Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biochem ; 175(1): 25-34, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37812399

RESUMEN

Akanes are fluorescent proteins that have several fluorescence maxima. In this report, Akane1 and Akane3 from Scleronephthya gracillima were selected, successfully overexpressed in Escherichia coli and purified by affinity chromatography. Fluorescence spectra of the recombinant Akanes matured in darkness, or ambient light were found to have several fluorescence peaks. SDS-PAGE analysis revealed that Akanes matured in ambient light have two fragments. MS/MS analysis of Akanes digested with trypsin showed that the cleavage site is the same as observed for the photoconvertible fluorescent protein Kaede. The differences between the calculated masses from the amino acid sequence of Akane1 and the measured masses of Akane1 fragments obtained under ambient light coincided with those of Kaede. In contrast, a mass difference between the measured N-terminal Akane3 fragment and the calculated mass indicated that Akane3 is modified in the N-terminal region. These results indicate that numerous peaks in the fluorescent spectra of Akanes partly arise from isoproteins of Akanes and photoconversion. Photoconversion of Akane1 caused a fluorescence change from green to red, which was also observed for Akane3; however, the fluorescent intensity decreased dramatically when compared with that of Akane3.


Asunto(s)
Luz , Espectrometría de Masas en Tándem , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Secuencia de Aminoácidos , Proteínas Fluorescentes Verdes/química
2.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36540698

RESUMEN

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

3.
Acta Pharm Sin B ; 12(3): 1447-1459, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35530148

RESUMEN

Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.

4.
Saudi J Biol Sci ; 29(4): 2573-2581, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35531186

RESUMEN

Porphyromonas gingivalis, the cause of periodontitis, is also linked to many systemic disorders due to its citrullination capability from a unique peptidyl arginine deiminase (PPAD). Protein citrullination is able to trigger an autoimmune response, increasing the severity of rheumatoid arthritis. The main objective of this study is to evaluate the inhibitory activity of Cratoxylym cochinchinense leaves extract towards the PPAD in vitro and in silico. Methanolic extract of Cratoxylum cochinchinense (CCM) was tested for total phenolic and flavonoid contents along with antioxidative assays. Inhibition of PPAD activities was conducted thereafter using recombinant PPAD in cell lysate. Phytocompounds postulated present in the CCM such as mangiferin, vismiaquinone A, δ-tocotrienol and α-tocotrienol and canophyllol were used as ligands in a simulated docking study against PPAD. Results obtained indicated high antioxidant potential in CCM while recording abundant phenolic (129.0 ± 2.5495 mg GA/g crude extract) and flavonoid (159.0 ± 2.1529 mg QE/g crude extract) contents. A dose-dependent inhibition of PPAD was observed when CCM was evaluated at various concentrations. CCM at 1 mg/mL exhibited citrulline concentration of 24.37 ± 3.25 mM which was 5 times lower than the negative control (114.23 ± 3.31 mM). Molecular docking simulation revealed that mangiferin and vismiaquinone A engaged in H-bonding and pi-pi interactions with important active site residues (Asp130, Arg152, Arg154 and Trp127) of PPAD and could be the potential phytochemicals that accounted for the inhibitory activities observed in the methanolic leaves extract. As such, CCM could be further explored for its therapeutic properties not only for periodontitis, but also for other systemic diseases like rheumatoid arthritis.

5.
Artículo en Inglés | MEDLINE | ID: mdl-35198968

RESUMEN

BACKGROUND: Gradual increase of multidrug resistant infections is a threat to the human race as MDR plasmids have acquired.>10 mdr and drug efflux genes to inactivate antibiotics. Plants secret anti-metabolites to retard growth of soil and water bacteria and are ideal source of antibiotics. PURPOSE: Purpose of the study is to discover an alternate phyto-drug from medicinal plants of India that selectively kills MDR bacteria. METHODS: MDR bacteria isolated from Ganga river water, milk, chicken meat and human hair for testing phyto-extracts. Eighty medicinal plants were searched and six phyto-extracts were selected having good antibacterial activities as demonstrated by agar-hole assays giving 15 â€‹mm or greater lysis zone. Phyto-extracts were made in ethanol or methanol (1:5 w/v) for overnight and were concentrated. Preparative TLC and HPLC were performed to purify phytochemical. MASS, NMR, FTIR methods were used for chemical analysis of CU1. In vitro RNA polymerase and DNA polymerase assays were performed for target identification. RESULTS: CU1 belongs to a saponin bromo-polyphenol compound with a large structure that purified on HPLC C18 column at 3min. CU1 is bacteriocidal but three times less active than rifampicin in Agar-hole assay. While in LB medium it shows greater than fifteen times poor inhibitor due to solubility problem. CU1 inhibited transcription from Escherichia coli as well as Mycobacterium tuberculosis RNA Polymerases. Gel shift assays demonstrated that CU1 interferes at the open promoter complex formation step. On the other hand CU1 did not inhibit DNA polymerase. CONCLUSION: Phyto-chemicals from Cassia fistula bark are abundant, less toxic, target specific and may be a safer low cost drug against MDR bacterial diseases.

6.
Comput Struct Biotechnol J ; 20: 218-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35024094

RESUMEN

Cell-free protein synthesis (CFPS) reactions have grown in popularity with particular interest in applications such as gene construct prototyping, biosensor technologies and the production of proteins with novel chemistry. Work has frequently focussed on optimising CFPS protocols for improving protein yield, reducing cost, or developing streamlined production protocols. Here we describe a statistical Design of Experiments analysis of 20 components of a popular CFPS reaction buffer. We simultaneously identify factors and factor interactions that impact on protein yield, rate of reaction, lag time and reaction longevity. This systematic experimental approach enables the creation of a statistical model capturing multiple behaviours of CFPS reactions in response to components and their interactions. We show that a novel reaction buffer outperforms the reference reaction by 400% and importantly reduces failures in CFPS across batches of cell lysates, strains of E. coli, and in the synthesis of different proteins. Detailed and quantitative understanding of how reaction components affect kinetic responses and robustness is imperative for future deployment of cell-free technologies.

7.
Saudi J Biol Sci ; 29(1): 550-563, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35002451

RESUMEN

The rise of antibiotic resistance has increased the need for alternative ways of preventing and treating enteropathogenic bacterial infection. Various probiotic bacteria have been used in animal and human. However, Saccharomyces boulardii is the only yeast currently used in humans as probiotic. There is scarce research conducted on yeast species commonly found in kefir despite its claimed potential preventative and curative effects. This work focused on adhesion properties, and antibacterial metabolites produced by Kluyveromyces lactis and Saccharomyces unisporus isolated from traditional kefir grains compared to Saccharomyces boulardii strains. Adhesion and sedimentation assay, slide agglutination, microscopy and turbidimetry assay were used to analyze adhesion of Salmonella Arizonae and Salmonella Typhimurium onto yeast cells. Salmonella growth inhibition due to the antimicrobial metabolites produced by yeasts in killer toxin medium was analyzed by slab on the lawn, turbidimetry, tube dilution and solid agar plating assays. Alcohol and antimicrobial proteins production by yeasts in killer toxin medium were analyzed using gas chromatography and shotgun proteomics, respectively. Salmonella adhered onto viable and non-viable yeast isolates cell wall. Adhesion was visualized using scanning electron microscope. Yeasts-fermented killer toxin medium showed Salmonella growth inhibition. The highest alcohol concentration detected was 1.55%, and proteins with known antimicrobial properties including cathelicidin, xanthine dehydrogenase, mucin-1, lactadherin, lactoperoxidase, serum amyloid A protein and lactotransferrin were detected in yeasts fermented killer medium. These proteins are suggested to be responsible for the observed growth inhibition effect of yeasts-fermented killer toxin medium. Kluyveromyces lactis and Saccharomyces unisporus have anti-salmonella effect comparable to Saccharomyces boulardii strains, and therefore have potential to control Salmonella infection.

8.
J Mass Spectrom Adv Clin Lab ; 20: 1-10, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34820666

RESUMEN

Inborn errors of propionate, cobalamin and methionine metabolism are targets for Newborn Screening (NBS) in most programs world-wide, and are primarily screened by analyzing for propionyl carnitine (C3) and methionine in dried blood spot (DBS) cards using tandem mass spectrometry (MS/MS). Single-tier NBS approaches using C3 and methionine alone lack specificity, which can lead to an increased false-positive rate if conservative cut-offs are applied to minimize the risk of missing cases. Implementation of liquid chromatography tandem mass spectrometry (LC-MS/MS) second-tier testing for 2-methylcitric acid (MCA), methylmalonic acid (MMA), and homocysteine (HCY) from the same DBS card can improve disease screening performance by reducing the false-positive rate and eliminating the need for repeat specimen collection. However, DBS analysis of MCA, MMA, and HCY by LC-MS/MS is challenging due to limited specimen size and analyte characteristics leading to a combination of low MS/MS sensitivity and poor reverse-phase chromatographic retention. Sufficient MS response and analytical performance can be achieved for MCA by amidation using DAABD-AE and by butylation for MMA and HCY. Herein we describe the validation of a second-tier dual derivatization LC-MS/MS approach to detect elevated MCA, MMA, and HCY in DBS cards for NBS. Clinical utility was demonstrated by retrospective analysis of specimens, an interlaboratory method comparison, and assessment of external proficiency samples. Imprecision was <10.8% CV, with analyte recoveries between 90.2 and 109.4%. Workflows and analytical performance characteristics of this second-tier LC-MS/MS approach are amenable to implementation in the NBS laboratory.

9.
J Mass Spectrom Adv Clin Lab ; 21: 10-18, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34820672

RESUMEN

INTRODUCTION: Ravulizumab (RAVUL) is a new complement inhibitor, with a difference of 4 amino acids in the heavy chain from a predecessor compound, eculizumab (ECUL). OBJECTIVES: First, to utilize mass spectrometry (MS) to characterize RAVUL and verify differences from its predecessor and, second, to validate and implement a lab developed test (LDT) for RAVUL that will allow for quantitative therapeutic monitoring. METHODS: A time-of-flight mass spectrometer (TOF-MS) was used to characterize and differentiate the molecular weight differences between RAVUL and ECUL by both digest and reduction experiments. In parallel, an LDT for RAVUL was validated and implemented utilizing IgG4 enrichment with light chain detection and quantitation on a high throughput orbitrap MS platform. RESULTS: The TOF-MS platform allowed for the mass difference between RAVUL and ECUL to be verified along with providing a proof of concept for a new intact protein quantitation software. An LDT on an orbitrap MS was validated and implemented using intact light chain quantitation, with the limitation that it cannot differentiate between ECUL and RAVUL. The LDT has an analytical measuring range from 5 to 600 mcg/mL, inter-assay imprecision of ≤13% CV (n = 13) and accuracy with <4% error from expected values (n = 20). CONCLUSION: The TOF-MS is a versatile development platform that can be used to characterize and verify the molecular weight differences between the ECUL and RAVUL heavy chains. Routine laboratory testing for RAVUL was viable using an orbitrap-MS to quantitate using the mass of the intact light chain. These two platforms, combined, provide incomparable value in development of LDTs for the clinical laboratory.

10.
Acta Pharm Sin B ; 11(9): 2880-2899, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589402

RESUMEN

Aberrant activation of NLRP3 inflammasome in colonic macrophages strongly associates with the occurrence and progression of ulcerative colitis. Although targeting NLRP3 inflammasome has been considered to be a potential therapy, the underlying mechanism through which pathway the intestinal inflammation is modulated remains controversial. By focusing on the flavonoid lonicerin, one of the most abundant constituents existed in a long historical anti-inflammatory and anti-infectious herb Lonicera japonica Thunb., here we report its therapeutic effect on intestinal inflammation by binding directly to enhancer of zeste homolog 2 (EZH2) histone methyltransferase. EZH2-mediated modification of H3K27me3 promotes the expression of autophagy-related protein 5, which in turn leads to enhanced autophagy and accelerates autolysosome-mediated NLRP3 degradation. Mutations of EZH2 residues (His129 and Arg685) indicated by the dynamic simulation study have found to greatly diminish the protective effect of lonicerin. More importantly, in vivo studies verify that lonicerin dose-dependently disrupts the NLRP3-ASC-pro-caspase-1 complex assembly and alleviates colitis, which is compromised by administration of EZH2 overexpression plasmid. Thus, these findings together put forth the stage for further considering lonicerin as an anti-inflammatory epigenetic agent and suggesting EZH2/ATG5/NLRP3 axis may serve as a novel strategy to prevent ulcerative colitis as well as other inflammatory diseases.

11.
Matrix Biol Plus ; 12: 100081, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34505054

RESUMEN

Syndecans are membrane proteoglycans regulating extracellular matrix assembly, cell adhesion and signaling. Their ectodomains can be shed from the cell surface, and act as paracrine and autocrine effectors or as competitors of full-length syndecans. We report the first biophysical characterization of the recombinant ectodomains of the four human syndecans using biophysical techniques, and show that they behave like flexible random-coil intrinsically disordered proteins, and adopt several conformation ensembles in solution. We have characterized their conformational landscapes using native mass spectrometry (MS) and ion-mobility MS, and demonstrated that the syndecan ectodomains explore the majority of their conformational landscape, from minor compact, globular-like, conformations to extended ones. We also report that the ectodomain of syndecan-4, corresponding to a natural isoform, is able to dimerize via a disulfide bond. We have generated a three-dimensional model of the C-terminus of this dimer, which supports the dimerization via a disulfide bond. Furthermore, we have mapped the NXIP adhesion motif of syndecans and their sequences involved in the formation of ternary complexes with integrins and growth factor receptors on the major conformations of their ectodomains, and shown that these sequences are not accessible in all the conformations, suggesting that only some of them are biologically active. Lastly, although the syndecan ectodomains have a far lower number of amino acid residues than their membrane partners, their intrinsic disorder and flexibility allow them to adopt extended conformations, which have roughly the same size as the cell surface receptors (e.g., integrins and growth factor receptors) they bind to.

12.
J Mass Spectrom Adv Clin Lab ; 21: 31-41, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34518823

RESUMEN

More than a year after the COVID-19 pandemic was declared, the need still exists for accurate, rapid, inexpensive and non-invasive diagnostic methods that yield high specificity and sensitivity towards the current and newly emerging SARS-CoV-2 strains. Compared to the nasopharyngeal swabs, several studies have established saliva as a more amenable specimen type for early detection of SARS-CoV-2. Considering the limitations and high demand for COVID-19 testing, we employed MALDI-ToF mass spectrometry in the analysis of 60 gargle samples from human donors and compared the resultant spectra against COVID-19 status. Several standards, including isolated human serum immunoglobulins, and controls, such as pre-COVID-19 saliva and heat inactivated SARS-CoV-2 virus, were simultaneously analyzed to provide a relative view of the saliva and viral proteome as they would appear in this workflow. Five potential biomarker peaks were established that demonstrated high concordance with COVID-19 positive individuals. Overall, the agreement of these results with RT-qPCR testing on nasopharyngeal swabs was ≥90% for the studied cohort, which consisted of young and largely asymptomatic student athletes. From a clinical standpoint, the results from this pilot study suggest that MALDI-ToF could be used to develop a relatively rapid and inexpensive COVID-19 assay.

13.
Comput Struct Biotechnol J ; 19: 2950-2959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136094

RESUMEN

For the whole GFP family, a few cases, when a single mutation in the chromophore environment strongly inhibits maturation, were described. Here we study EYFP-F165G - a variant of the enhanced yellow fluorescent protein - obtained by a single F165G replacement, and demonstrated multiple fluorescent states represented by the minor emission peaks in blue and yellow ranges (~470 and ~530 nm), and the major peak at ~330 nm. The latter has been assigned to tryptophan fluorescence, quenched due to excitation energy transfer to the mature chromophore in the parental EYFP protein. EYFP-F165G crystal structure revealed two general independent routes of post-translational chemistry, resulting in two main states of the polypeptide chain with the intact chromophore forming triad (~85%) and mature chromophore (~15%). Our experiments thus highlighted important stereochemical role of the 165th position strongly affecting spectral characteristics of the protein. On the basis of the determined EYFP-F165G three-dimensional structure, new variants with ~ 2-fold improved brightness were engineered.

14.
Acta Pharm Sin B ; 11(3): 599-608, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777670

RESUMEN

Redox-altered plasticity refers to redox-dependent reversible changes in synaptic plasticity via altering functions of key proteins, such as N-methyl-d-aspartate receptor (NMDAR). Age-related cognitive disorders includes Alzheimer's disease (AD), vascular dementia (VD), and age-associated memory impairment (AAMI). Based on the critical role of NMDAR-dependent long-term potentiation (LTP) in memory, the increase of reactive oxygen species in cognitive disorders, and the sensitivity of NMDAR to the redox status, converging lines have suggested the redox-altered NMDAR-dependent plasticity might underlie the synaptic dysfunctions associated with cognitive disorders. In this review, we summarize the involvement of redox-altered plasticity in cognitive disorders by presenting the available evidence. According to reports from our laboratory and other groups, this "redox-altered plasticity" is more similar to functional changes rather than organic injuries, and strategies targeting redox-altered plasticity using pharmacological agents might reverse synaptic dysfunctions and memory abnormalities in the early stage of cognitive disorders. Targeting redox modifications for NMDARs may serve as a novel therapeutic strategy for memory deficits.

15.
Acta Pharm Sin B ; 11(3): 750-762, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777680

RESUMEN

The protein tyrosine phosphatase Src homology phosphotyrosyl phosphatase 2 (SHP2) is implicated in various cancers, and targeting SHP2 has become a promising therapeutic approach. We herein described a robust cross-validation high-throughput screening protocol that combined the fluorescence-based enzyme assay and the conformation-dependent thermal shift assay for the discovery of SHP2 inhibitors. The established method can effectively exclude the false positive SHP2 inhibitors with fluorescence interference and was also successfully employed to identify new protein tyrosine phosphatase domain of SHP2 (SHP2-PTP) and allosteric inhibitors. Of note, this protocol showed potential for identifying SHP2 inhibitors against cancer-associated SHP2 mutation SHP2-E76A. After initial screening of our in-house compound library (∼2300 compounds), we identified 4 new SHP2-PTP inhibitors (0.17% hit rate) and 28 novel allosteric SHP2 inhibitors (1.22% hit rate), of which SYK-85 and WS-635 effectively inhibited SHP2-PTP (SYK-85: IC50 = 0.32 µmol/L; WS-635: IC50 = 4.13 µmol/L) and thus represent novel scaffolds for designing new SHP2-PTP inhibitors. TK-147, an allosteric inhibitor, inhibited SHP2 potently (IC50 = 0.25 µmol/L). In structure, TK-147 could be regarded as a bioisostere of the well characterized SHP2 inhibitor SHP-099, highlighting the essential structural elements for allosteric inhibition of SHP2. The principle underlying the cross-validation protocol is potentially feasible to identify allosteric inhibitors or those inactivating mutants of other proteins.

16.
eNeurologicalSci ; 22: 100301, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33319079

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are genetically, pathologically and clinically-related progressive neurodegenerative diseases. Thus far, several SQSTM1 variations have been identified in patients with ALS and FTD. However, it remains unclear how SQSTM1 variations lead to neurodegeneration. To address this issue, we investigated the effects of ectopic expression of SQSTM1 variants, which were originally identified in Japanese and Chinese sporadic ALS patients, on the cellular viability, their intracellular distributions and the autophagic activity in cultured cells. Expression of SQSTM1 variants in PC12 cells exerted no observable effects on viabilities under both normal and oxidative-stressed conditions. Further, although expression of SQSTM1 variants in PC12 cells and Sqstm1-deficient mouse embryonic fibroblasts resulted in the formation of numerous granular SQSTM1-positive structures, called SQSTM1-bodies, their intracellular distributions were indistinguishable from those of wild-type SQSTM1. Nonetheless, quantitative colocalization analysis of SQSTM1-bodies with MAP1LC3 demonstrated that among ALS-linked SQSTM1 variants, L341V variant showed the significantly lower level of colocalization. However, there were no consistent effects on the autophagic activities among the variants examined. These results suggest that although some ALS-linked SQSTM1 variations have a discernible effect on the intracellular distribution of SQSTM1-bodies, the impacts of other variations on the cellular homeostasis are rather limited at least under transiently-expressed conditions.

17.
MethodsX ; 7: 101055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995308

RESUMEN

Evidence of the involvement of epigenetics in pathologies such as cancer, diabetes, and neurodegeneration has increased global interest in epigenetic modifications. For nearly thirty years, it has been known that cancer cells exhibit abnormal DNA methylation patterns. In contrast, the large-scale analysis of histone post-translational modifications (hPTMs) has lagged behind because classically, histone modification analysis has relied on site specific antibody-based techniques. Mass spectrometry (MS) is a technique that holds the promise to picture the histone code comprehensively in a single experiment. Therefore, we developed an MS-based method that is capable of tracking all possible hPTMs in an untargeted approach. In this way, trends in single and combinatorial hPTMs can be reported and enable prediction of the epigenetic toxicity of compounds. Moreover, this method is based on the use of human cells to provide preliminary data, thereby omitting the need to sacrifice laboratory animals. Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort. Still, this novel toxicoepigenetic assay and the data it generates holds great potential for, among others, pharmaceutical industry, food science, clinical diagnostics and, environmental toxicity screening. •There is a growing interest in epigenetic modifications, and more specifically in histone post-translational modifications (hPTMs).•We describe an MS-based workflow that is capable of tracking all possible hPTMs in an untargeted approach that makes use of human cells.•Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort.

18.
Comput Struct Biotechnol J ; 18: 2132-2144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913582

RESUMEN

While the functions of the recently discovered cytoglobin, ubiquitously expressed in vertebrate tissues, remain uncertain, Antarctic fish provide unparalleled models to study novel protein traits that may arise from cold adaptation. We report here the spectral, ligand-binding and enzymatic properties (peroxynitrite isomerization, nitrite-reductase activity) of cytoglobin-1 from two Antarctic fish, Chaenocephalus aceratus and Dissostichus mawsoni, and present the crystal structure of D. mawsoni cytoglobin-1. The Antarctic cytoglobins-1 display high O2 affinity, scarcely compatible with an O2-supply role, a slow rate constant for nitrite-reductase activity, and do not catalyze peroxynitrite isomerization. Compared with mesophilic orthologues, the cold-adapted cytoglobins favor binding of exogenous ligands to the hexa-coordinated bis-histidyl species, a trait related to their higher rate constant for distal-His/heme-Fe dissociation relative to human cytoglobin. At the light of a remarkable 3D-structure conservation, the observed differences in ligand-binding kinetics may reflect Antarctic fish cytoglobin-1 specific features in the dynamics of the heme distal region and of protein matrix cavities, suggesting adaptation to functional requirements posed by the cold environment. Taken together, the biochemical and biophysical data presented suggest that in Antarctic fish, as in humans, cytoglobin-1 unlikely plays a role in O2 transport, rather it may be involved in processes such as NO detoxification.

19.
Vet Anim Sci ; 9: 100095, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32734105

RESUMEN

Vitamin K epoxide reductase (VKOR) is a target enzyme for anticoagulants, such as warfarin, that are used as medicines or rodenticides. Assessing VKOR activity is required to ensure the proper usage of these drugs. Dithiothreitol (DTT) is a typical disulfide reductant that is used as a substrate for in vitro VKOR assays. However, DTT is considered problematic because of its side effects. Tris(3-hydroxypropyl)phosphine (THP) has been found to be a reliable alternative to DTT, as shown by kinetic analyses of the VKOR with them. THP showed significantly lower V max and Km values than those of DTT; however, there was no significant difference in their V max/Km and IC50 for warfarin.

20.
Acta Pharm Sin B ; 10(4): 582-602, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32322464

RESUMEN

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into glycerol and fatty acids. It links the endocannabinoid and eicosanoid systems together by degradation of the abundant endocannabinoid 2-arachidaoylglycerol into arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. MAGL inhibitors have been considered as important agents in many therapeutic fields, including anti-nociceptive, anxiolytic, anti-inflammatory, and even anti-cancer. Currently, ABX-1431, a first-in-class inhibitor of MAGL, is entering clinical phase 2 studies for neurological disorders and other diseases. This review summarizes the diverse (patho)physiological roles of MAGL and will provide an overview on the development of MAGL inhibitors. Although a large number of MAGL inhibitors have been reported, novel inhibitors are still required, particularly reversible ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA