Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mayo Clin Proc Innov Qual Outcomes ; 6(6): 536-551, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277502

RESUMEN

Chronic kidney disease (CKD) is one of the most frequent complications associated with type 2 diabetes mellitus (T2DM) and is also an independent risk factor for cardiovascular disease. The mineralocorticoid receptor (MR) is a nuclear receptor expressed in many tissue types, including kidney and heart. Aberrant and long-term activation of MR by aldosterone in patients with T2DM triggers detrimental effects (eg, inflammation and fibrosis) in these tissues. The suppression of aldosterone at the early stage of T2DM has been a therapeutic strategy for patients with T2DM-associated CKD. Although patients have been treated with renin-angiotensin system (RAS) blockers for decades, RAS blockers alone are not sufficient to prevent CKD progression. Steroidal MR antagonists (MRAs) have been used in combination with RAS blockers; however, undesired adverse effects have restricted their usage, prompting the development of nonsteroidal MRAs with better target specificity and safety profiles. Recently conducted studies, Finerenone in Reducing Kidney Failure and Disease Progression in Diabetic Kidney Disease (FIDELIO-DKD) and Finerenone in Reducing Cardiovascular Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD), have reported that finerenone, a nonsteroidal MRA, improves both renal and cardiovascular outcomes compared with placebo. In this article, we review the history of MRA development and discuss the possibility of its combination with other treatment options, such as sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and potassium binders for patients with T2DM-associated CKD.

2.
Regen Ther ; 21: 87-95, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35785044

RESUMEN

Diabetic nephropathy (DN) is a severe diabetic complication and podocyte damage is a hallmark of DN. The Nucleoporin 160 (NUP160) gene was demonstrated to regulate cell proliferation and apoptosis in mouse podocytes. This study explored the possible role and mechanisms of NUP160 in high glucose-triggered podocyte injury. A rat model of DN was established by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Podocytes were treated with 33 mM high glucose. The effects of the Nup160 on DN and its mechanisms were assessed using MTT, flow cytometry, Western blot, ELISA, RT-qPCR, and luciferase reporter assays. The in vivo effects of NUP160 were analyzed by HE, PAS, and MASSON staining assays. The NUP160 level was significantly upregulated in podocytes treated with 33 mM high glucose. Functionally, NUP160 knockdown alleviated high glucose-induced apoptosis and inflammation in podocytes. Mechanistically, miR-495-3p directly targeted NUP160, and lncRNA HCG18 upregulated NUP160 by sponging miR-495-3p by acting as a ceRNA. Additionally, NUP160 overexpression reversed the effects of HCG18 knockdown in high glucose treated-podocytes. The in vivo assays indicated that NUP160 knockdown alleviated the symptoms of DN rats. NUP160 knockdown plays a key role in preventing the progression of DN, suggesting that targeting NUP160 may be a potential therapeutic strategy for DN treatment.

3.
Saudi J Biol Sci ; 29(2): 1053-1060, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35197774

RESUMEN

Diabetes mellitus (DM) is one of the most serious threats in the 21th century throughout the human population that needs to be addressed cautiously. Nowadays, stem cell injection is considered among the most promising protocols for DM therapy; owing to its marked tissues and organs repair capability. Therefore, our 4 weeks study was undertaken to elucidate the probable beneficial effects of two types of adult mesenchymal stem cells (MSCs) on metabolism disturbance and some tissue function defects in diabetic rats. Animals were classified into 4 groups; the control group, the diabetic group, the diabetic group received a single dose of adipose tissue-derived MSCs and the diabetic group received a single dose of bone marrow-derived MSCs. Herein, both MSCs treated groups markedly reduced hyperglycemia resulting from diabetes induction via lowering serum glucose and rising insulin and C-peptide levels, compared to the diabetic group. Moreover, the increased lipid fractions levels were reverted back to near normal values as a consequence to MSCs injection compared to the diabetic untreated rats. Furthermore, both MSCs types were found to have hepato-renal protective effects indicated through the decreased serum levels of both liver and kidney functions markers in the treated diabetic rats. Taken together, our results highlighted the therapeutic benefits of both MSCs types in alleviating metabolic anomalies and hepato-renal diabetic complications.

4.
Acta Pharm Sin B ; 11(11): 3665-3677, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34900545

RESUMEN

Detailed knowledge on tissue-specific metabolic reprogramming in diabetic nephropathy (DN) is vital for more accurate understanding the molecular pathological signature and developing novel therapeutic strategies. In the present study, a spatial-resolved metabolomics approach based on air flow-assisted desorption electrospray ionization (AFADESI) and matrix-assisted laser desorption ionization (MALDI) integrated mass spectrometry imaging (MSI) was proposed to investigate tissue-specific metabolic alterations in the kidneys of high-fat diet-fed and streptozotocin (STZ)-treated DN rats and the therapeutic effect of astragaloside IV, a potential anti-diabetic drug, against DN. As a result, a wide range of functional metabolites including sugars, amino acids, nucleotides and their derivatives, fatty acids, phospholipids, sphingolipids, glycerides, carnitine and its derivatives, vitamins, peptides, and metal ions associated with DN were identified and their unique distribution patterns in the rat kidney were visualized with high chemical specificity and high spatial resolution. These region-specific metabolic disturbances were ameliorated by repeated oral administration of astragaloside IV (100 mg/kg) for 12 weeks. This study provided more comprehensive and detailed information about the tissue-specific metabolic reprogramming and molecular pathological signature in the kidney of diabetic rats. These findings highlighted the promising potential of AFADESI and MALDI integrated MSI based metabolomics approach for application in metabolic kidney diseases.

5.
Acta Pharm Sin B ; 11(9): 2749-2767, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589395

RESUMEN

Diabetic nephropathy (DN) has been recognized as a severe complication of diabetes mellitus and a dominant pathogeny of end-stage kidney disease, which causes serious health problems and great financial burden to human society worldwide. Conventional strategies, such as renin-angiotensin-aldosterone system blockade, blood glucose level control, and bodyweight reduction, may not achieve satisfactory outcomes in many clinical practices for DN management. Notably, due to the multi-target function, Chinese medicine possesses promising clinical benefits as primary or alternative therapies for DN treatment. Increasing studies have emphasized identifying bioactive compounds and molecular mechanisms of reno-protective effects of Chinese medicines. Signaling pathways involved in glucose/lipid metabolism regulation, antioxidation, anti-inflammation, anti-fibrosis, and podocyte protection have been identified as crucial mechanisms of action. Herein, we summarize the clinical efficacies of Chinese medicines and their bioactive components in treating and managing DN after reviewing the results demonstrated in clinical trials, systematic reviews, and meta-analyses, with a thorough discussion on the relative underlying mechanisms and molecular targets reported in animal and cellular experiments. We aim to provide comprehensive insights into the protective effects of Chinese medicines against DN.

6.
Acta Pharm Sin B ; 11(1): 127-142, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33532185

RESUMEN

Diabetic nephropathy (DN) is considered the primary causes of end-stage renal disease (ESRD) and is related to abnormal glycolipid metabolism, hemodynamic abnormalities, oxidative stress and chronic inflammation. Antagonism of vascular endothelial growth factor B (VEGF-B) could efficiently ameliorate DN by reducing renal lipotoxicity. However, this pharmacological strategy is far from satisfactory, as it ignores numerous pathogenic factors, including anomalous reactive oxygen species (ROS) generation and inflammatory responses. We found that the upregulation of VEGF-B and downregulation of interleukin-22 (IL-22) among DN patients were significantly associated with the progression of DN. Thus, we hypothesized that a combination of a VEGF-B antibody and IL-22 could protect against DN not only by regulating glycolipid metabolism but also by reducing the accumulation of inflammation and ROS. To meet these challenges, a novel anti-VEGFB/IL22 fusion protein was developed, and its therapeutic effects on DN were further studied. We found that the anti-VEGFB/IL22 fusion protein reduced renal lipid accumulation by inhibiting the expression of fatty acid transport proteins and ameliorated inflammatory responses via the inhibition of renal oxidative stress and mitochondrial dysfunction. Moreover, the fusion protein could also improve diabetic kidney disease by increasing insulin sensitivity. Collectively, our findings indicate that the bifunctional VEGF-B antibody and IL-22 fusion protein could improve the progression of DN, which highlighted a novel therapeutic approach to DN.

7.
Saudi J Biol Sci ; 28(1): 541-549, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33424337

RESUMEN

Type 2 diabetes mellitus (T2D) is a metabolic disorder characterized by inappropriate insulin function. Despite wide progress in genome studies, defects in gene expression for diabetes prognosis still incompletely identified. Prolonged hyperglycemia activates NF-κB, which is a main player in vascular dysfunctions of diabetes. Activated NF-κB, triggers expression of various genes that promote inflammation and cell adhesion process. Alteration of pro-inflammatory and profibrotic gene expression contribute to the irreversible functional and structural changes in the kidney resulting in diabetic nephropathy (DN). To identify the effect of some important NF-κB related genes on mediation of DN progression, we divided our candidate genes on the basis of their function exerted in bloodstream into three categories (Proinflammatory; NF-κB, IL-1B, IL-6, TNF-α and VEGF); (Profibrotic; FN, ICAM-1, VCAM-1) and (Proliferative; MAPK-1 and EGF). We analyzed their expression profile in leukocytes of patients and explored their correlation to diabetic kidney injury features. Our data revealed the overexpression of both proinflammatory and profibrotic genes in DN group when compared to T2D group and were associated positively with each other in DN group indicating their possible role in DN progression. In DN patients, increased expression of proinflammatory genes correlated positively with glycemic control and inflammatory markers indicating their role in DN progression. Our data revealed that the persistent activation NF-κB and its related genes observed in hyperglycemia might contribute to DN progression and might be a good diagnostic and therapeutic target for DN progression. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.

8.
J Pers Med ; 10(4)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096837

RESUMEN

Renal dysfunction is common in patients with diabetes mellitus (DM). Previous findings from a meta-analysis of GWAS indicated that the variation of RAB38/CTSC is highly associated with the urinary albumin-to-creatinine ratio (UACR) in European populations. In addition, RAB38 knockout rats showed an increase in urinary albumins. Although the prevalence of chronic kidney disease is high in Taiwan, the role of genetic variants in diabetic renal function is still unclear. In the current study, 275 diabetic nephropathy (DN) patients were recruited to perform a genetic association study. Our results indicated that rs1027027, rs302647, and rs302646 in RAB38 were significantly associated with urinary protein-to-creatinine ratio (UPCR) levels in DN patients. Importantly, after analysis stratified by gender, a significant genetic influence on UPCR levels was observed in the male population. The findings confirmed the roles of gender and variants of RAB38 in the risk of UPCR in Diabetic Nephropathy patients.

9.
Br J Nutr ; 120(10): 1149-1158, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401006

RESUMEN

Energy restriction (ER) has been widely studied as a novel intervention, and its ability to prolong life has been fully demonstrated. For example, ER can significantly extend the lifespans of model flies, worms, rodents and other mammals. The role of ER in renal protection has also been elucidated. In preclinical studies, adjusting total energy intake or consumption of specific nutrients has prophylactic or therapeutic effects on ageing-related kidney disease and acute and chronic kidney injury. Amino acid restriction has gradually attracted attention. ER mimetics have also been studied in depth. The protective mechanisms of ER and ER mimetics for renal injury include increasing AMP-activated protein kinase and sirtuin type 1 (Sirt1) levels and autophagy and reducing mammalian target of rapamycin, inflammation and oxidative stress. However, the renal protective effect of ER has mostly been investigated in rodent models, and the role of ER in patients cannot be determined due to the lack of large randomised controlled trials. To protect the kidney, the mechanism of ER must be thoroughly researched, and more accurate diet or drug interventions need to be identified.


Asunto(s)
Restricción Calórica , Enfermedades Renales/metabolismo , Riñón/metabolismo , Sirtuina 1/metabolismo , Envejecimiento , Animales , Autofagia , Dieta , Metabolismo Energético , Femenino , Humanos , Inflamación , Insulina/metabolismo , Masculino , Metformina/química , Modelos Animales , Estrés Oxidativo , Fósforo/metabolismo , Resveratrol/química , Sales (Química)/metabolismo , Sirolimus/química
10.
Br J Nutr ; 119(1): 22-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29208058

RESUMEN

Diabetic nephropathy (DN) is a major cause of chronic kidney disease. We aimed to investigate the effect of the low-protein diets (LPD) supplemented with ketoacids (LPD+KA) in KKAy mice, an early type 2 DN model. KKAy mice were treated with normal protein diet (NPD), LPD or LPD+KA from 12 to 24 weeks of age. A period of 12-week treatment with LPD significantly reduced albuminuria as compared with that observed after NPD treatment. Treatment with LPD+KA further reduced albuminuria as compared with that observed with LPD treatment alone. Moreover, LPD treatment reduced mesangial expansion, thickness of glomerular basement membrane and the severity of the podocyte foot process effacement in KKAy mice; these effects were more pronounced in KKAy mice treated with LPD+KA. Both LPD and LPD+KA treatments slightly reduced total body weight, but had no significant effect on kidney weight and blood glucose concentrations when compared with NPD-treated KKAy mice. LPD treatment slightly attenuated oxidative stress in kidneys as compared with that observed in NPD-treated KKAy mice; however, LPD+KA treatment remarkably ameliorated oxidative stress in diabetic kidneys as shown by decreased malondialdehyde concentrations, protein carbonylation, nitrotyrosine expression and increased superoxide dismutase expression. Nutritional therapy using LPD+KA confers additional renal benefits as compared with those of LPD treatment alone in early type 2 DN through inhibition of oxidative stress.


Asunto(s)
Nefropatías Diabéticas/dietoterapia , Dieta con Restricción de Proteínas , Cetoácidos/química , Estrés Oxidativo , Insuficiencia Renal Crónica/dietoterapia , Albuminuria/terapia , Animales , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Membrana Basal Glomerular/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Insuficiencia Renal Crónica/metabolismo
11.
Saudi J Biol Sci ; 24(4): 843-850, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28490956

RESUMEN

Diabetes mellitus is a major leading cause of end-stage renal failure, characterized by kidney inflammation and glomerular dysfunction, in worldwide. Kidney inflammation is associated to modifications in the expression levels of pro-inflammatory molecules, such as nuclear factor-κB (NFκB) and adhesion molecules, such as E-cadherin, leading to glomerular dysfunction. However, the relationships between these two processes in human diabetic nephropathy remain an open question. Since Psammomys obesus is an ideal animal model to study diabetes mellitus temporal evolution, we have used this model to study the correlation between kidney structural changes and modification on the expression levels of NFκB and E-cadherin over time. We have demonstrated that, after induction of diabetes metillus with a high energy diet (HED), P. obesus develops the characteristic symptoms of human disease. In detail, at the third month nuclear factor NFκB is expressed in the kidney of diabetic P. obesus and structural renal changes, such as mesangial expansion or interstitial fibrosis, are detectable; at 6 months, thickening of glomerular basement membrane, glomerular sclerosis, and tubular atrophy occurs; at 9 months, symptoms of the final stages of the disease, such as down expression of E-cadherin, happens. As a result of these observations we proposed that NFκB activation and E-cadherin down-expression are interlinked on diabetic kidney disease (DKD).

12.
Br J Nutr ; 116(7): 1222-1228, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27647263

RESUMEN

This study was carried out to assess the effects of Se supplementation on biomarkers of inflammation and oxidative stress in patients with diabetic nephropathy (DN). This randomised, double-blind, placebo-controlled clinical trial was conducted among sixty patients with DN. Patients were randomly divided into two groups to take either 200 µg/d Se supplements as Se yeast (n 30) or placebo (n 30) for 12 weeks. In unadjusted analyses, compared with the placebo, Se supplementation led to a significant reduction in high-sensitivity C-reactive protein (hs-CRP) (-1069·2 (sd 1752·2) v. -135·3 (sd 1258·9) ng/ml, P=0·02), matrix metalloproteinase-2 (MMP-2) (-612·3 (sd 679·6) v. +76·0 (sd 309·1) ng/ml, P<0·001) and plasma malondialdehyde (MDA) concentrations (-0·1 (sd 0·7) v. +0·4 (sd 0·9) µmol/l, P=0·01). In addition, a significant increase in plasma total antioxidant capacity (TAC) (+174·9 (sd 203·9) v. +15·8 (sd 382·2) mmol/l, P=0·04) was observed following supplementation with Se compared with the placebo. Subjects who received Se supplements experienced a borderline statistically significant decrease in serum protein carbonyl (PCO) levels (P=0·06) compared with the placebo. When we adjusted the analysis for baseline values of biochemical parameters, age and BMI, serum hs-CRP (P=0·14) and MDA levels (P=0·16) became non-significant, whereas plasma nitric oxide (NO) (P=0·04) and glutathione (GSH) (P<0·001) became statistically significant, and other findings did not change. Supplementation with Se had no significant effect on NO, transforming growth factor ß (TGF-ß), advanced glycation end products (AGE), PCO and GSH compared with the placebo. Overall, our study demonstrated that Se supplementation among DN patients had favourable effects on serum MMP-2, plasma NO, TAC and GSH, but did not affect hs-CRP, TGF-ß, AGE, PCO and MDA.


Asunto(s)
Biomarcadores/sangre , Nefropatías Diabéticas/sangre , Inflamación/sangre , Estrés Oxidativo/fisiología , Selenio/administración & dosificación , Adulto , Anciano , Anciano de 80 o más Años , Antioxidantes/análisis , Proteína C-Reactiva/análisis , Suplementos Dietéticos , Método Doble Ciego , Femenino , Glutatión/sangre , Humanos , Irán , Masculino , Malondialdehído/sangre , Metaloproteinasa 2 de la Matriz/sangre , Persona de Mediana Edad , Óxido Nítrico/sangre , Placebos , Estudios Prospectivos
13.
Acta Pharm Sin B ; 6(1): 20-5, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26904395

RESUMEN

Diabetes mellitus (DM), an endocrine disorder, will be one of the leading causes of death world-wide in about two decades. Cellular injuries and disorders of energy metabolism are two key factors in the pathogenesis of diabetes, which also become the important causes for the process of diabetic complications. AMPK is a key enzyme in maintaining metabolic homeostasis and has been implicated in the activation of autophagy in distinct tissues. An increasing number of researchers have confirmed that autophagy is a potential factor to affect or induce diabetes and its complications nowadays, which could remove cytotoxic proteins and dysfunctional organelles. This review will summarize the regulation of autophagy and AMPK in diabetes and its complications, and explore how AMPK stimulates autophagy in different diabetic syndromes. A deeper understanding of the regulation and activity of AMPK in autophagy would enhance its development as a promising therapeutic target for diabetes treatment.

14.
Autophagy ; 11(7): 1130-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039325

RESUMEN

The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN.


Asunto(s)
Autofagia , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Células Endoteliales/patología , Podocitos/patología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína 5 Relacionada con la Autofagia , Células Cultivadas , Nefropatías Diabéticas/fisiopatología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/ultraestructura , Eliminación de Gen , Tasa de Filtración Glomerular/efectos de los fármacos , Glucosa/farmacología , Integrasas/metabolismo , Células Mesangiales/efectos de los fármacos , Células Mesangiales/patología , Células Mesangiales/ultraestructura , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/metabolismo , Fenotipo , Podocitos/efectos de los fármacos , Podocitos/ultraestructura
15.
Meta Gene ; 2: 50-62, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25606389

RESUMEN

Many studies have accessed the association between eNOS-4b/a polymorphism and the risk of diabetic nephropathy (DN) among type 2 diabetic subjects. However, the results are conflicting and inconclusive. The aim of current meta-analysis was to more precisely estimate the relationship. Pubmed, Embase, the China National Knowledge Infrastructure and the Wanfang Database were searched for articles published up to May 26th, 2013 that addressed eNOS-4b/a polymorphism and the risk of DN among type 2 diabetic subjects. 18 studies were included in this meta-analysis. eNOS-4b/a polymorphisms were associated with an overall significantly increased risk of DN (allele model: OR = 1.44, 95% CI = 1.14-1.82; additive model: OR = 2.03, 95% CI = 1.14-3.62; dominant model: OR = 1.34, 95% CI = 1.07-1.68; recessive model: OR = 2.01, 95% CI = 1.12-3.61). Subgroup analysis revealed a significant association between the eNOS-4b/a polymorphism and DN in Asian population, especially in Chinese population, but not in non Asian populations. Our meta-analysis supported an association between the 4b/a polymorphism of eNOS gene and increased risk of DN in type 2 diabetes among Asians, especially in Chinese population.

16.
Toxicol Rep ; 1: 834-842, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-28962295

RESUMEN

The accumulation of advanced glycation end products (AGE) plays significant role in developing tubular hypertrophy during diabetic nephropathy (DN). Reactive oxygen species and nitric oxide (NO) are directly involved in the progression of DN. We have studied the effect of standardized Gymnemasylvestre organic extract (GE) on AGE induced cellular hypertrophy using rat renal tubular epithelial cells (NRK 52E). AGE (400 µg/ml) induced cytotoxicity to NRK 52E cells as determined by MTT assay at 0-72 h. We report cellular hypertrophy mediated cytotoxicity by AGE which was the result of significant reduction in the cellular nitric oxide and cGMP levels associated with increased lipid peroxidation and antioxidant depletion (P < 0.05). Upon treatment with GE the cell viability was increased with reduced cellular hypertrophy by 1.7 folds when compared to AGE treated group. GE could significantly increase NO by 1.9 folds and cGMP by 2.8 folds and inhibited GSH depletion by 50% during AGE induced toxicity. The antioxidant enzyme activity of catalase was increased by 50% while, glutathione peroxidase and superoxide dismutase enzyme activities were significantly increased by 42% and 67% with decreased lipid peroxidation (49%) upon GE treatment. Thus, GE attenuates AGE induced hypertrophic growth by inhibiting GSH depletion and partly through increased NO/cGMP signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA