Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Mater Today Bio ; 28: 101218, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221206

RESUMEN

Traumatic spinal cord injury (SCI) always leads to severe neurological deficits and permanent damage. Neuroinflammation is a vital process of SCI and have become a promising target for SCI treatment. However, the neuroinflammation-targeted therapy would hinder the functional recovery of spinal cord and lead to the treatment failure. Herein, a biomimic anti-neuroinflammatory nanoplatform (DHCNPs) was developed for active neutrophil extracellular traps (NETs) targeting and SCI treatment. The curcumin-loaded liposome with the anti-inflammatory property acted as the core of the DHCNPs. Platelet membrane and neutrophil membrane were fused to form the biomimic hybrid membrane of the DHCNPs for hijacking neutrophils and neutralizing the elevated neutrophil-related proinflammatory cytokines, respectively. DNAse I modification on the hybrid membrane could achieve NETs degradation, blood spinal cord barrier, and neuron repair. Further studies proved that the DHCNPs could reprogram the multifaceted neuroinflammation and reverse the SCI process via nuclear factor kappa-B (NF-κB) pathway. We believe that the current study provides a new perspective for neuroinflammation inhibition and may shed new light on the treatment of SCI.

2.
Biochem Biophys Res Commun ; 734: 150618, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39222575

RESUMEN

As pivotal markers of chromatin accessibility, DNase I hypersensitive sites (DHSs) intimately link to fundamental biological processes encompassing gene expression regulation and disease pathogenesis. Developing efficient and precise algorithms for DHSs identification holds paramount importance for unraveling genome functionality and elucidating disease mechanisms. This study innovatively presents iDHS-RGME, an Extremely Randomized Trees (Extra-Trees)-based algorithm that integrates unique feature extraction techniques for enhanced DHSs prediction. Specifically, iDHS-RGME utilizes two feature extraction approaches: Reverse Complementary Kmer (RCKmer) and Geary Spatial Autocorrelation (GSA), which comprehensively capture sequence attributes from diverse angles, bolstering information richness and accuracy. To address data imbalance, Borderline-SMOTE is employed, followed by Maximum Information Coefficient (MIC) for meticulous feature selection. Comparative evaluations underscored the superiority of the Extra-Trees classifier, which was subsequently adopted for model prediction. Through rigorous five-fold cross-validation, iDHS-RGME achieved remarkable accuracies of 94.71 % and 95.07 % on two independent datasets, outperforming previous models in terms of both precision and effectiveness.

3.
Methods ; 229: 125-132, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964595

RESUMEN

DNase I hypersensitive sites (DHSs) are chromatin regions highly sensitive to DNase I enzymes. Studying DHSs is crucial for understanding complex transcriptional regulation mechanisms and localizing cis-regulatory elements (CREs). Numerous studies have indicated that disease-related loci are often enriched in DHSs regions, underscoring the importance of identifying DHSs. Although wet experiments exist for DHSs identification, they are often labor-intensive. Therefore, there is a strong need to develop computational methods for this purpose. In this study, we used experimental data to construct a benchmark dataset. Seven feature extraction methods were employed to capture information about human DHSs. The F-score was applied to filter the features. By comparing the prediction performance of various classification algorithms through five-fold cross-validation, random forest was proposed to perform the final model construction. The model could produce an overall prediction accuracy of 0.859 with an AUC value of 0.837. We hope that this model can assist scholars conducting DNase research in identifying these sites.


Asunto(s)
Cromatina , Desoxirribonucleasa I , Genoma Humano , Humanos , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Biología Computacional/métodos , Algoritmos , Secuencias Reguladoras de Ácidos Nucleicos/genética
4.
Methods Mol Biol ; 2819: 39-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028501

RESUMEN

Nucleotide sequences recognized and bound by DNA-binding proteins (DBPs) are critical to controlling and maintaining gene expression, replication, chromosome segregation, cell division, and nucleoid structure in bacterial cells. Therefore, determination of the binding sequences of DBPs is important not only to study DBP recognition mechanisms but also to understand the fundamentals of cell homeostasis. While ChIP-seq analysis appears to be an effective way to determine DBP binding sites on the genome, the resolution is sometimes not sufficient to identify the sites precisely. Here we introduce a simple and effective method named Genome Footprinting with high-throughput sequencing (GeF-seq) to determine binding sites of DBPs with single base-pair resolution. GeF-seq detects binding sites of DBPs as sharp peaks and thus makes it possible to identify the recognition sequence in each "binding peak" more easily and accurately compared to the common ChIP-seq.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Emparejamiento Base , Unión Proteica , Huella de ADN/métodos
5.
Methods Mol Biol ; 2837: 159-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044083

RESUMEN

In recent years, serum hepatitis B virus (HBV) RNA has been identified as a promising noninvasive surrogate biomarker of intrahepatic covalently closed circular DNA (cccDNA), detection of which requires an invasive liver biopsy in patients with chronic HBV infection. It is impractical to detect intrahepatic cccDNA as a routine diagnosis for chronic hepatitis B (CHB) patients in clinical management. Here, we describe a detailed protocol for serum HBV RNA quantification, which can reflect the activity of intrahepatic cccDNA. The procedure includes three major steps: (1) Simultaneous isolation of HBV DNA and RNA from patients' serum, (2) DNase I digestion for removing HBV DNA contamination, and (3) HBV RNA quantification by one-step reverse transcription qPCR.


Asunto(s)
Virus de la Hepatitis B , ARN Viral , Humanos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , ARN Viral/sangre , ARN Viral/genética , ARN Viral/aislamiento & purificación , ADN Viral/sangre , ADN Viral/genética , Hepatitis B Crónica/virología , Hepatitis B Crónica/sangre , Hepatitis B Crónica/diagnóstico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , ADN Circular/sangre , ADN Circular/aislamiento & purificación , ADN Circular/genética , Carga Viral/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
6.
Plant J ; 119(4): 2063-2079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38859561

RESUMEN

Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.


Asunto(s)
Cromatina , Desoxirribonucleasa I , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Estrés Fisiológico , Oryza/genética , Oryza/fisiología , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/genética , Cromatina/genética , Cromatina/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas/genética , Mapeo Cromosómico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Sitio de Iniciación de la Transcripción , Sitios de Carácter Cuantitativo/genética
7.
Int Immunopharmacol ; 138: 112550, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38941671

RESUMEN

BACKGROUND: Sepsis is considered a high risk factor for new-onset atrial fibrillation (NOAF), with neutrophil extracellular traps (NETs) being implicated in the pathogenesis of numerous diseases. However, the precise role of NETs and NETs-related genes (NRGs) in the occurrence of NOAF in sepsis remains inadequately elucidated. The objective of this study was to identify hub NRGs connecting sepsis and AF, and to investigate the potential association between NETs and NOAF in sepsis. METHODS: The AF and sepsis microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis of shared pathophysiological mechanisms and NRGs implicated in both sepsis and AF using bioinformatics techniques. The CIBERSORT algorithm was employed to assess immune cell infiltration and identify common immune characteristics in these diseases. Additionally, a rat model of lipopolysaccharide (LPS)-induced sepsis was utilized to investigate the association between NETs, NRGs, and sepsis-induced AF. Western blotting, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were employed to assess the expression of NRGs, the formation of NETs, and the infiltration of neutrophils. Electrophysiological analysis and multi-electrode array techniques were utilized to examine the vulnerability and conduction heterogeneity of AF in septic rats. Furthermore, intervention was conducted in LPS-induced sepsis rats using DNase I, a pharmacological agent that specifically targets NETs, in order to assess its impact on neutrophil infiltration, NETs formation, hub NRGs protein expression, and AF vulnerability. RESULTS: A total of 61 commonly differentially expressed genes (DEGs) and four hub DE-NRGs were identified in the context of sepsis and AF. Functional enrichment analysis revealed that these DEGs were predominantly associated with processes related to inflammation and immunity. Immune infiltration analysis further demonstrated the presence of immune infiltrating cells, specifically neutrophil infiltration, in both sepsis and AF. Additionally, a positive correlation was observed between the relative expression of the four hub DE-NRGs and neutrophil infiltration. In rats with LPS-induced sepsis, we observed a notable upregulation in the expression of four DE-NRGs, the formation of NETs, and infiltration of neutrophils in atrial tissue. Through electrophysiological assessments, we identified heightened vulnerability to AF, reduced atrial surface conduction velocity, and increased conduction heterogeneity in LPS-induced sepsis rats. Notably, these detrimental effects can be partially ameliorated by treatment with DNase I. CONCLUSIONS: Through bioinformatics analysis and experimental validation, we identified four hub NRGs in sepsis and AF. Subsequent experiments indicated that the formation of NETs in the atria may contribute to the pathogenesis of NOAF in sepsis. These discoveries offer potential novel targets and insights for the prevention and treatment of NOAF in sepsis.


Asunto(s)
Fibrilación Atrial , Trampas Extracelulares , Lipopolisacáridos , Neutrófilos , Ratas Sprague-Dawley , Sepsis , Animales , Trampas Extracelulares/inmunología , Sepsis/inmunología , Sepsis/genética , Fibrilación Atrial/genética , Fibrilación Atrial/inmunología , Fibrilación Atrial/inducido químicamente , Ratas , Masculino , Neutrófilos/inmunología , Humanos , Modelos Animales de Enfermedad , Desoxirribonucleasa I/metabolismo , Desoxirribonucleasa I/genética
8.
Front Microbiol ; 15: 1386017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751716

RESUMEN

Background: The commensal skin bacterium Cutibacterium acnes plays a role in the pathogenesis of acne vulgaris and also causes opportunistic infections of implanted medical devices due to its ability to form biofilms on biomaterial surfaces. Poly-ß-(1→6)-N-acetyl-D-glucosamine (PNAG) is an extracellular polysaccharide that mediates biofilm formation and biocide resistance in a wide range of bacterial pathogens. The objective of this study was to determine whether C. acnes produces PNAG, and whether PNAG contributes to C. acnes biofilm formation and biocide resistance in vitro. Methods: PNAG was detected on the surface of C. acnes cells by fluorescence confocal microscopy using the antigen-specific human IgG1 monoclonal antibody F598. PNAG was detected in C. acnes biofilms by measuring the ability of the PNAG-specific glycosidase dispersin B to inhibit biofilm formation and sensitize biofilms to biocide killing. Results: Monoclonal antibody F598 bound to the surface of C. acnes cells. Dispersin B inhibited attachment of C. acnes cells to polystyrene rods, inhibited biofilm formation by C. acnes in glass and polypropylene tubes, and sensitized C. acnes biofilms to killing by benzoyl peroxide and tetracycline. Conclusion: C. acnes produces PNAG, and PNAG contributes to C. acnes biofilm formation and biocide resistance in vitro. PNAG may play a role in C. acnes skin colonization, biocide resistance, and virulence in vivo.

9.
Int J Biol Macromol ; 267(Pt 2): 131514, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608986

RESUMEN

The cell nucleus serves as the pivotal command center of living cells, and delivering therapeutic agents directly into the nucleus can result in highly efficient anti-tumor eradication of cancer cells. However, nucleus-targeting drug delivery is very difficult due to the presence of numerous biological barriers. Here, three antitumor drugs (DNase I, ICG: indocyanine green, and THP: pirarubicin) were sequentially triggered protein self-assembly to produce a nucleus-targeting and programmed responsive multi-drugs delivery system (DIT). DIT consisted of uniform spherical particles with a size of 282 ± 7.7 nm. The acidic microenvironment of tumors and near-infrared light could successively trigger DIT for the programmed release of three drugs, enabling targeted delivery to the tumor. THP served as a nucleus-guiding molecule and a chemotherapy drug. Through THP-guided DIT, DNase I was successfully delivered to the nucleus of tumor cells and killed them by degrading their DNA. Tumor acidic microenvironment had the ability to induce DIT, leading to the aggregation of sufficient ICG in the tumor tissues. This provided an opportunity for the photothermal therapy of ICG. Hence, three drugs were cleverly combined using a simple method to achieve multi-drugs targeted delivery and highly effective combined anticancer therapy.


Asunto(s)
Antineoplásicos , Núcleo Celular , Desoxirribonucleasa I , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Núcleo Celular/metabolismo , Desoxirribonucleasa I/metabolismo , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Portadores de Fármacos/química , Verde de Indocianina/química , Microambiente Tumoral/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos
10.
Cytokine ; 176: 156537, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38325140

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is listed by the World Health Organization as one of the modern intractable diseases. High mobility histone box 1 (HMGB1), originally described as a non-histone nucleoprotein involved in transcriptional regulation, was later identified as a pro-inflammatory cytokine that may contribute to the pathogenesis of inflammatory diseases such as IBD. Neutrophil extracellular traps (NETs) play an important role in the pathophysiology of IBD The aim of this study was to investigate the role of HMGB1 in experimental colitis mice and its potential mechanisms of action. METHODS: We first constructed the experimental colitis mouse model. Intervention of mice by rhHMGB1 supplementation or HMGB1 inhibition. The pathological morphology of the colon was observed using HE staining. Apoptosis of colonic tissue intestinal epithelial cells was evaluated using Tunel assay. The expression of HMGB1, ZO-1 and occludin in colon tissue was detected by immunohistochemistry, ELISA and western-blot. We also assessed the effects of HMGB1 on colonic injury, NETs content, macrophage polarization and inflammatory cells in mice. The regulatory effect of HMGB1 inhibition on NETs was assessed by combining DNase I. RESULTS: Inhibition of HMGB1 significantly reduced the inflammatory model in experimental colitis mice, as evidenced by reduced body weight, increased colonic length, reduced DAI scores and apoptosis, reduced inflammatory response, and improved colonic histopathological morphology and intestinal mucosal barrier function. Meanwhile, inhibition of HMGB1 was able to reduce the expression of CD86, citH3 and MPO and increase the expression of CD206 in the colonic tissue of mice. In addition, DNase I intervention was also able to improve colonic inflammation in mice. And the best effect was observed when DNase I and inhibition of HMGB1 were intervened together. CONCLUSION: Inhibition of HMGB1 ameliorates IBD by mediating NETs and macrophage polarization.


Asunto(s)
Colitis , Trampas Extracelulares , Proteína HMGB1 , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Proteína HMGB1/metabolismo , Trampas Extracelulares/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Desoxirribonucleasa I , Ratones Endogámicos C57BL , Sulfato de Dextran
11.
Nano Converg ; 11(1): 6, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332364

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks. Recently, excessive production and accumulation of neutrophil extracellular traps (NETs) also known as NETosis have been identified to exacerbate inflammatory responses and induce further tissue damage in IBD. Such discovery invited many researchers to investigate NETs as a potential therapeutic target. DNase-I is a natural agent that can effectively destroy NETs and, therefore, potentially reduce NETs-induced inflammations even without the use of aggressive drugs. However, low stability and rapid clearance of DNase-I remain as major limitations for further therapeutic applications. In this research, polymeric nanozymes were fabricated to increase the delivery and therapeutic efficacy of DNase-I. DNase-I was immobilized on the surface of polymeric nanoparticles to maintain its enzymatic properties while extending its activity in the colon. Delivery of DNase-I using this platform allowed enhanced stability and prolonged activity of DNase-I with minimal toxicity. When administered to animal models of IBD, DNase-I nanozymes successfully alleviated various pathophysiological symptoms of IBD. More importantly, DNase-I nanozyme administration successfully attenuated neutrophil infiltration and NETosis in the colon compared to free DNase-I or mesalamine.

12.
J Cyst Fibros ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38402083

RESUMEN

BACKGROUND: Biofilm-associated pulmonary infections pose therapeutic challenges in cystic fibrosis patients, especially when involving multiple bacterial species. Enzymatic degradation of the biofilm matrix may offer a potential solution to enhance antibiotic efficacy. This study investigated the repurposing of DNase I, commonly used for its mucolytic activity in cystic fibrosis, to target extracellular DNA within biofilms, as well as potential synergies with alginate lyase and broad-spectrum antibiotics in dual-species biofilms of Pseudomonas aeruginosa and Staphylococcus aureus. METHODS: Dual-species biofilms were grown in artificial sputum medium using S. aureus and P. aeruginosa isolated by pairs from the same patients and exposed to various combinations of enzymes, meropenem, or tobramycin. Activity was assessed by measuring biofilm biomass and viable counts. Matrix degradation and decrease in bacterial load were visualized using confocal microscopy. Biofilm viscoelasticity was estimated by rheology. RESULTS: Nearly complete destruction of the biofilms was achieved only if combining the enzymatic cocktail with the two antibiotics, and if using supratherapeutic levels of DNase I and high concentrations of alginate lyase. Biofilms containing non-pigmented mucoid P. aeruginosa required higher antibiotic concentrations, despite low viscoelasticity. In contrast, for biofilms with pigmented mucoid P. aeruginosa, a correlation was observed between the efficacy of different treatments and the reduction they caused in elasticity and viscosity of the biofilm. CONCLUSIONS: In this complex, highly drug-tolerant biofilm model, enzymes prove useful adjuvants to enhance antibiotic activity. However, the necessity for high enzyme concentrations emphasizes the need for thorough concentration-response evaluations and safety assessments before considering clinical applications.

13.
ACS Appl Bio Mater ; 7(3): 1501-1512, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38418375

RESUMEN

The aim of this study was to explore the suitability of Tween-80 or DNase I adsorbed onto the surface of gentamicin-loaded solid lipid nanoparticles (SLNs) to disrupt Staphylococcus aureus biofilms in vitro. We hypothesized that surface-adsorbed DNase I or Tween-80 of SLNs will degrade the biofilm component, extracellular DNA (e-DNA), and extracellular matrix (ECM) of S. aureus biofilms. The SLNs loaded with drug (core) and surface-adsorbed disruptors (Tween-80 or DNase I) to deliver biofilm disruptors first at the site of action, which will help to break down the biofilm, and further drug release from the core will easily penetrate the biofilm and facilitate the killing of bacteria residing in S. aureus biofilms. The SLNs were synthesized by the double emulsion method; the size was 287.3 ± 7.4 nm for blank SLNs and 292.4 ± 2.36 nm for drug-loaded SLNs. The ζ-potential of blank SLNs was -25.6 ± 0.26 mV and that of drug-loaded SLNs was -13.16 ± 0.51 mV, respectively. The successful adsorption of DNase I or Tween-80 was confirmed by the activity of DNase I in blank surface-adsorbed SLNs and the change in the ζ-potential of SLNs after adsorbing DNase I or Tween-80. The surface morphology and size of the SLNs were further characterized using scanning electron microscopy. The encapsulation efficiency of the drug was 16.85 ± 0.84%. The compatibility of the drug with the excipient was confirmed by Fourier transform infrared spectroscopy and the degree of crystallinity was confirmed by X-ray diffraction (XRD) analysis. SLNs showed a sustained release of the drug up to 360 h. SLNs were easily taken up by A549 cells with minimal or no toxicity. The present study showed that Tween-80- or DNase I-adsorbed SLNs efficiently disrupt S. aureus biofilms and possess no or minimal toxicity against cells and red blood cells (RBCs).


Asunto(s)
Desoxirribonucleasas , Liposomas , Nanopartículas , Staphylococcus aureus , Polisorbatos/farmacología , Desoxirribonucleasa I , Biopelículas , ADN
14.
Odontology ; 112(3): 929-937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38280114

RESUMEN

The purpose of this study was to evaluate the antibacterial efficacy of using 2.5% NaOCl, 2% chlorhexidine (CHX), Irritrol, and chitosan-coated silver nanoparticles (AgCNPs) alone or in combination with deoxyribonuclease I (DNase I) and trypsin pre-enzyme applications in dentin samples contaminated with Enterococcus faecalis (E. faecalis) by CLSM. 144 dentin blocks with confirmed E. faecalis biofilm formation were divided randomly according to the irrigation protocol (n = 12): NaOCl, CHX, Irritrol, AgCNPs, trypsin before NaOCl, CHX, Irritrol, AgCNPs, and DNase I before NaOCl, CHX, Irritrol, AgCNPs. Dentin blocks were stained with the Live/Dead BacLight Bacterial Viability Kit and viewed with CLSM after irrigation applications. The percentage of dead and viable bacteria was calculated using ImageJ software on CLSM images. At a significance level of p < 0.05, the obtained data were analyzed using one-way Anova and post-hoc Tukey tests. In comparison with NaOCl, CHX had a higher percentage of dead bacteria, both when no pre-enzyme was applied and when DNase I was applied as a pre-enzyme (p < 0.05). There was no difference in the percentage of dead bacteria between the irrigation solutions when trypsin was applied as a pre-enzyme (p > 0.05). AgCNPs showed a higher percentage of dead bacteria when trypsin was applied as a pre-enzyme compared to other irrigation solutions (p < 0.05), while the pre-enzyme application did not affect the percentage of dead bacteria in NaOCl, CHX, and Irritrol (p > 0.05). No irrigation protocol tested was able to eliminate the E. faecalis biofilm. While the application of trypsin as a pre-enzyme improved the antimicrobial effect of AgCNPs, it did not make any difference over other irrigation solutions.


Asunto(s)
Desoxirribonucleasa I , Enterococcus faecalis , Irrigantes del Conducto Radicular , Hipoclorito de Sodio , Tripsina , Desoxirribonucleasa I/farmacología , Irrigantes del Conducto Radicular/farmacología , Enterococcus faecalis/efectos de los fármacos , Tripsina/farmacología , Hipoclorito de Sodio/farmacología , Nanopartículas del Metal , Plata/farmacología , Clorhexidina/farmacología , Humanos , Quitosano/farmacología , Biopelículas/efectos de los fármacos , Técnicas In Vitro , Dentina/microbiología
15.
Plant J ; 117(2): 573-589, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897092

RESUMEN

The characterization of cis-regulatory DNA elements (CREs) is essential for deciphering the regulation of gene expression in eukaryotes. Although there have been endeavors to identify CREs in plants, the properties of CREs in polyploid genomes are still largely unknown. Here, we conducted the genome-wide identification of DNase I-hypersensitive sites (DHSs) in leaf and stem tissues of the auto-octoploid species Saccharum officinarum. We revealed that DHSs showed highly similar distributions in the genomes of these two S. officinarum tissues. Notably, we observed that approximately 74% of DHSs were located in distal intergenic regions, suggesting considerable differences in the abundance of distal CREs between S. officinarum and other plants. Leaf- and stem-dependent transcriptional regulatory networks were also developed by mining the binding motifs of transcription factors (TFs) from tissue-specific DHSs. Four TEOSINTE BRANCHED 1, CYCLOIDEA, and PCF1 (TCP) TFs (TCP2, TCP4, TCP7, and TCP14) and two ethylene-responsive factors (ERFs) (ERF109 and ERF03) showed strong causal connections with short binding distances from each other, pointing to their possible roles in the regulatory networks of leaf and stem development. Through functional validation in transiently transgenic protoplasts, we isolate a set of tissue-specific promoters. Overall, the DHS maps presented here offer a global view of the potential transcriptional regulatory elements in polyploid sugarcane and can be expected to serve as a valuable resource for both transcriptional network elucidation and genome editing in sugarcane breeding.


Asunto(s)
Cromatina , Saccharum , Succinatos , Saccharum/genética , Saccharum/metabolismo , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Fitomejoramiento , Genómica , Poliploidía
16.
Adv Mater ; 36(8): e2310320, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38035713

RESUMEN

Reinforced biofilm structures and dysfunctional neutrophils induced by excessive oxidative stress contribute to the refractoriness of diabetes-related biofilm infections (DRBIs). Herein, in contrast to traditional antibacterial therapies, an immune switchpoint-driven neutrophil immune function conversion strategy based on a deoxyribonuclease I loaded vanadium carbide MXene (DNase-I@V2 C) nanoregulator is proposed to treat DRBIs via biofilm lysis and redirecting neutrophil functions from NETosis to phagocytosis in diabetes. Owing to its intrinsic superoxide dismutase/catalase-like activities, DNase-I@V2 C effectively scavenges reactive oxygen species (ROS) in a high oxidative stress microenvironment to maintain the biological activity of DNase-I. By increasing the depth of biofilm penetration of DNase-I, DNase-I@V2 C thoroughly degrades extracellular DNA and neutrophil extracellular traps (NETs) in extracellular polymeric substances, thus breaking the physical barrier of biofilms. More importantly, as an immune switchpoint regulator, DNase-I@V2 C can skew neutrophil functions from NETosis toward phagocytosis by intercepting ROS-NE/MPO-PAD4 and activating ROS-PI3K-AKT-mTOR pathways in diabetic microenvironment, thereby eliminating biofilm infections. Biofilm lysis and synergistic neutrophil function conversion exert favorable therapeutic effects on biofilm infections in vitro and in vivo. This study serves as a proof-of-principle demonstration of effectively achieving DRBIs with high therapeutic efficacy by regulating immune switchpoint to reverse neutrophil functions.


Asunto(s)
Diabetes Mellitus , Neutrófilos , Humanos , Neutrófilos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Biopelículas , Diabetes Mellitus/metabolismo , Desoxirribonucleasas/metabolismo
17.
Elife ; 122023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091606

RESUMEN

Sex differences in plasma growth hormone (GH) profiles, pulsatile in males and persistent in females, regulate sex differences in hepatic STAT5 activation linked to sex differences in gene expression and liver disease susceptibility, but little is understood about the fundamental underlying, GH pattern-dependent regulatory mechanisms. Here, DNase-I hypersensitivity site (DHS) analysis of liver chromatin accessibility in a cohort of 18 individual male mice established that the endogenous male rhythm of plasma GH pulse-stimulated liver STAT5 activation induces dynamic, repeated cycles of chromatin opening and closing at several thousand liver DHS and comprises a novel mechanism conferring male bias to liver chromatin accessibility. Strikingly, a single physiological replacement dose of GH given to hypophysectomized male mice restored, within 30 min, liver STAT5 activity and chromatin accessibility at 83% of the dynamic, pituitary hormone-dependent male-biased DHS. Sex-dependent transcription factor binding patterns and chromatin state analysis identified key genomic and epigenetic features distinguishing this dynamic, STAT5-driven mechanism of male-biased chromatin opening from a second GH-dependent mechanism operative at static male-biased DHS, which are constitutively open in male liver. Dynamic but not static male-biased DHS adopt a bivalent-like epigenetic state in female liver, as do static female-biased DHS in male liver, albeit using distinct repressive histone marks in each sex, namely, H3K9me3 at male-biased DHS in female liver and H3K27me3 at female-biased DHS in male liver. Moreover, sex-biased H3K36me3 marks are uniquely enriched at static sex-biased DHS, which may serve to keep these sex-dependent hepatocyte enhancers free of H3K27me3 repressive marks and thus constitutively open. Pulsatile chromatin opening stimulated by endogenous, physiological hormone pulses is thus one of two distinct GH-determined mechanisms for establishing widespread sex differences in hepatic chromatin accessibility and epigenetic regulation, both closely linked to sex-biased gene transcription and the sexual dimorphism of liver function.


Asunto(s)
Cromatina , Hormona del Crecimiento , Humanos , Femenino , Ratones , Masculino , Animales , Hormona del Crecimiento/metabolismo , Cromatina/metabolismo , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo , Histonas/metabolismo , Epigénesis Genética , Hígado/metabolismo
18.
Curr Issues Mol Biol ; 45(12): 9887-9903, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38132463

RESUMEN

Anti-DNA antibodies are known to be classical serological hallmarks of systemic lupus erythematosus (SLE). In addition to high-affinity antibodies, the autoantibody pool also contains natural catalytic anti-DNA antibodies that recognize and hydrolyze DNA. However, the specificity of such antibodies is uncertain. In addition, DNA binding to a surface such as the cell membrane, can also affect its recognition by antibodies. Here, we analyzed the hydrolysis of short oligodeoxyribonucleotides (ODNs) immobilized on the microarray surface and in solution by catalytic anti-DNA antibodies from SLE patients. It has been shown that IgG antibodies from SLE patients hydrolyze ODNs more effectively both in solution and on the surface, compared to IgG from healthy individuals. The data obtained indicate a more efficient hydrolysis of ODNs in solution than immobilized ODNs on the surface. In addition, differences in the specificity of recognition and hydrolysis of certain ODNs by anti-DNA antibodies were revealed, indicating the formation of autoantibodies to specific DNA motifs in SLE. The data obtained expand our understanding of the role of anti-DNA antibodies in SLE. Differences in the recognition and hydrolysis of surface-tethered and dissolved ODNs need to be considered in DNA microarray applications.

19.
Chem Biol Interact ; 386: 110772, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898285

RESUMEN

Having continued our recent study on the synthesis and DNase I inhibition of several monosquaramides, two new chloro-substituted pyridine squaramates were synthesized and their structure was identified by X-ray. Their inhibitory properties towards deoxyribonuclease I (DNase I) and xanthine oxidase (XO) were evaluated in vitro. 3-(((6-Chloropyridin-3-yl)methyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione (compound 3a) inhibited DNase I with an IC50 value of 43.82 ± 6.51 µM, thus standing out as one of the most potent small organic DNase I inhibitors tested to date. No cytotoxicity to human tumor cell lines (HL-60, MDA-MB-231 and MCF-7) was observed for the tested compounds. In order to investigate the drug-likeness of the squaramates, the ADME profile and pharmacokinetic properties were evaluated. Molecular docking was performed to reveal the binding mode of the studied compounds on DNase I.


Asunto(s)
Desoxirribonucleasa I , Piridinas , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Línea Celular Tumoral , Piridinas/farmacología , Desoxirribonucleasa I/metabolismo , Estructura Molecular , Inhibidores Enzimáticos/química
20.
Front Immunol ; 14: 1257422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37849757

RESUMEN

Fever and hypothermia represent two opposite strategies for fighting systemic inflammation. Fever results in immune activation; hypothermia is associated with energy conservation. Systemic Inflammatory Response Syndrome (SIRS) remains a significant cause of mortality worldwide. SIRS can lead to a broad spectrum of clinical symptoms but importantly, patients can develop fever or hypothermia. During infection, polymorphonuclear cells (PMNs) such as neutrophils prevent pathogen dissemination through the formation of neutrophil extracellular traps (NETs) that ensnare and kill bacteria. However, when dysregulated, NETs also promote host tissue damage. Herein, we tested the hypothesis that temperature modulates NETs homeostasis in response to infection and inflammation. NETs formation was studied in response to infectious (Escherichia coli, Staphylococcus aureus) and sterile (mitochondria) agents. When compared to body temperature (37°C), NETs formation increased at 40°C; interestingly, the response was stunted at 35°C and 42°C. While CD16+ CD49d+ PMNs represent a small proportion of the neutrophil population, they formed ~45-85% of NETs irrespective of temperature. Temperature increased formyl peptide receptor 1 (FPR1) expression to a differential extent in CD16+ CD49d- vs. CD49d+ PMNSs, suggesting further complexity to neutrophil function in hypo/hyperthermic conditions. The capacity of NETs to induce Toll-like receptor 9 (TLR9)-mediated NF-κB activation was found to be temperature independent. Interestingly, NET degradation was enhanced at higher temperatures, which corresponded with greater plasma DNase activity in response to temperature increase. Collectively, our observations indicate that NETs formation and clearance are enhanced at 40°C whilst temperatures of 35°C and 42°C attenuate this response. Targeting PMN-driven immunity may represent new venues for intervention in pathological inflammation.


Asunto(s)
Trampas Extracelulares , Hipotermia , Humanos , Hipotermia/metabolismo , Hipotermia/patología , Neutrófilos , Inflamación/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA