Chim Acta ; 1327: 343126, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39266059

RESUMEN

BACKGROUND: Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS: Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE: Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.


Asunto(s)
Espectrometría de Masas , Raíces de Plantas , Raíces de Plantas/química , Espectrometría de Masas/métodos , Exudados de Plantas/química , Cromatografía Líquida de Alta Presión/métodos
2.
Proteomics ; : e2400022, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088833

RESUMEN

Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.

3.
Anal Bioanal Chem ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196334

RESUMEN

A capillary zone electrophoresis (CZE) system was coupled to an Orbitrap mass spectrometer operating in a data-independent acquisition (DIA) mode for in-depth proteomics analysis. The performance of this CZE-DIA-MS system was systemically evaluated and optimized under different operating conditions. The performance of the fully optimized CZE-DIA-MS system was subsequently compared to the one by using the same CZE-MS system operating in a data-dependent acquisition (DDA) mode. The experimental results show that the numbers of identified peptides and proteins acquired in the DIA mode are much higher than the ones acquired in the DDA mode, especially with the small sample loading amount. Specifically, the numbers of identified peptides and proteins acquired in the DIA mode are 1.8-fold and 2-fold higher than the ones acquired in the DDA mode by using 12.5 ng Hela digests. The proteins identified in the DIA mode also cover almost all the proteins identified in the DDA mode. In addition, a potential cancer biomarker protein, carbohydrate antigen 125, undetected in the DDA mode, can be easily identified in the DIA mode even with 12.5 ng Hela digests. The performance of the CZE-DIA-MS system for in-depth proteomics analysis with a limited sample amount has been fully demonstrated for the first time through this study.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39013167

RESUMEN

Mass spectrometry is broadly employed to study complex molecular mechanisms in various biological and environmental fields, enabling 'omics' research such as proteomics, metabolomics, and lipidomics. As study cohorts grow larger and more complex with dozens to hundreds of samples, the need for robust quality control (QC) measures through automated software tools becomes paramount to ensure the integrity, high quality, and validity of scientific conclusions from downstream analyses and minimize the waste of resources. Since existing QC tools are mostly dedicated to proteomics, automated solutions supporting metabolomics are needed. To address this need, we developed the software PeakQC, a tool for automated QC of MS data that is independent of omics molecular types (i.e., omics-agnostic). It allows automated extraction and inspection of peak metrics of precursor ions (e.g., errors in mass, retention time, arrival time) and supports various instrumentations and acquisition types, from infusion experiments or using liquid chromatography and/or ion mobility spectrometry front-end separations and with/without fragmentation spectra from data-dependent or independent acquisition analyses. Diagnostic plots for fragmentation spectra are also generated. Here, we describe and illustrate PeakQC's functionalities using different representative data sets, demonstrating its utility as a valuable tool for enhancing the quality and reliability of omics mass spectrometry analyses.

5.
J Am Soc Mass Spectrom ; 35(8): 1991-2001, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39056469

RESUMEN

Ion mobility (IM) is often combined with LC-MS experiments to provide an additional dimension of separation for complex sample analysis. While highly complex samples are better characterized by the full dimensionality of LC-IM-MS experiments to uncover new information, downstream data analysis workflows are often not equipped to properly mine the additional IM dimension. For many samples the data acquisition benefits of including IM separations are all that is necessary to uncover sample information and the full dimensionality of the data is not required for data analysis. Postacquisition reduction and adaptation of the dimensions of LC-IM-MS and IM-MS experiments into an LC-MS format opens the possibility to use a plethora of existing software tools. In this work, we developed data file conversion tools to reduce the complexity of IM data analysis. Three data file transformations are introduced in the PNNL PreProcessor software: (1) mapping the IM axis to the LC axis for IM-MS data, (2) converting the drift time vs m/z space to CCS/z vs m/z space, and (3) transforming All Ions IM/MS mobility aligned fragmentation data to a standard LC-MS DDA data file format. These new data file conversions are demonstrated with corresponding lipidomics and proteomics workflows that leverage existing LC-MS data analysis software to highlight the benefits of the data transformations.

6.
Proteomes ; 12(2)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38651371

RESUMEN

Xanthan, a bacterial polysaccharide, is widespread in industrial applications, particularly as a food additive. However, little is known about the process of xanthan synthesis on the proteome level, even though Xanthomonas campestris is frequently used for xanthan fermentation. A label-free LC-MS/MS method was employed to study the protein changes during xanthan fermentation in minimal medium. According to the reference database, 2416 proteins were identified, representing 54.75 % of the proteome. The study examined changes in protein abundances concerning the growth phase and xanthan productivity. Throughout the experiment, changes in nitrate concentration appeared to affect the abundance of most proteins involved in nitrogen metabolism, except Gdh and GlnA. Proteins involved in sugar nucleotide metabolism stay unchanged across all growth phases. Apart from GumD, GumB, and GumC, the gum proteins showed no significant changes throughout the experiment. GumD, the first enzyme in the assembly of the xanthan-repeating unit, peaked during the early stationary phase but decreased during the late stationary phase. GumB and GumC, which are involved in exporting xanthan, increased significantly during the stationary phase. This study suggests that a potential bottleneck for xanthan productivity does not reside in the abundance of proteins directly involved in the synthesis pathways.

7.
J Proteome Res ; 23(5): 1768-1778, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38580319

RESUMEN

Biofluids contain molecules in circulation and from nearby organs that can be indicative of disease states. Characterizing the proteome of biofluids with DIA-MS is an emerging area of interest for biomarker discovery; yet, there is limited consensus on DIA-MS data analysis approaches for analyzing large numbers of biofluids. To evaluate various DIA-MS workflows, we collected urine from a clinically heterogeneous cohort of prostate cancer patients and acquired data in DDA and DIA scan modes. We then searched the DIA data against urine spectral libraries generated using common library generation approaches or a library-free method. We show that DIA-MS doubles the sample throughput compared to standard DDA-MS with minimal losses to peptide detection. We further demonstrate that using a sample-specific spectral library generated from individual urines maximizes peptide detection compared to a library-free approach, a pan-human library, or libraries generated from pooled, fractionated urines. Adding urine subproteomes, such as the urinary extracellular vesicular proteome, to the urine spectral library further improves the detection of prostate proteins in unfractionated urine. Altogether, we present an optimized DIA-MS workflow and provide several high-quality, comprehensive prostate cancer urine spectral libraries that can streamline future biomarker discovery studies of prostate cancer using DIA-MS.


Asunto(s)
Neoplasias de la Próstata , Proteoma , Proteómica , Humanos , Masculino , Neoplasias de la Próstata/orina , Neoplasias de la Próstata/diagnóstico , Proteoma/análisis , Proteómica/métodos , Próstata/metabolismo , Próstata/patología , Biblioteca de Péptidos , Biomarcadores de Tumor/orina , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo
8.
Methods Mol Biol ; 2758: 341-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549024

RESUMEN

The nematode Caenorhabditis elegans lends itself as an excellent model organism for peptidomics studies. Its ease of cultivation and quick generation time make it suitable for high-throughput studies. The nervous system, with its 302 neurons, is probably the best-known and studied endocrine tissue. Moreover, its neuropeptidergic signaling pathways display numerous similarities with those observed in other metazoans. Here, we describe two label-free approaches for neuropeptidomics in C. elegans: one for discovery purposes, and another for targeted quantification and comparisons of neuropeptide levels between different samples. Starting from a detailed peptide extraction procedure, we here outline the liquid chromatography tandem mass spectrometry (LC-MS/MS) setup and describe subsequent data analysis approaches.


Asunto(s)
Nematodos , Neuropéptidos , Animales , Caenorhabditis elegans/metabolismo , Cromatografía Liquida , Secuencia de Aminoácidos , Espectrometría de Masas en Tándem , Neuropéptidos/metabolismo , Nematodos/metabolismo
9.
Adv Exp Med Biol ; 3234: 31-40, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507198

RESUMEN

In the last two decades, biological mass spectrometry has become the gold standard for the identification of proteins in biological samples. The technological advancement of mass spectrometers and the development of methods for ionization, gas phase transfer, peptide fragmentation as well as for acquisition of high-resolution mass spectrometric data marked the success of the technique. This chapter introduces peptide-based mass spectrometry as a tool for the investigation of protein complexes. It provides an overview of the main steps for sample preparation starting from protein fractionation, reduction, alkylation and focus on the final step of protein digestion. The basic concepts of biological mass spectrometry as well as details about instrumental analysis and data acquisition are described. Finally, the most common methods for data analysis and sequence determination are summarized with an emphasis on its application to protein-protein complexes.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Espectrometría de Masas/métodos , Proteínas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
10.
Food Res Int ; 180: 114054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395548

RESUMEN

Peptidomics analysis was conducted using high-resolution tandem mass spectrometry (MS2) to determine the peptide profile of snail-derived mucin extract (SM). The study was also aimed to identify an indicator peptide and validate a quantification method for this peptide. The peptide profiling and identification were conducted using discovery-based peptidomics analysis employing data-dependent acquisition, whereas the selected peptides were verified and quantified using parallel reaction monitoring acquisition. Among the 16 identified peptides, the selected octapeptide (TEAPLNPK) was quantified via precursor ion ionization (m/z 435.2400), followed by quantification of the corresponding quantifier ion fragment (m/z 639.3824) using MS2. The quantification method was optimized and validated in terms of specificity, linearity, accuracy, precision, and limit of detection/quantification. The validated method accurately quantified the TEAPLNPK content in the SM as 7.5 ± 0.2 µg/g. Our study not only identifies an indicator peptide from SM but also introduces a novel validation method, involving precursor ion ionization and quantification of specific fragments. Our findings may serve as a comprehensive workflow for the monitoring, selection, and quantification of indicator peptides from diverse food resources.


Asunto(s)
Mucinas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo , Péptidos/química
11.
Food Res Int ; 178: 114008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309890

RESUMEN

Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.


Asunto(s)
Enfermedad Celíaca , Gliadina , Humanos , Gliadina/química , Triticum/química , Antocianinas , Fitomejoramiento , Péptidos/química , Espectrometría de Masas , Carotenoides
12.
Anal Chim Acta ; 1287: 342115, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182388

RESUMEN

Ceramides are sphingolipids with a structural function in the cell membrane and are involved in cell differentiation, proliferation and apoptosis. Recently, these chemical species have been pointed out as potential biomarkers in different diseases, due to their abnormal levels in blood. In this research, we present an overall strategy combining data-independent and dependent acquisitions (DIA and DDA, respectively) for identification, confirmation, and quantitative determination of ceramides in human serum. By application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in DIA mode we identified 49 ceramides including d18:1, d18:0, d18:2, d16:1, d17:1 and t18:0 species. Complementary, quantitative determination of ceramides was based on a high-throughput and fully automated method consisting of solid-phase extraction on-line coupled to LC-MS/MS in DDA to improve analytical features avoiding the errors associated to sample processing. Quantitation limits were at pg mL-1 level, the intra-day and between-days variability were below 20 and 25 %, respectively; and the accuracy, expressed as bias, was always within ±25 %. The proposed method was tested with the CORDIOPREV cohort in order to obtain a qualitative and quantitative profiling of ceramides in human serum. This characterization allowed identifying d18:1 ceramides as the most concentrated with 70.8% of total concentration followed by d18:2 and d18:0 with 13.0 % and 8.8 %, respectively. Less concentrated ceramides, d16:1, d17:1 and t18:0, reported a 7.1 % of the total content. Combination of DIA and DDA LC-MS/MS analysis enabled to profile qualitative and quantitatively ceramides in human serum.


Asunto(s)
Ceramidas , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Esfingolípidos , Apoptosis
13.
J Proteome Res ; 23(1): 117-129, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015820

RESUMEN

The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.


Asunto(s)
Plasma , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Flujo de Trabajo , Reproducibilidad de los Resultados , Plasma/química
14.
Environ Sci Technol ; 58(1): 75-89, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153287

RESUMEN

Exposure to the physicochemical agents that interact with nucleic acids (NA) may lead to modification of DNA and RNA (i.e., NA modifications), which have been associated with various diseases, including cancer. The emerging field of NA adductomics aims to identify both known and unknown NA modifications, some of which may also be associated with proteins. One of the main challenges for adductomics is the processing of massive and complex data generated by high-resolution tandem mass spectrometry (HR-MS/MS). To address this, we have developed a software called "FeatureHunter", which provides the automated extraction, annotation, and classification of different types of key NA modifications based on the MS and MS/MS spectra acquired by HR-MS/MS, using a user-defined feature list. The capability and effectiveness of FeatureHunter was demonstrated by analyzing various NA modifications induced by formaldehyde or chlorambucil in mixtures of calf thymus DNA, yeast RNA and proteins, and by analyzing the NA modifications present in the pooled urines of smokers and nonsmokers. The incorporation of FeatureHunter into the NA adductomics workflow offers a powerful tool for the identification and classification of various types of NA modifications induced by reactive chemicals in complex biological samples, providing a valuable resource for studying the exposome.


Asunto(s)
Exposoma , Ácidos Nucleicos , Espectrometría de Masas en Tándem/métodos , Aductos de ADN , Flujo de Trabajo , Programas Informáticos , ARN
15.
Mass Spectrom (Tokyo) ; 12(1): A0138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090113

RESUMEN

Non-targeted metabolome analysis studies comprehensively acquire product ion spectra from the observed ions by the data-dependent acquisition (DDA) mode of tandem mass spectrometry (MS). A DDA dataset redundantly contains closely similar product ion spectra of metabolites commonly existing among the biological samples analyzed in a metabolome study. Moreover, a single DDA data file often includes two or more closely similar raw spectra obtained from an identical precursor ion. The redundancy of product ion spectra has been used to generate an averaged product ion spectrum from a set of similar product ion spectra recorded in a DDA dataset. The spectral averaging improved the accuracy of m/z values and signal-to-noise levels of product ion spectra. However, the origins of redundancy, variations among datasets, and these effects on the spectral averaging procedure needed to be better characterized. This study investigated the nature of the redundancy by comparing the averaging results of eight DDA datasets of non-targeted metabolomics studies. The comparison revealed a significant variation in redundancy among datasets. The DDA datasets obtained by the quadrupole (Q)-Orbitrap-MS datasets had more significant intrafile redundancy than that of the Q-time-of-flight-MS. For evaluating the similarity score between two production spectra, the optimal threshold level of the cosine-product method was approximately 0.8-0.9. Moreover, contamination of biological samples such as plasticizers was another origin of spectral redundancy. The results will be the basis for further development of methods for processing of product ion spectra data. Copyright © 2023 Fumio Matsuda. This is an open-access article distributed under the terms of Creative Commons Attribution Non-Commercial 4.0 International License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Please cite this article as: Mass Spectrom (Tokyo) 2023; 12(1): A0138.

17.
Anal Chim Acta ; 1274: 341573, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37455083

RESUMEN

Systematic selection of mobile phase and column chemistry type can be critical for achieving optimal chromatographic separation, high sensitivity, and low detection limits in liquid chromatography electrospray high resolution mass spectrometry (LC/MS). However, the selection process is challenging for non-targeted screening where the compounds of interest are not preselected nor available for method optimization. To provide general guidance, twenty different mobile phase compositions and four columns were compared for the analysis of 78 compounds with a wide range of physicochemical properties (logP range from -1.46 to 5.48), and analyte sensitivity was compared between methods. The pH, additive type, column, and organic modifier had significant effects on the analyte response factors, and acidic mobile phases (e.g. 0.1% formic acid) yielded highest sensitivity. In some cases, the effect was attributable to the difference in organic modifier content at the time of elution, depending on the mobile phase and column chemistry. Based on these findings, 0.1% formic acid, 0.1% ammonia and 5.0 mM ammonium fluoride were further evaluated for their performance in non-targeted LC/ESI/HRMS analysis of wastewater treatment plan influent and effluent, using a data dependent MS2 acquisition and two different data processing workflows (MS-DIAL, patRoon 2.1) to compare number of detected features and sensitivity. Both data-processing workflows indicated that 0.1% formic acid yielded the highest number of features in full scan spectrum (MS1), as well as the highest number of features that triggered fragmentation spectra (MS2) when dynamic exclusion was used.

18.
J Am Soc Mass Spectrom ; 34(8): 1621-1631, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37419493

RESUMEN

Optimization of mass spectrometric parameters for a data dependent acquisition (DDA) experiment is essential to increase the MS/MS coverage and hence increase metabolite identifications in untargeted metabolomics. We explored the influence of mass spectrometric parameters including mass resolution, radio frequency (RF) level, signal intensity threshold, number of MS/MS events, cycle time, collision energy, maximum ion injection time (MIT), dynamic exclusion, and automatic gain control (AGC) target value on metabolite annotations on an Exploris 480-Orbitrap mass spectrometer. Optimal annotation results were obtained by performing ten data dependent MS/MS scans with a mass isolation window of 2.0 m/z and a minimum signal intensity threshold of 1 × 104 at a mass resolution of 180,000 for MS and 30,000 for MS/MS, while maintaining the RF level at 70%. Furthermore, combining an AGC target value of 5 × 106 and MIT of 100 ms for MS and an AGC target value of 1 × 105 and an MIT of 50 ms for MS/MS scans provided an improved number of annotated metabolites. A 10 s exclusion duration and a two stepped collision energy were optimal for higher spectral quality. These findings confirm that MS parameters do influence metabolomics results, and propose strategies for increasing metabolite coverage in untargeted metabolomics. A limitation of this work is that our parameters were only optimized for one RPLC method on single matrix and may be different for other protocols. Additionally, no metabolites were identified at level 1 confidence. The results presented here are based on metabolite annotations and need to be validated with authentic standards.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Metabolómica/métodos
19.
J Proteome Res ; 22(8): 2629-2640, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37439223

RESUMEN

Thermal proteome profiling (TPP) provides a powerful approach to studying proteome-wide interactions of small therapeutic molecules and their target and off-target proteins, complementing phenotypic-based drug screens. Detecting differences in thermal stability due to target engagement requires high quantitative accuracy and consistent detection. Isobaric tandem mass tags (TMTs) are used to multiplex samples and increase quantification precision in TPP analysis by data-dependent acquisition (DDA). However, advances in data-independent acquisition (DIA) can provide higher sensitivity and protein coverage with reduced costs and sample preparation steps. Herein, we explored the performance of different DIA-based label-free quantification approaches compared to TMT-DDA for thermal shift quantitation. Acute myeloid leukemia cells were treated with losmapimod, a known inhibitor of MAPK14 (p38α). Label-free DIA approaches, and particularly the library-free mode in DIA-NN, were comparable of TMT-DDA in their ability to detect target engagement of losmapimod with MAPK14 and one of its downstream targets, MAPKAPK3. Using DIA for thermal shift quantitation is a cost-effective alternative to labeled quantitation in the TPP pipeline.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteoma , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos
20.
Metabolites ; 13(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37512484

RESUMEN

Liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS) is a frequently applied technique for suspect screening (SS) and non-target screening (NTS) in metabolomics and environmental toxicology. However, correctly identifying compounds based on SS or NTS approaches remains challenging, especially when using data-independent acquisition (DIA). This study assessed the performance of four HRMS-spectra identification tools to annotate in-house generated data-dependent acquisition (DDA) and DIA HRMS spectra of 32 pesticides, veterinary drugs, and their metabolites. The identification tools were challenged with a diversity of compounds, including isomeric compounds. The identification power was evaluated in solvent standards and spiked feed extract. In DDA spectra, the mass spectral library mzCloud provided the highest success rate, with 84% and 88% of the compounds correctly identified in the top three in solvent standard and spiked feed extract, respectively. The in silico tools MSfinder, CFM-ID, and Chemdistiller also performed well in DDA data, with identification success rates above 75% for both solvent standard and spiked feed extract. MSfinder provided the highest identification success rates using DIA spectra with 72% and 75% (solvent standard and spiked feed extract, respectively), and CFM-ID performed almost similarly in solvent standard and slightly less in spiked feed extract (72% and 63%). The identification success rates for Chemdistiller (66% and 38%) and mzCloud (66% and 31%) were lower, especially in spiked feed extract. The difference in success rates between DDA and DIA is most likely caused by the higher complexity of the DIA spectra, making direct spectral matching more complex. However, this study demonstrates that DIA spectra can be used for compound annotation in certain software tools, although the success rate is lower than for DDA spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA