Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.236
Filtrar
1.
Heliyon ; 10(17): e37430, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296160

RESUMEN

This study aimed to enhance the efficacy of quercetin (QT) by formulating it into a liposomal drug delivery system utilizing the concept of central composite design. The drug:lipid ratio, cholesterol concentration, and sonication time were selected as independent variables in the study. The vesicle and percentage entrapment efficiency were selected as the dependent variables. Quercetin nanoliposomes (QT-NLs) were prepared via a combination of ethanol injection and thin film hydration. The vesicle size and entrapment efficiency of all formulations were within the ranges of 100 nm and >80 %, respectively. The zeta potential value indicated the stability of the optimized formulation. The contour plots were used to select the desired batch range. SEM studies revealed an imperfect crystalline morphology without any unwanted agglomeration. MTT assays on VERO cell lines indicated the safety of the developed formulation. MTT assays of MCF-7 cells revealed IC50 values of 5.8 µM and 7.9 µM for QT-NLs and QT, respectively. In our study, the optimized formulation exhibited late and early apoptosis and necrosis when used to treat MCF-7 cells. S and G2/M cell cycle phases of MCF-7 cell arrest were confirmed by the cell cycle report. At sub-G0/G1 phase, 2.10 ± 1.1 %; G0/G1 phase, 34.13 ± 1.9 %; S phase, 34.55 ± 0.98 %; and G2/M phase, 26.24 ± 1.7 % of cell arrest were observed. The results demonstrated the effectiveness of the proposed design for the development of corn starch-coated QT-NLs and their activity in breast cancer cell lines.

2.
Sci Rep ; 14(1): 20352, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223170

RESUMEN

The optimization of floating bifacial solar panels (FBS PV) in tropical freshwater systems is explored by employing response surface methodology (RSM) and central composite design (CCD). Previous studies have yet to explore the long-term durability, environmental impact, economic viability, and performance of FBS PV systems under various climatic conditions. This study addresses this gap by focusing on panel height, water depth, and tilt angle to improve performance. The quadratic model reveals significant non-linear relationships impacting FBS PV power generation with freshwater cooling. Our models demonstrate high explanatory power, with R-squared values of 0.9831 for output power and 0.9900 for Bi-Facial gain. Experimental validation using conventional white surface (CWS) and proposed freshwater surface (PFS) indicates notable improvements in power generation, achieving a 4.34 to 4.86% gain in bifacial efficiency across various irradiation levels. Under 950 W/m2 irradiation, freshwater cooling achieves a 3.19% higher bifacial gain compared to CWS cooling. Panel temperature analysis shows consistent reductions with freshwater cooling, ranging from 1.43 to 2.72 °C, enhancing overall efficiency and longevity. This research highlights the potential of freshwater cooling in optimizing bifacial solar systems, offering actionable insights for sustainable energy solutions in tropical regions.

3.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274099

RESUMEN

Despite the large number of works on the synthesis of polylactide-co-glycolide (PLGA) nanoparticles (NP) loaded with antituberculosis drugs, the data on the influence of various factors on the final characteristics of the complexes are quite contradictory. In the present study, a comprehensive analysis of the effect of multiple factors, including the molecular weight of PLGA, on the size and stability of nanoparticles, as well as the loading efficiency and release of the antituberculosis drug rifampicin (RIF), was carried out. Emulsification was carried out using different surfactants (polyvinyl alcohol, Tween 80 and Pluronic F127), different aqueous-to-organic phase ratios, and different solvents (dichloromethane, dimethyl sulfoxide, ethyl acetate). In this research, the PLGA nanoemulsion formation process was accompanied by ultrasonic dispersion, at different frequencies and durations of homogenization. The use of the central composite design method made it possible to select optimal conditions for the preparation of PLGA-RIF NPs (particle size 223 ± 2 nm, loading efficiency 67 ± 1%, nanoparticles yield 47 ± 2%). The release of rifampicin from PLGA NPs was studied for the first time using the flow cell method and vertical diffusion method on Franz cells at different pH levels, simulating the gastrointestinal tract. For the purpose of the possible inhalation administration of rifampicin immobilized in PLGA NPs, their mucoadhesion to mucin was studied, and a high degree of adhesion of polymeric nanoparticles to the mucosa was shown (more than 40% within 4 h). In the example of strain H37Rv in vitro, the sensitivity of Mycobacterium tuberculosis to PLGA-RIF NPs was proven by the complete inhibition of their growth.

4.
Nutrients ; 16(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39275137

RESUMEN

α-tocopherol (α-T), ß-sitosterol (ß-S), canolol (CA), and sinapic acid (SA) are the four main endogenous lipid phytochemicals (LP) found in Brassica napus L. seed oil, which possess the bioactivity to prevent the risk of several chronic diseases via antioxidant-associated mechanisms. Discovering the enhancer effects or synergies between LP is valuable for resisting oxidative stress and improving health benefits. The objectives of this study were to identify a potentially efficacious LP combination by central composite design (CCD) and cellular antioxidant activity (CAA) and to investigate its protective effect and potential mechanisms against H2O2-induced oxidative damage in HepG2 cells. Our results indicated that the optimal concentration of LP combination was α-T 10 µM, ß-S 20 µM, SA 125 µM, and CA 125 µM, respectively, and its CAA value at the optimal condition was 10.782 µmol QE/100 g. At this concentration, LP combination exerted a greater amelioration effect on H2O2-induced HepG2 cell injury than either antioxidant (tea polyphenols or magnolol) alone. LP combination could reduce the cell apoptosis rate induced by H2O2, lowered to 10.06%, and could alleviate the degree of oxidative damage to cells (ROS↓), lipids (MDA↓), proteins (PC↓), and DNA (8-OHdG↓). Additionally, LP combination enhanced the antioxidant enzyme activities (SOD, CAT, GPX, and HO-1), as well as the T-AOC, and increased the GSH level in HepG2 cells. Furthermore, LP combination markedly upregulated the expression of Nrf2 and its associated antioxidant proteins. It also increased the expression levels of Nrf2 downstream antioxidant target gene (HO-1, SOD-1, MnSOD, CAT, GPX-1, and GPX-4) and downregulated the mRNA expression levels of Keap1. The oxidative-stress-induced formation of the Keap1/Nrf2 complex in the cytoplasm was significantly blocked by LP treatment. These results indicate that LP combination protected HepG2 cells from oxidative stress through a mechanism involving the activation of the Keap1/Nrf2/ARE signaling pathways.


Asunto(s)
Antioxidantes , Brassica napus , Peróxido de Hidrógeno , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Fitoquímicos , Semillas , Transducción de Señal , Humanos , Células Hep G2 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Estrés Oxidativo/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal/efectos de los fármacos , Fitoquímicos/farmacología , Antioxidantes/farmacología , Semillas/química , Elementos de Respuesta Antioxidante/efectos de los fármacos , Aceites de Plantas/farmacología , Sitoesteroles/farmacología
5.
Food Chem ; 463(Pt 1): 141098, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39265405

RESUMEN

A simple and effective ultrasound-assisted dispersive micro solid-phase extraction (UA-dµSPE) method was developed for the spectrophotometric determination of traces maneb in food and water. In this study, a new hybrid block copolymer poly (vinyl benzyl chloride-b-dimethyl aminoethyl methacrylate) (Pvb-DMA) was synthesized and characterized using techniques such as FTIR, SEM-EDX. The synthesized Pvb-DMA was used as an adsorbent for the extraction of maneb for first time in this study. The effects of different experimental variables such as pH, adsorbent amount, sample volume, eluent type were optimized. The statistical toll factorial design was applied to estimate the individual and combined impact of parameters on the extraction of maneb. The applicability of different solvents such as acetone, methanol, ethanol, tetrahydrofuran, acetonitrile for maneb recovery from adsorbent was tested. The detection and quantification limits were found to be 3.3 ng mL-1 and 10.0 ng mL-1, respectively. In addition, the preconcentration factor and linear range was obtained 300 and 10-500 ng mL-1. The extraction recovery and relative standard deviation were found to be 95 % and 2.8 %, respectively.

6.
World J Microbiol Biotechnol ; 40(10): 316, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39249607

RESUMEN

Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.


Asunto(s)
Antibacterianos , Medios de Cultivo , Fermentación , Streptomyces , Temperatura , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Carbonato de Calcio/metabolismo , Aminoglicósidos/farmacología , Microbiología Industrial , Reactores Biológicos/microbiología
7.
Int J Biol Macromol ; 278(Pt 4): 135045, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182886

RESUMEN

Drugs with lower permeability and water solubility provide major challenges for producing safe and efficient formulations. The current work aims to prepare ICs of the drug phenothiazine and ß-cyclodextrin via physical, microwave, freeze-drying, and kneading methods. Many analytical methods, such as 1H NMR, ROESY, FT-IR, DSC, SEM, and XRD, were then used to confirm the formation of inclusion complexes. The natural polysaccharide-based hydrogel comprising pectin and pullulan was synthesized in air and optimized through various parameters. In order to maximize the reaction parameters, Response Surface Methodology design was employed for experimental optimization. We use FT-IR, TGA, SEM, EDX, and XRD to investigate hydrogel formation. At 37 °C, an investigation was carried out on the in vitro controlled release of PN at pH 2, 7, and 7.4. The analysis of drug release data revealed that PM and KM exhibited an initial burst release of drugs, with the MW and FD method proving to be the most suitable approach for achieving precise ICs of PN and ß-CD for sustained drug release. The kinetics of drug release were evaluated using various kinetic models, with the Riteger-Peppas and Peppas-Sahlin models demonstrating the best fit for drug release in all instances.


Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Glucanos , Hidrogeles , Pectinas , Fenotiazinas , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Pectinas/química , Glucanos/química , Hidrogeles/química , Concentración de Iones de Hidrógeno , Fenotiazinas/química , Cinética , Portadores de Fármacos/química , Espectroscopía Infrarroja por Transformada de Fourier , Solubilidad
8.
Heliyon ; 10(15): e35176, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170319

RESUMEN

One of the key aspects of futureproofing the sustainability of life on earth lies in the protection of the hydrosphere, particularly from soluble heavy metal ion pollutants. In the current study, the central composite design and optimization of the ion-exchange process have been carried out for the simultaneous removal of selected cations; Cd2+, Cu2+, and Zn2+ cations using synthesized zeolite 4A. X-ray diffraction analysis confirmed the formation of zeolite 4A. The Brunauer-Emmett-Teller (BET) surface area of the synthesized zeolite was 32 m2/g. Results mainly indicate that there is a strong relationship between the experimental data and central composite design-based models of ion removal efficiency with R2 > 0.9 and the lack of fit less than 0.1 %. All the selected ion exchange parameters (time, dosage, pH, and temperature) were found to be statistically significant, with a p-value less than 0.05. For the complete simultaneous removal of selected cations, the optimal zeolite dosage, pH, and contact time are 1.2 g/100 cm3, 6, and 3 h. The optimal temperature ranges from 25 to 27 °C. The initial concentration of each selected cation is 450 mg/L. The ion exchange is in good agreement with the Freundlich and Langmuir isotherm models. Based on the Langmuir isotherm model, the maximum Cd2+, Cu2+, and Zn2+ uptake capacity values of zeolite are 103, 99.89, and 82.08 mg/g, respectively. In this study, it has been mainly inferred that CCD can be considered a useful tool for the modeling and optimization of zeolite ion exchange applications.

9.
Bioanalysis ; : 1-15, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115061

RESUMEN

Aim: A simple and rapid HPLC technique was developed and validated to simultaneously estimate enzalutamide (ENZ) and repaglinide (REP) in rat plasma. Methods: In silico predictions using DDinter and DDI-Pred indicated possible drug-drug interactions between ENZ and REP. A central composite design was used to identify factors influencing the separation of the drugs. Interactions between chromatographic parameters were studied through 51 experiments, followed by illustration with three-dimensional response surface plots. The four factors optimized for the separation of the two drugs are column temperature (A), % organic strength (B), pH (C) and column type (D). Results: Plate count(R1), tailing factor (R2) and resolution (R3) responses in the experimental design were analyzed with the favorable chromatographic conditions predicted to be 0.1% formic acid and acetonitrile as mobile phases on a Phenomenex C18 LC column (250 × 4.6 mm, 5 µm). The method was applied to estimate the drugs in rat plasma using a simple protein-precipitation step and found to be linear, accurate and precise within the ranges of 0.5-16 and 5-50 µg/ml for ENZ and REP, respectively. Conclusion: The optimized method can be used in future bioanalytical workflow for drug quantification and drug-drug compatible studies.


[Box: see text].

10.
Nanomaterials (Basel) ; 14(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39120425

RESUMEN

Global warming, driven by greenhouse gases like CH4 and CO2, necessitates efficient catalytic conversion to syngas. Herein, Ni containing different molecular sieve nanomaterials are investigated for dry reforming of methane (DRM). The reduced catalysts are characterized by surface area porosity, X-ray diffraction, Raman infrared spectroscopy, CO2 temperature-programmed desorption techniques, and transmission electron microscopy. The active sites over each molecular sieve remain stable under oxidizing gas CO2 during DRM. The reduced 5Ni/CBV10A catalyst, characterized by the lowest silica-alumina ratio, smallest surface area and pore volume, and narrow 8-ring connecting channels, generated the maximum number of active sites on its outer surface. In contrast, the reduced-5Ni/CBV3024E catalyst, with the highest silica-alumina ratio, more than double the surface area and pore volume, 12-ring sinusoidal porous channels, and smallest Ni crystallite, produced the highest H2 output (44%) after 300 min of operation at 700 °C, with a CH4:CO2 = 1:1, P = 1 atom, gas hour space velocity (GHSV) = 42 L gcat-1 h-1. This performance was achieved despite having 25% fewer initial active sites, suggesting that a larger fraction of these sites is stabilized within the pore channels, leading to sustained catalytic activity. Using central composite design and response surface methodology, we successfully optimized the process conditions for the 5Ni/CBV3024E catalyst. The optimized conditions yielded a desirable H2 to CO ratio of 1.00, with a H2 yield of 91.92% and a CO yield of 89.16%, indicating high efficiency in gas production. The experimental results closely aligned with the predicted values, demonstrating the effectiveness of the optimization approach.

11.
J Nanobiotechnology ; 22(1): 482, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135039

RESUMEN

Treatment-induced ototoxicity and accompanying hearing loss are a great concern associated with chemotherapeutic or antibiotic drug regimens. Thus, prophylactic cure or early treatment is desirable by local delivery to the inner ear. In this study, we examined a novel way of intratympanically delivered sustained nanoformulation by using crosslinked hybrid nanoparticle (cHy-NPs) in a thermoresponsive hydrogel i.e. thermogel that can potentially provide a safe and effective treatment towards the treatment-induced or drug-induced ototoxicity. The prophylactic treatment of the ototoxicity can be achieved by using two therapeutic molecules, Flunarizine (FL: T-type calcium channel blocker) and Honokiol (HK: antioxidant) co-encapsulated in the same delivery system. Here we investigated, FL and HK as cytoprotective molecules against cisplatin-induced toxic effects in the House Ear Institute - Organ of Corti 1 (HEI-OC1) cells and in vivo assessments on the neuromast hair cell protection in the zebrafish lateral line. We observed that cytotoxic protective effect can be enhanced by using FL and HK in combination and developing a robust drug delivery formulation. Therefore, FL-and HK-loaded crosslinked hybrid nanoparticles (FL-cHy-NPs and HK-cHy-NPs) were synthesized using a quality-by-design approach (QbD) in which design of experiment-central composite design (DoE-CCD) following the standard least-square model was used for nanoformulation optimization. The physicochemical characterization of FL and HK loaded-NPs suggested the successful synthesis of spherical NPs with polydispersity index < 0.3, drugs encapsulation (> 75%), drugs loading (~ 10%), stability (> 2 months) in the neutral solution, and appropriate cryoprotectant selection. We assessed caspase 3/7 apopototic pathway in vitro that showed significantly reduced signals of caspase 3/7 activation after the FL-cHy-NPs and HK-cHy-NPs (alone or in combination) compared to the CisPt. The final formulation i.e. crosslinked-hybrid-nanoparticle-embedded-in-thermogel was developed by incorporating drug-loaded cHy-NPs in poloxamer-407, poloxamer-188, and carbomer-940-based hydrogel. A combination of artificial intelligence (AI)-based qualitative and quantitative image analysis determined the particle size and distribution throughout the visible segment. The developed formulation was able to release the FL and HK for at least a month. Overall, a highly stable nanoformulation was successfully developed for combating treatment-induced or drug-induced ototoxicity via local administration to the inner ear.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Nanopartículas/química , Oído Interno/efectos de los fármacos , Hidrogeles/química , Cisplatino/farmacología , Cisplatino/química , Línea Celular , Compuestos de Bifenilo/química , Sistemas de Liberación de Medicamentos/métodos , Lignanos/química , Lignanos/farmacología , Lignanos/administración & dosificación , Ratones , Supervivencia Celular/efectos de los fármacos
12.
Food Sci Nutr ; 12(8): 5785-5798, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139949

RESUMEN

Gummy candy is one of the main snacks for children, and conventional samples with high calorie illustrate no nutritional value; therefore, the aim of present research was to develop functional product on priority. Celery (Apium graveolens) puree (25%-50%), boswellia gum (10%-20%), lemon essential oil (0.25%-0.50%), and sugar (10%-20%) in two levels were considered for vegan gummy candy production. Based on central composite design, the 30 types of gummy candies were prepared; afterward, response surface methodology was applied to optimize results determined by texture (hardness, springiness, adhesiveness, gumminess, chewiness, and elasticity characteristics), physicochemical attributes (pH, sugar content, water activity, antioxidant function, and calorie restriction), and also sensory evaluation. In general, elevated concentration of celery puree and boswellia gum-enhanced hardness, chewiness, and also gumminess for treated products. On the other hand, higher sugar with lemon essential oil improved adhesion, springiness, and elasticity features. More boswellia gum, celery, lemon essential oil, and reduction in sugar elevated water activity and also declined pH for treated samples. The celery puree, boswellia gum, and lemon essential oil significantly enhanced antioxidant function of treated gummy candies. According to attained results, sugar had a remarkable influence on acceptability and in treated samples calorie decreased. Based on all investigated factors, optimal formulation was achieved including 25% celery puree, 20% boswellia gum, 0.450% lemon essential oil, and 13.55% sugar. Regarding the results, obtained gummy candy with high nutritional value and low calorie demonstrated the potential to produce extensively in food sector.

13.
J Biomater Sci Polym Ed ; : 1-25, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155730

RESUMEN

This study aims to formulate and evaluate Eudragit nanoparticles-laden hydrogel contact lenses for controlled delivery of acetazolamide (ACZ) using experimental design. Eudragit S-100 was selected for the preparation of nanoparticles. The optimization of Eudragit S100 concentration (X1), polyvinyl alcohol concentration (X2), and the sonication time (X3) was attempted by applying a central composite experimental design. Mean size of nanoparticles (nm), percent in vitro drug release and drug leaching from the ACZ-ENs laden contact lens were considered as dependent variables. Nanoparticles-laden contact lens was prepared through the direct loading method and characterized. Optimum check-point formulation was selected based on validated quadratic polynomial equations developed using response surface methodology. The optimized formulation of ACZ-ENs exhibited spherical shape with a size of 244.3 nm and a zeta potential of -13.2 mV. The entrapment efficiency of nanoparticles was found to be 82.7 ± 1.21%. Transparent contact lenses loaded ACZ-ENs were successfully prepared using the free radical polymerization technique. ACZ-ENs incorporated in contact lens exhibited a swelling of 83.4 ± 0.82% and transmittance of 80.1 ± 1.23%. ACZ-ENs showed a significantly lower burst release of the drug when incorporated in the contact lens and release was sustained over a period of 24 h. The sterilized formulation of ACZ-ENs laden contact lens did not show any sign of toxicity in rabbit eyes. ACZ-ENs incorporated in contact lens could be considered as a potential alternative in glaucoma patients due to their ability to provide sustained drug release and thus enhance patient compliance.

14.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125187

RESUMEN

Glioblastoma (GBM) conventional treatment is not curative, and it is associated with severe toxicity. Thus, natural compounds with anti-cancer properties and lower systemic toxicity, such as gallic acid (GA), have been explored as alternatives. However, GA's therapeutic effects are limited due to its rapid metabolism, low bioavailability, and low permeability across the blood-brain barrier (BBB). This work aimed to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with folic acid (FA), as its receptor is overexpressed in BBB and GBM cells, for GA delivery to enhance its therapeutic efficacy. The preparation of NPs was optimized by a central composite design (CCD). The obtained NPs showed physicochemical features suitable for drug internalization in BBB and tumor cells (sizes below 200 nm, monodispersity, and negative surface charge) and the ability to maintain a slow and sustained release for 40 days. In vitro studies using a human GBM cell line (U215) revealed the NPs' ability to accumulate in the target cells, further promoting GA antiproliferative activity by inducing the production of intracellular reactive oxygen species (ROS). Furthermore, GA encapsulation in the developed nanosystems conferred higher protection to healthy cells.

15.
Nanomedicine (Lond) ; 19(21-22): 1717-1741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041668

RESUMEN

Aim: To investigate eutectic liquid-based emulsion-like dispersions for intratympanic injections to augment cinnarizine permeability across round window membrane in a healthy rabbit inner ear model.Methods: Two-tier systematic optimization was used to get the injection formula. The drug concentrations in perilymph and plasma were analyzed via. Ultra-performance liquid chromatography-tandem mass spectrometry method after 30-, 60-, 90- and 120-min post intratympanic injection time points in rabbits.Results: A shear-thinning behavior, immediate drug release (∼98.80%, 10 min) and higher cell viability (>97.86%, 24 h) were observed in dispersions. The cinnarizine level of 8168.57 ± 1236.79 ng/ml was observed in perilymph at 30 min post intratympanic injection in rabbits.Conclusion: The emulsion-like dispersions can augment drug permeability through round window membrane.


[Box: see text].


Asunto(s)
Cinarizina , Emulsiones , Animales , Conejos , Emulsiones/química , Cinarizina/administración & dosificación , Cinarizina/farmacocinética , Cinarizina/química , Inyección Intratimpánica , Liberación de Fármacos , Permeabilidad/efectos de los fármacos , Perilinfa/metabolismo , Oído Interno/efectos de los fármacos , Oído Interno/metabolismo , Ventana Redonda/metabolismo , Ventana Redonda/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos
16.
Nanomedicine (Lond) ; 19(21-22): 1743-1760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041671

RESUMEN

Aim: This study focuses on biotinylated nanocarriers designed to encapsulate amphiphilic molecules with self-biodegradable properties for enhanced drug delivery.Methods: Biotin-zein conjugated nanoparticles were synthesized and tested in C6 cell lines to evaluate their viability and cellular uptake. Optimization was achieved using a a central composite design. The nanoparticles underwent thermogravimetric analysis, and their pharmacokinetics and biodistribution were also studied.Results: The optimized nanoparticles displayed 96.31% drug encapsulation efficiency, a particle size of 95.29 nm and a zeta potential of -17.7 mV. These nanoparticles showed increased cytotoxicity and improved cellular uptake compared with free drugs. Thermogravimetric analysis revealed that the drug-loaded nanocarriers provided better protection against drug degradation. Pharmacokinetic and biodistribution studies indicated that the formulation had an extended brain residence time, highlighting its effectiveness.Conclusion: The biotin-zein conjugated nanoparticles developed in this study offer a promising nano-vehicle for in vivo biodistribution and pharmacokinetic applications. Their high drug encapsulation efficiency, stability and extended brain residence time suggest they are effective for targeted drug delivery and therapeutic uses.


[Box: see text].


Asunto(s)
Biotina , Nanopartículas , Tamaño de la Partícula , Zeína , Biotina/química , Biotina/farmacocinética , Animales , Zeína/química , Distribución Tisular , Nanopartículas/química , Portadores de Fármacos/química , Ratas , Humanos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos
17.
AAPS PharmSciTech ; 25(6): 162, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997615

RESUMEN

In 1987, Won invented the solid-phase porous microsphere (MS), which stores bioactive compounds in many interconnected voids. Spherical particles (5-300 µm), MS, may form clusters of smaller spheres, resulting in many benefits. The current investigation focussed on gel-encased formulation, which can be suitable for dermal usage. First, quasi-emulsion (w/o/w) solvent evaporation was used to prepare 5-fluorouracil (5 FU) MS particles. The final product was characterized (SEM shows porous structure, FTIR and DSC showed drug compatibility with excipients, and gel formulation is shear-thinning) and further scaled up using the 8-fold method. Furthermore, CCD (Central Composite Design) was implemented to obtain the optimized results. After optimizing the conditions, including the polymer (600 mg, ethyl cellulose (EC), eudragit RS 100 (ERS)), stirring speed (1197 rpm), and surfactant concentration (2% w/v), we achieved the following results: optimal yield (63%), mean particle size (152 µm), drug entrapment efficiency (76%), and cumulative drug release (74.24% within 8 h). These findings are promising for industrial applications and align with the objectives outlined in UN Sustainable Development Goals 3, 9, and 17, as well as the goals of the G20 initiative.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Fluorouracilo , Microesferas , Tamaño de la Partícula , Fluorouracilo/administración & dosificación , Fluorouracilo/química , Sistemas de Liberación de Medicamentos/métodos , Porosidad , Emulsiones/química , Celulosa/química , Celulosa/análogos & derivados , Química Farmacéutica/métodos , Polímeros/química , Excipientes/química , Solventes/química , Tensoactivos/química , Resinas Acrílicas/química , Portadores de Fármacos/química , Geles/química
18.
Braz J Microbiol ; 55(3): 2239-2251, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39020098

RESUMEN

Different bioproducts can be obtained by changing operative condition of biotechnological process, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural aroma. Thus, this study aimed to investigate the culture conditions and optimization of the biotransformation of limonene into limonene-1,2-diol using Pestalotiopsis mangiferae LaBMicrA-505 obtained from the Brazilian Amazon. The study started with the investigation of the establishment of culture, followed by optimization of the conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol, using shake flasks. The fresh biomass of P. mangiferae LaBMicrA-505 obtained in liquid media supplemented with yeast-malt extract under with 72 h (stationary phase) performed better diol productivity when compared to other biomasses. Finally, in the modeling of contour plots and surface responses of a central composite design, the use of 4 g l- 1 biomass, 2% of the substrate at 24 °C, 120 rpm, and pH of 6.0 could maximize the production of limonene-1,2-diol, accumulated up to 98.34 ± 1.53% after 96 h of reaction. This study contributed to identified operational condition for the R-(+)-limonene bioconversion scale-up. The endophytic fungus P. mangiferae LaBMicrA-505 proved to be a potent biocatalyst to biotechnologically produce limonene-1,2-diol, an aroma compounds with interesting bioactive features that up to now has been manufactured by extraction from plants with long and not environmentally friendly procedures.


Asunto(s)
Biotransformación , Medios de Cultivo , Limoneno , Limoneno/metabolismo , Medios de Cultivo/química , Brasil , Fermentación , Biomasa , Terpenos/metabolismo
19.
Food Chem ; 458: 139842, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38996490

RESUMEN

One of the principal byproducts of coffee roasting is the coffee parchment. It is abundant in bioactive substances, including derivatives of chlorogenic acids, which are well-known for their exceptional antioxidant effects. It is advantageous to use environmentally friendly extraction techniques on such residues since it adds value to the entire coffee production process supply chain. The aim of this work was to assess and enhance the ability of non-conventional extraction techniques to extract derivatives of chlorogenic acid from coffee parchment. A central composite design was used to maximize the recovery of those phenolic compounds. The optimized extraction conditions were with 5 min extraction period, at a temperature of 70 °C, and 80% ethanol in the extractor solvent. In this conditions extraction recovery of chlorogenic acids was of 0.8% by the use of microwave-aided extraction (MAE). The optimized conditions are practical, economical, and ecologically friendly method to extract phenolic compounds and, consequently, underscores the potential for sustainable utilization of coffee parchment, offering a valuable contribution to the development of environmentally conscious strategies within the coffee industry.


Asunto(s)
Ácido Clorogénico , Coffea , Café , Extractos Vegetales , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/química , Ácido Clorogénico/análisis , Coffea/química , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Café/química , Fraccionamiento Químico/métodos , Fraccionamiento Químico/instrumentación , Microondas , Calor
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124731, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955074

RESUMEN

Ibrutinib, an antineoplastic agent tackling chronic lymphocytic leukemia, mantle cell lymphoma, and Waldenstrom's Macroglobulinemia, falls under the category of BCS class II drugs, characterized by a puzzling combination of low solubility and high permeability. Its oral bioavailability remains a perplexing challenge, merely reaching 2.9 % due to formidable first-pass metabolism hurdles. In a bid to surmount this obstacle, researchers embarked on a journey to develop ibrutinib-loaded NLCs (Nanostructured Lipid Carriers) using a methodology steeped in complexity: a Design of Experiments (DoE)-based hot melted ultrasonication approach. Despite a plethora of methods for analyzing ibrutinib in various matrices, the absence of a spectrofluorimetric method for assessing it in rat plasma added to the enigma. Thus emerged a spectrofluorimetric method, embodying principles of white analytical chemistry and analytical quality by design, employing a Placket-Burman design for initial method exploration and a central composite design for subsequent refinement. This method underwent rigorous validation in accordance with ICH guidelines, paving the way for its application in scrutinizing the in-vivo pharmacokinetics of ibrutinib-loaded NLCs, juxtaposed against commercially available formulations. Surprisingly, the optimized NLCs exhibited a striking 1.82-fold boost in oral bioavailability, shedding light on their potential efficacy. The environmental impact of this method was scrutinized using analytical greenness tools, affirming its eco-friendly attributes. In essence, the culmination of these efforts has not only propelled advancements in drug bioavailability but also heralded the dawn of a streamlined and environmentally conscious analytical paradigm.


Asunto(s)
Adenina , Lípidos , Piperidinas , Pirimidinas , Espectrometría de Fluorescencia , Animales , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/química , Adenina/sangre , Piperidinas/farmacocinética , Piperidinas/química , Piperidinas/sangre , Lípidos/química , Masculino , Espectrometría de Fluorescencia/métodos , Ratas , Pirimidinas/farmacocinética , Pirimidinas/química , Pirimidinas/sangre , Portadores de Fármacos/química , Nanoestructuras/química , Pirazoles/farmacocinética , Pirazoles/química , Pirazoles/sangre , Pirazoles/administración & dosificación , Reproducibilidad de los Resultados , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA