Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
1.
Nonlinear Dyn ; 112(21): 19441-19462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219722

RESUMEN

There exist extensive studies on periodic and random perturbations of various smooth maps investigating their dynamics. Unlike smooth maps, non-smooth maps are yet to be studied extensively under a stochastic regime. This paper presents a stochastic piecewise-smooth map derived from a simple inductorless switching circuit. The stochasticity is introduced in parameter values. The distribution of the parameter values is bounded and randomly selected from uniform and triangular distributions and ranges between high and low bifurcation parameter values of the deterministic map. Due to this inherent stochasticity in parameter values, the time evolution of the state variable cannot be predicted at a specific time instant. We observe that the state variable exhibits completely ergodic behavior when the minimum value of the parameter is the same as the minimum bifurcation parameter of the deterministic system. However, the ensemble average of the state variable converges to a fixed value. The system demonstrates nonchaotic behavior for a particular range of parameter values but the deterministic map in that bifurcation range shows interplay between chaos and periodic orbits. The values of Lyapunov exponents decrease monotonically with increased asymmetry of the distribution from which the bifurcation parameter values are chosen. We determine the probability density function of the stochastic map and verify its invariance under initial conditions. The most noteworthy result is the disappearance of chaotic behavior when the lower range of the distribution is varied while maintaining a fixed upper threshold for a particular distribution, even though the deterministic map exhibits an array of periodic and chaotic behaviors within the range. As the period-incrementing cascade with chaotic inclusion only occurs in nonsmooth maps, this paper numerically shows the stochasticity of a piecewise-smooth map obtained from a practical system for the first time where randomness is introduced in the parameter space.

2.
Acta Biotheor ; 72(3): 11, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223402

RESUMEN

Using delay differential equations to study mathematical models of Parkinson's disease and Huntington's disease is important to show how important it is for synchronization between basal ganglia loops to work together. We used the delay circuit RLC (resistor, inductor, capacitor) model to show how the direct pathway and the indirect pathway in the basal ganglia excite and inhibit the motor cortex, respectively. A term has been added to the mathematical model without time delay in the case of the hyperdirect pathway. It is proposed to add a non-linear term to adjust the synchronization. We studied Hopf bifurcation conditions for the proposed models. The desynchronization of response times between the direct pathway and the indirect pathway leads to different symptoms of Parkinson's disease. Tremor appears when the response time in the indirect pathway increases at rest. The simulation confirmed that tremor occurs and the motor cortex is in an inhibited state. The direct pathway can increase the time delay in the dopaminergic pathway, which significantly increases the activity of the motor cortex. The hyperdirect pathway regulates the activity of the motor cortex. The simulation showed bradykinesia occurs when we switch from one movement to another that is less exciting for the motor cortex. A decrease of GABA in the striatum or delayed excitation of the substantia nigra from the subthalamus may be a major cause of Parkinson's disease. An increase in the response time delay in one of the pathways results in the chaotic movement characteristic of Huntington's disease.


Asunto(s)
Enfermedad de Huntington , Corteza Motora , Enfermedad de Parkinson , Enfermedad de Huntington/fisiopatología , Enfermedad de Huntington/metabolismo , Humanos , Enfermedad de Parkinson/fisiopatología , Corteza Motora/fisiopatología , Dinámicas no Lineales , Ganglios Basales/fisiopatología , Modelos Neurológicos , Modelos Teóricos , Simulación por Computador , Temblor/fisiopatología
3.
Small ; : e2403755, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246217

RESUMEN

Chaotic systems have aroused interest across various scientific disciplines such as physics, biology, chemistry, and meteorology. The deterministic but unpredictable nature of a chaotic system is an ideal feature for random number generation. Microelectromechanical systems (MEMS) are a promising technology that effectively harnesses chaos, offering advantages such as a compact footprint, scalability, and low power consumption. This paper presents a true random number generator (TRNG) based on a double-well MEMS resonator integrated with an actuator and position sensor. The potential energy landscape of the proposed MEMS resonator is actively tunable with a direct current voltage. Experimental demonstrations of tunable bistability and chaotic resonance are reported in this paper. A chaotic time sequence is generated through piezoresistive sensing of the position of the MEMS resonator once it is driven into the chaotic regime. Subsequently, the randomness of the bit sequence, achieved by applying the exclusive or function to a digital chaotic sequence and its delayed differential is confirmed to meet the National Institute of Standards and Technology specifications. Moreover, the throughput and energy efficiency of the proposed MEMS-based TRNG can be adjusted from 50 kb s-1 and 0.44 pJ per bit at a low energy barrier to 167 kb s-1 and 6.74 pJ per bit at a high energy barrier by changing the MEMS device's potential well. The tunability of the proposed double-well MEMS resonator not only offers continuous adjustments in the energy efficiency of TNRG but also unveils vast and diverse research opportunities in analog computing, encryption, and secure communications.

4.
Front Oncol ; 14: 1419599, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224803

RESUMEN

Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.

5.
Cancers (Basel) ; 16(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39272964

RESUMEN

Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.

6.
Sci Rep ; 14(1): 18015, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097610

RESUMEN

This interdisciplinary study critically analyzes current research, establishing a profound connection between sea water, sea ice, sea temperature, and surface temperature through a 4D hyperchaotic Caputo fractional differential equation. Emphasizing the collective impact on climate, focusing on challenges from anthropogenic global warming, the study scrutinizes theoretical aspects, including existence and uniqueness. Two sliding mode controllers manage chaos in this 4D fractional system, assessed amid uncertainties and disruptions. The global stability of these controlled systems is also confirmed, considering both commensurate and non-commensurate 4D fractional order. To demonstrate the intricate chaotic motion within the system, we employ the Lyapunov exponent and Poincare sections. Numerical simulations are conducted by using the predictor-corrector method. The effects of surface temperature on chaotic dynamics are discussed. The crucial role of sea ice reflection in climate stability is highlighted in two scenarios. Correlation graphs, comparing model and observational data using the predictor-corrector method, enhance the proposed 4D hyperchaotic model's credibility. Subsequently, numerical simulations validate theoretical assertions about the controllers' influence. These controllers indicate which variable significantly contributes to controlling the chaos.

7.
Health Inf Sci Syst ; 12(1): 16, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39185396

RESUMEN

Propose: Stress is a common problem globally. Prediction of stress in advance could help people take effective measures to manage stress before bad consequences occur. Considering the chaotic features of human psychological states, in this study, we integrate deep learning and chaos theory to address the stress prediction problem. Methods: Based on chaos theory, we embed one's seemingly disordered stress sequence into a high dimensional phase space so as to reveal the underlying dynamics and patterns of the stress system, and meanwhile are able to identify the stress predictable time range. We then conduct deep learning with a two-layer (dimension and temporal) attention mechanism to simulate the nonlinear state of the embedded stress sequence for stress prediction. Results: We validate the effectiveness of the proposed method on the public available Tesserae dataset. The experimental results show that the proposed method outperforms the pure deep learning method and Chaos method in both 2-label and 3-label stress prediction. Conclusion: Integrating deep learning and chaos theory for stress prediction is effective, and can improve the prediction accuracy over 2% and 8% more than those of the deep learning and the Chaos method respectively. Implications and further possible improvements are also discussed at the end of the paper.

8.
Biomimetics (Basel) ; 9(8)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39194480

RESUMEN

Feature selection (FS) is a significant dimensionality reduction technique in machine learning and data mining that is adept at managing high-dimensional data efficiently and enhancing model performance. Metaheuristic algorithms have become one of the most promising solutions in FS owing to their powerful search capabilities as well as their performance. In this paper, the novel improved binary walrus optimizer (WO) algorithm utilizing the golden sine strategy, elite opposition-based learning (EOBL), and population regeneration mechanism (BGEPWO) is proposed for FS. First, the population is initialized using an iterative chaotic map with infinite collapses (ICMIC) chaotic map to improve the diversity. Second, a safe signal is obtained by introducing an adaptive operator to enhance the stability of the WO and optimize the trade-off between exploration and exploitation of the algorithm. Third, BGEPWO innovatively designs a population regeneration mechanism to continuously eliminate hopeless individuals and generate new promising ones, which keeps the population moving toward the optimal solution and accelerates the convergence process. Fourth, EOBL is used to guide the escape behavior of the walrus to expand the search range. Finally, the golden sine strategy is utilized for perturbing the population in the late iteration to improve the algorithm's capacity to evade local optima. The BGEPWO algorithm underwent evaluation on 21 datasets of different sizes and was compared with the BWO algorithm and 10 other representative optimization algorithms. The experimental results demonstrate that BGEPWO outperforms these competing algorithms in terms of fitness value, number of selected features, and F1-score in most datasets. The proposed algorithm achieves higher accuracy, better feature reduction ability, and stronger convergence by increasing population diversity, continuously balancing exploration and exploitation processes and effectively escaping local optimal traps.

9.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120645

RESUMEN

Predicting the strength of promoters and guiding their directed evolution is a crucial task in synthetic biology. This approach significantly reduces the experimental costs in conventional promoter engineering. Previous studies employing machine learning or deep learning methods have shown some success in this task, but their outcomes were not satisfactory enough, primarily due to the neglect of evolutionary information. In this paper, we introduce the Chaos-Attention net for Promoter Evolution (CAPE) to address the limitations of existing methods. We comprehensively extract evolutionary information within promoters using merged chaos game representation and process the overall information with modified DenseNet and Transformer structures. Our model achieves state-of-the-art results on two kinds of distinct tasks related to prokaryotic promoter strength prediction. The incorporation of evolutionary information enhances the model's accuracy, with transfer learning further extending its adaptability. Furthermore, experimental results confirm CAPE's efficacy in simulating in silico directed evolution of promoters, marking a significant advancement in predictive modeling for prokaryotic promoter strength. Our paper also presents a user-friendly website for the practical implementation of in silico directed evolution on promoters. The source code implemented in this study and the instructions on accessing the website can be found in our GitHub repository https://github.com/BobYHY/CAPE.


Asunto(s)
Aprendizaje Profundo , Regiones Promotoras Genéticas , Algoritmos , Evolución Molecular , Simulación por Computador , Dinámicas no Lineales , Biología Computacional/métodos
10.
Neuroscience ; 557: 116-123, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39142623

RESUMEN

In conscious states, the electrodynamics of the cortex are reported to work near a critical point or phase transition of chaotic dynamics, known as the edge-of-chaos, representing a boundary between stability and chaos. Transitions away from this boundary disrupt cortical information processing and induce a loss of consciousness. The entropy of the electroencephalogram (EEG) is known to decrease as the level of anesthesia deepens. However, whether the chaotic dynamics of electroencephalographic activity shift from this boundary to the side of stability or the side of chaotic enhancement during anesthesia-induced loss of consciousness remains poorly understood. We investigated the chaotic properties of EEGs at two different depths of clinical anesthesia using the maximum Lyapunov exponent, which is mathematically regarded as a formal measure of chaotic nature, using the Rosenstein algorithm. In 14 adult patients, 12 s of electroencephalographic signals were selected during two depths of clinical anesthesia (sevoflurane concentration 2% as relatively deep anesthesia, sevoflurane concentration 0.6% as relatively shallow anesthesia). Lyapunov exponents, correlation dimensions and approximate entropy were calculated from these electroencephalographic signals. As a result, maximum Lyapunov exponent was generally positive during sevoflurane anesthesia, and both maximum Lyapunov exponents and correlation dimensions were significantly greater during deep anesthesia than during shallow anesthesia despite reductions in approximate entropy. The chaotic nature of the EEG might be increased at clinically deeper inhalational anesthesia, despite the decrease in randomness as reflected in the decreased entropy, suggesting a shift to the side of chaotic enhancement under anesthesia.


Asunto(s)
Electroencefalografía , Dinámicas no Lineales , Sevoflurano , Humanos , Electroencefalografía/métodos , Adulto , Femenino , Masculino , Sevoflurano/farmacología , Persona de Mediana Edad , Anestésicos por Inhalación/administración & dosificación , Entropía , Algoritmos , Anciano , Anestesia , Adulto Joven , Encéfalo/fisiología
11.
J Mol Graph Model ; 132: 108835, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39106629

RESUMEN

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression. Despite their relatively short length (about 21 nucleotides), they can regulate thousands of transcripts within a cell. Due to their low complementarity to targets, studying their activity and binding region preferences (3'UTR, 5'UTR, or CDS) is challenging. In this paper, we analyzed a set of human miRNAs to uncover their general patterns. We began with a sequence logo to verify conservation at specific positions. To discover long-range correlations, we employed chaos game representation (CGR) and genomatrix, methods that enable both graphical and analytical analysis of sequence sets and are well-established in bioinformatics. Our results showed that miRNAs exhibit strongly non-random and characteristic patterns. To incorporate physicochemical properties into the analysis, we applied the electron-ion interaction potential (EIIP) parameter. An important part of our study was to validate the division of miRNAs into two parts-seed and puzzle. The seed region is responsible for target binding, while the puzzle region likely interacts with the RISC complex. We estimated duplex binding energy within the 3'UTR, 5'UTR, and CDS regions using the miRanda tool. Based on the median energy distribution, we divided the miRNAs into two subsets, reflecting different patterns in chaos game representation. Interestingly, one subset displayed significant similarity to conserved and highly confidential miRNAs. Our results confirm the low complementarity of miRNA/mRNA interactions and support the functional division of miRNA structure. Additionally, we present findings related to the localization of transcript target sites, which form the basis for further analyses.


Asunto(s)
Regiones no Traducidas 3' , MicroARNs , MicroARNs/genética , MicroARNs/química , Humanos , Regiones no Traducidas 5' , Biología Computacional/métodos , Termodinámica , Secuencia de Bases , Sitios de Unión
12.
Entropy (Basel) ; 26(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202142

RESUMEN

Semiconductor superlattices are periodic nanostructures consisting of epitaxially grown quantum wells and barriers. For thick barriers, the quantum wells are weakly coupled and the main transport mechanism is a sequential resonant tunneling of electrons between wells. We review quantum transport in these materials, and the rate equations for electron densities, currents, and the self-consistent electric potential or field. Depending on superlattice configuration, doping density, temperature, voltage bias, and other parameters, superlattices behave as excitable systems, and can respond to abrupt dc bias changes by large transients involving charge density waves before arriving at a stable stationary state. For other parameters, the superlattices may have self-sustained oscillations of the current through them. These oscillations are due to repeated triggering and recycling of charge density waves, and can be periodic in time, quasiperiodic, and chaotic. Modifying the superlattice configuration, it is possible to attain robust chaos due to wave dynamics. External noise of appropriate strength can generate time-periodic current oscillations when the superlattice is in a stable stationary state without noise, which is called the coherence resonance. In turn, these oscillations can resonate with a periodic signal in the presence of sufficient noise, thereby displaying a stochastic resonance. These properties can be exploited to design and build many devices. Here, we describe detectors of weak signals by using coherence and stochastic resonance and fast generators of true random sequences useful for safe communications and storage.

13.
J Res Adolesc ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210556

RESUMEN

A large body of literature has established that chaos in the home environment, characterized by high levels of disorganization, lack of household routine, crowding, noise, and unpredictability, undermines social-emotional and behavioral development in early childhood. It is less clear whether household chaos is linked to elevated risk for behavior problems in adolescence. The aims of this study were 3fold: (1) characterize the variability of adolescent and caregiver reports of household chaos over time; (2) examine associations among caregiver and adolescent reports of chaos over a 9-month period; (3) consider how between- and within- individual variability in household chaos predicts adolescent externalizing and internalizing problems. This study drew data from the Family Income Dynamics study, a 9-month longitudinal study. Participants included 104 adolescents between 14 and 16 years old (55% female; M age = 14.85) and their caregiver (92% female) from low- and middle-income families. Results showed that adolescent-reports of household chaos were more variable over time compared to caregivers' reports. Adolescent-reports of household chaos had positive within- and between-level associations with externalizing problems and between-level associations with internalizing, while caregiver-reports of chaos had no links to behavior. This work highlights the importance of adolescents' own perceptions of household chaos when considering its links to adolescent development.

14.
J Phys Condens Matter ; 36(49)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39191273

RESUMEN

It has been known that the large-qcomplex Sachdev-Ye-Kitaev (SYK) model falls under the same universality class as that of van der Waals (mean-field) and saturates the Maldacena-Shenker-Stanford (MSS) bound, both features shared by various black holes. This makes the SYK model a useful tool in probing the fundamental nature of quantum chaos and holographic duality. This work establishes the robustness of this shared universality class and chaotic properties for SYK-like models by extending to a system of coupled large-qcomplex SYK models of different orders. We provide a detailed derivation of thermodynamic properties, specifically the critical exponents for an observed phase transition, as well as dynamical properties, in particular the Lyapunov exponent, via the out-of-time correlator calculations. Our analysis reveals that, despite the introduction of an additional scaling parameter through interaction strength ratios, the system undergoes a continuous phase transition at low temperatures, similar to that of the single SYK model. The critical exponents align with the Landau-Ginzburg (mean-field) universality class, shared with van der Waals gases and various AdS black holes. Furthermore, we demonstrate that the coupled SYK system remains maximally chaotic in the large-qlimit at low temperatures, adhering to the MSS bound, a feature consistent with the single SYK model. These findings establish robustness and open avenues for broader inquiries into the universality and chaos in complex quantum systems. We provide a detailed outlook for future work by considering the 'very' low-temperature regime, where we discuss relations with the Hawking-Page phase transition observed in the holographic dual black holes. We present preliminary calculations and discuss the possible follow-ups that might be taken to make the connection robust.

15.
Chemosphere ; 362: 142788, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977250

RESUMEN

To optimize the ultraviolet (UV) water disinfection process, it is crucial to determine the ideal geometric dimensions of a corresponding model that enhance performance while minimizing the impact of uncertain photoreactor inputs. As water treatment directly affects people's lives, it is crucial to eliminate the risks associated with the non-ideal performance of disinfection photoreactors. Input uncertainties greatly affect photoreactor performance, making it essential to develop a robust optimization algorithm in advance to mitigate these effects and minimize the physical and financial resources required for constructing the photoreactors. In the suggested algorithm, a two-objective genetic algorithm is integrated with a non-intrusive polynomial chaos expansion (PCE) technique. Additionally, the Sobol sampling method is employed to select the necessary samples for understanding the system's behavior. An artificial neural network surrogate model is trained using sufficient data points derived from computational fluid dynamics (CFD) simulations. A novel type of UV photoreactors working based on exterior reflectors is chosen to optimize the process with three uncertain input parameters, including UV lamp power, UV transmittance of water, and diffusive fraction of the reflective surface. In addition, four geometrical design variables are considered to find the optimal configuration of the photoreactor. The standard deviation (SD) and the reciprocal of log reduction value (LRV) are set as the objective functions, calculated using PCE. The optimal design provides a LRV of 3.95 with SD of 0.2. The coefficient of variation (CoV) of the model significantly declines up to 7%, indicating the decreased sensitivity of the photoreactor to the input uncertainties. Additionally, it is discovered that the robust model exhibits minimal sensitivity to changes in reflectivity in various flow rates, and its output variability aligns with the SD obtained through robust optimization.


Asunto(s)
Algoritmos , Desinfección , Redes Neurales de la Computación , Rayos Ultravioleta , Purificación del Agua , Desinfección/métodos , Purificación del Agua/métodos , Hidrodinámica
16.
Comput Methods Programs Biomed ; 255: 108311, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032242

RESUMEN

BACKGROUND AND OBJECTIVE: Numerical simulations in electrocardiology are often affected by various uncertainties inherited from the lack of precise knowledge regarding input values including those related to the cardiac cell model, domain geometry, and boundary or initial conditions used in the mathematical modeling. Conventional techniques for uncertainty quantification in modeling electrical activities of the heart encounter significant challenges, primarily due to the high computational costs associated with fine temporal and spatial scales. Additionally, the need for numerous model evaluations to quantify ubiquitous uncertainties increases the computational challenges even further. METHODS: In the present study, we propose a non-intrusive surrogate model to perform uncertainty quantification and global sensitivity analysis in cardiac electrophysiology models. The proposed method combines an unsupervised machine learning technique with the polynomial chaos expansion to reconstruct a surrogate model for the propagation and quantification of uncertainties in the electrical activity of the heart. The proposed methodology not only accurately quantifies uncertainties at a very low computational cost but more importantly, it captures the targeted quantity of interest as either the whole spatial field or the whole temporal period. In order to perform sensitivity analysis, aggregated Sobol indices are estimated directly from the spectral mode of the polynomial chaos expansion. RESULTS: We conduct Uncertainty Quantification (UQ) and global Sensitivity Analysis (SA) considering both spatial and temporal variations, rather than limiting the analysis to specific Quantities of Interest (QoIs). To assess the comprehensive performance of our methodology in simulating cardiac electrical activity, we utilize the monodomain model. Additionally, sensitivity analysis is performed on the parameters of the Mitchell-Schaeffer cell model. CONCLUSIONS: Unlike conventional techniques for uncertainty quantification in modeling electrical activities, the proposed methodology performs at a low computational cost the sensitivity analysis on the cardiac electrical activity parameters. The results are fully reproducible and easily accessible, while the proposed reduced-order model represents a significant contribution to enhancing global sensitivity analysis in cardiac electrophysiology.


Asunto(s)
Modelos Cardiovasculares , Procesos Estocásticos , Aprendizaje Automático no Supervisado , Humanos , Simulación por Computador , Incertidumbre , Corazón/fisiología , Algoritmos , Fenómenos Electrofisiológicos
17.
Comput Biol Med ; 179: 108803, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955125

RESUMEN

The RIME optimization algorithm is a newly developed physics-based optimization algorithm used for solving optimization problems. The RIME algorithm proved high-performing in various fields and domains, providing a high-performance solution. Nevertheless, like many swarm-based optimization algorithms, RIME suffers from many limitations, including the exploration-exploitation balance not being well balanced. In addition, the likelihood of falling into local optimal solutions is high, and the convergence speed still needs some work. Hence, there is room for enhancement in the search mechanism so that various search agents can discover new solutions. The authors suggest an adaptive chaotic version of the RIME algorithm named ACRIME, which incorporates four main improvements, including an intelligent population initialization using chaotic maps, a novel adaptive modified Symbiotic Organism Search (SOS) mutualism phase, a novel mixed mutation strategy, and the utilization of restart strategy. The main goal of these improvements is to improve the variety of the population, achieve a better balance between exploration and exploitation, and improve RIME's local and global search abilities. The study assesses the effectiveness of ACRIME by using the standard benchmark functions of the CEC2005 and CEC2019 benchmarks. The proposed ACRIME is also applied as a feature selection to fourteen various datasets to test its applicability to real-world problems. Besides, the ACRIME algorithm is applied to the COVID-19 classification real problem to test its applicability and performance further. The suggested algorithm is compared to other sophisticated classical and advanced metaheuristics, and its performance is assessed using statistical tests such as Wilcoxon rank-sum and Friedman rank tests. The study demonstrates that ACRIME exhibits a high level of competitiveness and often outperforms competing algorithms. It discovers the optimal subset of features, enhancing the accuracy of classification and minimizing the number of features employed. This study primarily focuses on enhancing the equilibrium between exploration and exploitation, extending the scope of local search.


Asunto(s)
Algoritmos , Humanos , COVID-19
18.
Comput Biol Med ; 179: 108864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991320

RESUMEN

Fractional-order (FO) chaotic systems exhibit random sequences of significantly greater complexity when compared to integer-order systems. This feature makes FO chaotic systems more secure against various attacks in image cryptosystems. In this study, the dynamical characteristics of the FO Sprott K chaotic system are thoroughly investigated by phase planes, bifurcation diagrams, and Lyapunov exponential spectrums to be utilized in biometric iris image encryption. It is proven with the numerical studies the Sprott K system demonstrates chaotic behaviour when the order of the system is selected as 0.9. Afterward, the introduced FO Sprott K chaotic system-based biometric iris image encryption design is carried out in the study. According to the results of the statistical and attack analyses of the encryption design, the secure transmission of biometric iris images is successful using the proposed encryption design. Thus, the FO Sprott K chaotic system can be employed effectively in chaos-based encryption applications.


Asunto(s)
Identificación Biométrica , Seguridad Computacional , Iris , Iris/diagnóstico por imagen , Iris/anatomía & histología , Humanos , Identificación Biométrica/métodos , Dinámicas no Lineales , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Biometría/métodos
19.
Bioengineering (Basel) ; 11(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061812

RESUMEN

As magnetic field strength in Magnetic Resonance Imaging (MRI) technology increases, maintaining the specific absorption rate (SAR) within safe limits across human head tissues becomes challenging due to the formation of standing waves at a shortened wavelength. Compounding this challenge is the uncertainty in the dielectric properties of head tissues, which notably affects the SAR induced by the radiofrequency (RF) coils in an ultra-high-field (UHF) MRI system. To this end, this study introduces a computational framework to quantify the impacts of uncertainties in head tissues' dielectric properties on the induced SAR. The framework employs a surrogate model-assisted Monte Carlo (MC) technique, efficiently generating surrogate models of MRI observables (electric fields and SAR) and utilizing them to compute SAR statistics. Particularly, the framework leverages a high-dimensional model representation technique, which constructs the surrogate models of the MRI observables via univariate and bivariate component functions, approximated through generalized polynomial chaos expansions. The numerical results demonstrate the efficiency of the proposed technique, requiring significantly fewer deterministic simulations compared with traditional MC methods and other surrogate model-assisted MC techniques utilizing machine learning algorithms, all while maintaining high accuracy in SAR statistics. Specifically, the proposed framework constructs surrogate models of a local SAR with an average relative error of 0.28% using 289 simulations, outperforming the machine learning-based surrogate modeling techniques considered in this study. Furthermore, the SAR statistics obtained by the proposed framework reveal fluctuations of up to 30% in SAR values within specific head regions. These findings highlight the critical importance of considering dielectric property uncertainties to ensure MRI safety, particularly in 7 T MRI systems.

20.
Children (Basel) ; 11(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39062331

RESUMEN

OBJECTIVES: Understanding the pathways linking caregiver- and family-level psychosocial factors and child oral health behaviors is critical for addressing oral health disparities. The current study examined the associations between caregiver psychosocial functioning and family chaos and child toothbrushing behaviors in children at high risk for poor oral health outcomes. METHODS: Data were drawn from the baseline wave of the CO-OP Chicago Cohort Study (U01DE030067), a longitudinal study on child/caregiver dyads exploring oral health behaviors and caries development in young children (N = 296 dyads; child mean age = 5.36, SD = 1.03; caregiver mean age = 33.8 years, SD = 6.70; caregiver race = 43% Black; caregiver ethnicity = 55% Latinx). The oral health behavioral outcomes included child toothbrushing frequency, child plaque levels, and caregiver assistance with child toothbrushing. The data included demographics; caregiver depression, anxiety, post-traumatic stress disorder (PTSD) symptoms, social functioning, social support, and resilience; and family-level household chaos. RESULTS: Multiple regression models indicated that greater household chaos was significantly related to lower caregiver assistance with child toothbrushing (p = 0.0075). Additionally, caregiver anxiety and PTSD symptoms as well as number of children in the home significantly predicted higher levels of household chaos (p < 0.01). Notably, 18% of caregivers reported clinically significant PTSD. The relationships between caregiver-level psychosocial factors and child oral health behaviors were not significant. CONCLUSIONS: The results suggest household chaos may play an important role in child oral health behaviors and highlight the importance of investigating family-level factors for understanding and addressing child oral health risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA