Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
1.
J Mol Cell Cardiol ; 196: 52-70, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222876

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are advancing cardiovascular development and disease modeling, drug testing, and regenerative therapies. However, hPSC-CM production is hindered by significant variability in the differentiation process. Establishment of early quality markers to monitor lineage progression and predict terminal differentiation outcomes would address this robustness and reproducibility roadblock in hPSC-CM production. An integrated transcriptomic and epigenomic analysis assesses how attributes of the cardiac progenitor cell (CPC) affect CM differentiation outcome. Resulting analysis identifies predictive markers of CPCs that give rise to high purity CM batches, including TTN, TRIM55, DGKI, MEF2C, MAB21L2, MYL7, LDB3, SLC7A11, and CALD1. Predictive models developed from these genes provide high accuracy in determining terminal CM purities at the CPC stage. Further, insights into mechanisms of batch failure and dominant non-CM cell types generated in failed batches are elucidated. Namely EMT, MAPK, and WNT signaling emerge as significant drivers of batch divergence, giving rise to off-target populations of fibroblasts/mural cells, skeletal myocytes, epicardial cells, and a non-CPC SLC7A11+ subpopulation. This study demonstrates how integrated multi-omic analysis of progenitor cells can identify quality attributes of that progenitor and predict differentiation outcomes, thereby improving differentiation protocols and increasing process robustness.

2.
Methods Mol Biol ; 2835: 147-154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105913

RESUMEN

Metabolism has emerged recently as an important determinant of stem cell function. Changes in metabolic signaling pathways precede changes in stem cell molecular and functional response. Pluripotent stem cells are highly proliferative and known to exhibit increased glycolysis. Similarly, adult stem cells reside in tissue niches in a quiescent state operating via glycolysis. Upon activation, adult stem cell metabolism transitions from glycolysis to oxidative phosphorylation which coincides with reduced proliferation and multilineage potential. In the heart, different populations of cardiac progenitor cells (CPCs) have been identified. CPCs regenerative potential is linked to changes in metabolic characteristics of cells, impacting cardiac repair following injury. Here, we discuss the methodologies for isolation and characterization of a novel cardiac progenitor cell population from the heart including measurement its metabolic features.


Asunto(s)
Células Madre , Animales , Células Madre/metabolismo , Células Madre/citología , Glucólisis , Miocardio/metabolismo , Miocardio/citología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ratones , Humanos , Diferenciación Celular , Fosforilación Oxidativa , Proliferación Celular , Separación Celular/métodos
3.
Methods Mol Biol ; 2835: 269-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105922

RESUMEN

Three-dimensional (3D) scaffolds provide cell support while improving tissue regeneration through amplified cellular responses between implanted materials and native tissues. So far, highly conductive cardiac, nerve, and muscle tissues have been engineered by culturing stem cells on electrically inert scaffolds. These scaffolds, even though suitable, may not be very useful compared to the results shown by cells when cultured on conductive scaffolds. Noticing the mature phenotype the stem cells develop over time when cultured on conductive scaffolds, scientists have been trying to impart conductivity to traditionally nonconductive scaffolds. One way to achieve this goal is to blend conductive polymers (polyaniline, polypyrrole, PEDOT:PSS) with inert biomaterials and produce a 3D scaffold using various fabrication techniques. One such technique is projection micro-stereolithography, which is an additive manufacturing technique. It uses a photosensitive solution blended with conductive polymers and uses visible/UV light to crosslink the solution. 3D scaffolds with complex architectural features down to microscale resolution can be printed with this technique promptly. This chapter reports a protocol to fabricate electrically conductive scaffolds using projection micro-stereolithography.


Asunto(s)
Técnicas de Cultivo de Célula , Conductividad Eléctrica , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Polímeros/química , Técnicas de Cultivo de Célula/métodos , Pirroles/química , Animales , Humanos , Materiales Biocompatibles/química , Células Cultivadas , Células Madre/citología , Compuestos de Anilina/química , Miocitos Cardíacos/citología , Estereolitografía
4.
Stem Cell Res ; 79: 103476, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941882

RESUMEN

Cardiovascular disease remains a global health concern. Stem cell therapy utilizing human cardiac progenitor cells (hCPCs) shows promise in treating cardiac vascular disease. However, limited availability and senescence of hCPCs hinder their widespread use. To address these challenges, researchers are exploring innovative approaches. In this study, a bioengineered cell culture plate was developed to mimic the natural cardiac tissue microenvironment. It was coated with a combination of extracellular matrix (ECM) peptide motifs and mussel adhesive protein (MAP). The selected ECM peptide motifs, derived from fibronectin and vitronectin, play crucial roles in hCPCs. Results revealed that the Fibro-P and Vitro-P coated plates significantly improved hCPC adhesion, proliferation, migration, and differentiation compared to uncoated plates. Additionally, long-term culture on the coated plates delayed cellular senescence and maintained hCPC stemness. These enhancements were attributed to the activation of integrin downstream signaling pathways. The findings suggest that the engineered ECM peptide motif-MAP-coated plates hold potential for enhancing the therapeutic efficacy of stem cell-based therapies in cardiac tissue engineering and regenerative medicine.


Asunto(s)
Fibronectinas , Células Madre , Vitronectina , Vitronectina/metabolismo , Humanos , Fibronectinas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Diferenciación Celular , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Proliferación Celular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Adhesión Celular , Péptidos
5.
Adv Exp Med Biol ; 1441: 875-884, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884756

RESUMEN

Tricuspid atresia (TA) is a rare congenital heart condition that presents with a complete absence of the right atrioventricular valve. Because of the rarity of familial and/or isolated cases of TA, little is known about the potential genetic abnormalities contributing to this condition. Potential responsible chromosomal abnormalities were identified in exploratory studies and include deletions in 22q11, 4q31, 8p23, and 3p as well as trisomies 13 and 18. In parallel, potential culprit genes include the ZFPM2, HEY2, NFATC1, NKX2-5, MYH6, and KLF13 genes. The aim of this chapter is to expose the genetic components that are potentially involved in the pathogenesis of TA in humans. The large variability in phenotypes and genotypes among cases of TA suggests a genetic network that involves many components yet to be unraveled.


Asunto(s)
Atresia Tricúspide , Humanos , Aberraciones Cromosómicas , Fenotipo , Atresia Tricúspide/genética , Corazón Univentricular/genética
6.
Adv Exp Med Biol ; 1441: 77-85, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884705

RESUMEN

The major events of cardiac development, including early heart formation, chamber morphogenesis and septation, and conduction system and coronary artery development, are briefly reviewed together with a short introduction to the animal species commonly used to study heart development and model congenital heart defects (CHDs).


Asunto(s)
Modelos Animales de Enfermedad , Cardiopatías Congénitas , Corazón , Animales , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/patología , Corazón/embriología , Corazón/fisiopatología , Corazón/crecimiento & desarrollo , Humanos , Ratones , Morfogénesis
7.
Curr Res Toxicol ; 6: 100167, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659494

RESUMEN

Sunitinib malate is known to cause cardiotoxicity in a sub-population of patients, with heart failure seen in more severe cases. Cardiac progenitor cells (CPCs) have been identified in adult human myocardium and contribute to overall tissue maintenance, with previous work identifying negative impacts of sunitinib on these cells. This study aimed to characterise the toxic effects of sunitinib in human CPCs, applying sunitinib concentrations equivalent to clinical plasma levels to these cells in vitro. Cell viability was reduced by 26.5 ± 6.6 % by 2 µM sunitinib for 24 h (p < 0.01); this concentration also induced fold-change increases in gene expression of: calpain (3.1 ± 0.73, p < 0.05), FAS (2.3 ± 0.8, p < 0.05) and BAX (1.9 ± 0.2, p < 0.05), and a decrease in BCL-2 (3.5 ± 0.0, p < 0.001), vs. control (1.0 ± 0.0). This was affirmed by sunitinib inducing fold changes in protein expression of: calpain-1 (2.5 ± 0.5, p < 0.05); FAS receptor (2.1 ± 0.2, p < 0.05) and BAX (2.1 ± 0.2, p < 0.05) vs. control (1.0 ± 0.0). These results indicated that sunitinib induced apoptosis in CPCs, but negative annexin V staining and lack of protection by caspase inhibitors indicated this was not the cell death pathway activated. Further investigation found sunitinib was concentrated in the lysosomes and autophagosomes within CPCs, but did not induce accumulation of acidic organelles. In conclusion, these data confirm that cell death is caused by sunitinib in CPCs at concentrations equivalent to clinical plasma levels, inducing cell death pathway signals that lead to non-apoptotic cell death.

8.
C R Biol ; 347: 9-18, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488639

RESUMEN

Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.


Les malformations cardiaques congénitales touchent 1 naissance sur 100 et résultent d'anomalies du développement cardiaque. La croissance du tube cardiaque précoce se produit par l'ajout progressif de cellules progénitrices du second champ cardiaque (SHF) aux pôles cardiaques. Le SHF contribue au myocarde septal ventriculaire, au myocarde ventriculaire droit et au myocarde de la voie de sortie au pôle artériel, et au myocarde auriculaire, y compris le myocarde septal auriculaire, au pôle veineux. Le déploiement du SHF est essentiel pour la septation cardiaque et a été impliqué dans la formation du boucle cardiaque et, avec les cellules de la crête neurale, dans l'orchestration du développement de la voie efférente. Perturbation génétique ou environnementale du déploiement du SHF est donc à l'origine d'un spectre de formes communes de maladies cardiaques congénitales affectant la morphogenèse conotroncale et septale. Ici, nous passons en revue les principales propriétés des cellules du SHF ainsi que les découvertes récentes sur les programmes de développement qui contrôlent l'ajout de cellules progénitrices cardiaques ainsi que les origines des malformations cardiaques congénitales.


Asunto(s)
Cardiopatías Congénitas , Corazón , Humanos , Cardiopatías Congénitas/genética , Miocardio , Células Madre , Morfogénesis
9.
Cell Biosci ; 14(1): 30, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38444042

RESUMEN

Heart failure (HF) is an end-stage of many cardiac diseases and one of the main causes of death worldwide. The current management of this disease remains suboptimal. The adult mammalian heart was considered a post-mitotic organ. However, several reports suggest that it may possess modest regenerative potential. Adult cardiac progenitor cells (CPCs), the main players in the cardiac regeneration, constitute, as it may seem, a heterogenous group of cells, which remain quiescent in physiological conditions and become activated after an injury, contributing to cardiomyocytes renewal. They can mediate their beneficial effects through direct differentiation into cardiac cells and activation of resident stem cells but majorly do so through paracrine release of factors. CPCs can secrete cytokines, chemokines, and growth factors as well as exosomes, rich in proteins, lipids and non-coding RNAs, such as miRNAs and YRNAs, which contribute to reparation of myocardium by promoting angiogenesis, cardioprotection, cardiomyogenesis, anti-fibrotic activity, and by immune modulation. Preclinical studies assessing cardiac progenitor cells and cardiac progenitor cells-derived exosomes on damaged myocardium show that administration of cardiac progenitor cells-derived exosomes can mimic effects of cell transplantation. Exosomes may become new promising therapeutic strategy for heart regeneration nevertheless there are still several limitations as to their use in the clinic. Key questions regarding their dosage, safety, specificity, pharmacokinetics, pharmacodynamics and route of administration remain outstanding. There are still gaps in the knowledge on basic biology of exosomes and filling them will bring as closer to translation into clinic.

11.
Methods Mol Biol ; 2729: 303-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38006504

RESUMEN

Noninvasive long-term imaging of therapeutic cells in preclinical models can be achieved through introducing a reporter gene into the cells of interest. Despite important recent developments such as gene editing, cell engineering based on lentiviruses remains a mainstream tool for gene transfer applicable to a variety of different cell types.In this chapter, we describe how to use lentivirus-based genetic engineering to render different candidate cell therapies in vivo traceable by radionuclide imaging. We illustrate this reporter gene technology using the sodium iodide symporter (NIS), which is compatible with both positron emission tomography (PET) and single-photon emission computed tomography (SPECT). For preclinical experimentation, we fused NIS with a suitable fluorescent protein such as monomeric GFP or RFP to streamline cell line generation and downstream analyses of ex vivo tissue samples. We present protocols for reporter gene engineering of human cardiac progenitor cells, regulatory T cells, and effector T cells as well as for the characterization experiments required to validate NIS-fluorescent protein reporter function in these candidate therapeutic cells.


Asunto(s)
Tomografía de Emisión de Positrones , Simportadores , Humanos , Tomografía de Emisión de Positrones/métodos , Simportadores/genética , Simportadores/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Ingeniería Genética
12.
BMC Cancer ; 23(1): 1245, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110859

RESUMEN

BACKGROUND: Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS: Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS: The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION: The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.


Asunto(s)
Neoplasias Cardíacas , Mixoma , Humanos , Factores de Transcripción/metabolismo , Miocitos Cardíacos/fisiología , Diferenciación Celular/genética , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/patología , Mixoma/genética , Mixoma/metabolismo , Mixoma/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Microambiente Tumoral
13.
Heliyon ; 9(11): e21268, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954289

RESUMEN

Background: Subpopulations of myocardial c-kitpos cells have the ability to stimulate regeneration in ischemic heart disease by paracrine effects. The left atrial appendage (LAA), which is easy accessible during cardiac surgery, may represent a perfect source for c-kitpos cell extraction for autologous cell therapies in the living human. So far, frequency and distribution of c-kitpos cells in LAA are unknown. Methods: LAAs of patients who underwent cardiac surgery due to coronary artery disease (coronary artery bypass graft, CABG), valvular heart disease or both and of two body donors were examined. Tissue was fixed in 4 % paraformaldehyde, embedded in paraffin, dissected in consecutive sections and stained for c-kitpos cells. In parallel, grade of fibrosis, amount of fat per section and cells positive for mast cell tryptase were examined. Results: We collected 27 LAAs (37.0 % female, mean left ventricular ejection fraction 50.4 %, 63.0 % persistent atrial fibrillation (AF)). Most of the patients underwent combined CABG and valve surgery (51.9 %). C-kitpos cells were detected in 3 different regions: A) Attached to the epicardial fat layer, B) close to vascular structures and C) between cardiomyocytes. C-kitpos cells ranged from 0.05 c-kitpos cells per mm2 to 67.5 c-kitpos cells per mm2. We found no association between number of c-kitpos cells and type of AF, amount of fibrosis or amount of fat. Up to 72 % of c-kitpos cells also showed a positive staining for mast cell tryptase. Conclusion: C-kitpos cells are frequent in LAAs of cardiovascular patients with a rather homogenous distribution throughout the LAA. The LAA can therefore be considered as a source for extraction of a reasonable quantity of autologous cardiac progenitor cells in the living human patient.

14.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(9): 1644-1650, 2023 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-37814881

RESUMEN

OBJECTIVE: To investigate the effect of cardiac progenitor cells-derived exosomes (CPCs-Exo) on Treg differentiation in mice with myocardial infarction (MI). METHODS: Mouse models of MI established by ligation of the left anterior descending coronary artery (LAD) were treated with CPCs-Exos, and naive CD4+T cells were isolated from the spleen of the mice and divided into control group, CD4+T cell activation group (CD3+CD28), CPCs-Exos stimulation group (CD3+CD28+CPCs-Exos), mTOR activator group (CD3+CD28+CPCs-Exos+mTOR activator) and mTOR inhibitor group (CD3+CD28+CPCs-Exos+mTOR inhibitor). Western blotting was used to detect the expression levels of mTOR and p-mTOR in the treated cells. Flow cytometry was used to analyze the percentages of Treg and CD4+IL-10+T cells. The infarct size of the mice were measured with 2, 3, 5-triphenyltetrazole chloride (TTC) staining, and serum levels of LDH and CK-MB were detected using an automatic biochemical analyzer. RESULTS: Compared with the control group, the mouse models of MI showed significantly increased release of LDH (P<0.001) and CK-MB (P=0.0002) and increased percentages of Treg and CD4+IL-10+T cells. Treatment with CPC-Exos effectively reduced the MI area and lowered serum levels of LDH (P=0.003) and CK-MB (P=0.003) and the percentages of Tregs (P=0.001) and CD4+IL-10+T cells (P=0.004) in the MI mouse models. In the isolated CD4+T cells, CPCsExos treatment significantly up-regulated the percentages of Treg (P=0.01) and CD4+IL-10+ T cells (P=0.004) and increased the expression of mTOR (P=0.009) and p-mTOR (P=0.009), and these effects could be further enhanced by the mTOR activator but obviously attenuated by the mTOR inhibitor. CONCLUSION: CPCs-Exos promotes the differentiation of Treg in mice with MI by modulating the mTOR signaling pathway.


Asunto(s)
Exosomas , Lesiones Cardíacas , Infarto del Miocardio , Animales , Ratones , Antígenos CD28/metabolismo , Diferenciación Celular , Lesiones Cardíacas/metabolismo , Interleucina-10 , Células Madre , Linfocitos T Reguladores , Serina-Treonina Quinasas TOR/metabolismo
15.
Stem Cell Reports ; 18(11): 2138-2153, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37863045

RESUMEN

Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.


Asunto(s)
Células Madre Pluripotentes Inducidas , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Miocitos Cardíacos , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Proteína Homeótica Nkx-2.5/genética , Proteína Homeótica Nkx-2.5/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
16.
Cells ; 12(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37759522

RESUMEN

Oxidative stress-induced myocardial apoptosis and necrosis are critically involved in ischemic infarction, and several sources of extracellular vesicles appear to be enriched in therapeutic activities. The central objective was to identify and validate the differential exosome miRNA repertoire in human cardiac progenitor cells (CPC). CPC exosomes were first analyzed by LC-MS/MS and compared by RNAseq with exomes of human mesenchymal stromal cells and human fibroblasts to define their differential exosome miRNA repertoire (exo-miRSEL). Proteomics demonstrated a highly significant representation of cardiovascular development functions and angiogenesis in CPC exosomes, and RNAseq analysis yielded about 350 different miRNAs; among the exo-miRSEL population, miR-935 was confirmed as the miRNA most significantly up-regulated; interestingly, miR-935 was also found to be preferentially expressed in mouse primary cardiac Bmi1+high CPC, a population highly enriched in progenitors. Furthermore, it was found that transfection of an miR-935 antagomiR combined with oxidative stress treatment provoked a significant increment both in apoptotic and necrotic populations, whereas transfection of a miR-935 mimic did not modify the response. Conclusion. miR-935 is a highly differentially expressed miRNA in exo-miRSEL, and its expression reduction promotes oxidative stress-associated apoptosis. MiR-935, together with other exosomal miRNA members, could counteract oxidative stress-related apoptosis, at least in CPC surroundings.

17.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569446

RESUMEN

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

18.
Front Cell Dev Biol ; 11: 1111684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261075

RESUMEN

Domestic pigs (Sus scrofa) share many genetic, anatomical, and physiological traits with humans and therefore constitute an excellent preclinical animal model. Fundamental understanding of the cellular and molecular processes governing early porcine cardiogenesis is critical for developing advanced porcine models used for the study of heart diseases and new regenerative therapies. Here, we provide a detailed characterization of porcine cardiogenesis based on fetal porcine hearts at various developmental stages and cardiac cells derived from porcine expanded pluripotent stem cells (pEPSCs), i.e., stem cells having the potential to give rise to both embryonic and extraembryonic tissue. We notably demonstrate for the first time that pEPSCs can differentiate into cardiovascular progenitor cells (CPCs), functional cardiomyocytes (CMs), epicardial cells and epicardial-derived cells (EPDCs) in vitro. Furthermore, we present an enhanced system for whole-embryo culture which allows continuous ex utero development of porcine post-implantation embryos from the cardiac crescent stage (ED14) up to the cardiac looping (ED17) stage. These new techniques provide a versatile platform for studying porcine cardiac development and disease modeling.

19.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373444

RESUMEN

Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD. However, the lack of mechanistic understanding of these cellular processes has made it challenging to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive understanding of the interplay between cardiac metabolism and heart regeneration could facilitate the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in patients with IHD.


Asunto(s)
Insuficiencia Cardíaca , Isquemia Miocárdica , Recién Nacido , Humanos , Corazón , Miocitos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Insuficiencia Cardíaca/metabolismo , Proliferación Celular
20.
Cells ; 12(8)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37190075

RESUMEN

Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.


Asunto(s)
Transdiferenciación Celular , Técnicas de Reprogramación Celular , Reprogramación Celular , Fibroblastos , Cardiopatías , Corazón , Pericitos , Regeneración , Corazón/fisiología , Cardiopatías/terapia , Fibroblastos/citología , Fibroblastos/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Pericitos/citología , Pericitos/fisiología , Células Endoteliales/citología , Células Endoteliales/fisiología , Humanos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA