Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Int J Biol Macromol ; 279(Pt 3): 135397, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245115

RESUMEN

Food gel is a kind of macromolecular biopolymer with viscoelasticity, which has good water retention and gelling ability, especially gels formed by protein and/or polysaccharide. The addition of calcium ions triggers gelation by interacting with the gel matrix, enhancing gels' textural and rheological properties like hardness, viscosity and elasticity. Thus calcium ions enrich the range of applications of food gels. This review focuses on forming a calcium-induced gel and improving the texture properties. It summarizes the mechanisms of gelation induced by calcium ions in polysaccharide, protein, and polysaccharide-protein systems and their gel properties. The effects of influencing factors in calcium ion concentration, types and mixing ratios of matrices, acid, and alkaline environments, as well as treatment methods on calcium-induced gel characteristics, are presented. Additionally, the current applications of calcium-induced gels in food industries and challenges are presented.

2.
Colloids Surf B Biointerfaces ; 245: 114201, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39255748

RESUMEN

Changes in sodium alginate and calcium ion concentrations have a considerable impact on the structural properties of calcium alginate gel (ALG) beads, consequently influencing the biological characteristics of the cells encapsulated within them. This study aimed to examine the effects of calcium on the metastatic potential of hepatocellular carcinoma (HCC) cells encapsulated in ALG beads. The results showed that the invasion ability of HCC cells significantly increased when they were encapsulated in beads prepared with a calcium concentration of 200 mM compared to those prepared with a calcium concentration of 50 mM. Furthermore, the expression levels of genes related to metastasis were significantly elevated in ALG beads prepared with a calcium concentration of 200 mM. Specifically, the expression of activated matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and urokinase-type plasminogen activator system proteins was found to be high. Conversely, the expression of phosphatase and tensin homolog deleted on chromosome 10 was observed to be significantly reduced. These findings indicate that manipulating the calcium ion concentration during the fabrication of ALG beads enables the generation of three-dimensional HCC cells with varying metastatic capacities. This model offers a valuable tool for investigating the mechanisms underlying liver cancer metastasis and screening potential therapeutic drugs.

3.
Exp Neurol ; 381: 114921, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39142369

RESUMEN

The dysregulation of Angiotensin-converting enzyme 2 (ACE2) in central nervous system is believed associates with COVID-19 induced cognitive dysfunction. However, the detailed mechanism remains largely unknown. In this study, we performed a comprehensive system genetics analysis on hippocampal ACE2 based on BXD mice panel. Expression quantitative trait loci (eQTLs) mapping showed that Ace2 was strongly trans-regulated, and the elevation of Ace2 expression level was significantly correlated with impaired cognitive functions. Further Gene co-expression analysis showed that Ace2 may be correlated with the membrane proteins in Calcium signaling pathway. Further, qRT-PCR confirmed that SARS-CoV-2 spike S1 protein upregulated ACE2 expression together with eight membrane proteins in Calcium Signaling pathway. Moreover, such elevation can be attenuated by recombinant ACE2. Collectively, our findings revealed a potential mechanism of Ace2 in cognitive dysfunction, which could be beneficial for COVID-19-induced cognitive dysfunction prevention and potential treatment.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Disfunción Cognitiva , Sitios de Carácter Cuantitativo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/complicaciones , COVID-19/psicología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/etiología , Ratones , SARS-CoV-2 , Hipocampo/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Masculino , Humanos , Biología de Sistemas/métodos
4.
Cell Biochem Biophys ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106022

RESUMEN

Calcium ions are the second messenger playing as regulators for various cellular activities. Its spatiotemporal control is critical for various brain functions, including neuroplasticity, apoptosis, and cell death. The Endoplasmic Reticulum (ER) plays an important role in determining these spatiotemporal calcium dynamics. Stromal interaction molecule (STIM) - Orai channel on the membrane generates additional calcium flow, whereas other membrane fluxes contribute to cytosolic flux. Due to their anomalous character, we used the Caputo fractional differential operator to mimic these interactions in polar coordinates. Solutions were generated using hybrid integral transform methods to control the analytical approach. Using Green's function yielded a closed-form solution for Mittag-Leffler-type functions. This work emphasizes the significant relationship between calcium and various buffer levels in neurons. The differential transition simulation of a time derivative with space across different parameters indicated a decrease in calcium concentration. Anomalously low buffer levels exhibited the impact of Alzheimer's disease on calcium higher concentration, leading to the death of neurons. Additionally, the research introduces a method involving S100B, BAPTA, and calmodulin buffers to uphold optimal calcium levels within the neuronal cytosol. The applicability of this model with different buffer properties and parameters and memory impacts the calcium concentration with the neurological disorder.

5.
Cell Biochem Biophys ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115644

RESUMEN

Calcium plays a crucial role as a second messenger in neuronal signal transduction pathways. The influx of calcium ions through various physicochemical gating channels activates neuronal calcium signaling. The Endoplasmic Reticulum (ER) is a significant intracellular structure that sequesters calcium and controls signaling through SERCA, IPR, and leak channel mechanisms. Disruption of calcium dynamics can trigger intrinsic dyshomeostasis, cell damage, and apoptosis. The present study articulates a Caputo fractional time derivative in the polar coordinate dimensions to investigate the role of nonlocal calcium-free ions in the neuron through the Orai channel, and ER fluxes, incorporating various physiological parameters. The solution was obtained through the hybrid integral transform technique for analytical form. The closed form was generated using Green's function in terms of Mainardi and Wright's functions. Our simulation uncovered the calcium concentration bandwidth of interaction with different neuronal parameters. Parameters and calcium ion synergy show normal and Alzheimer's disease-impacted interaction through different illustrations. Our simulation reveals that S100B and BAPTA have significant calcium-controlling behavior.

6.
Front Plant Sci ; 15: 1427420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091318

RESUMEN

Drought stress poses a significant obstacle to agricultural productivity, particularly in the case of oilseed crops such as sunflower (Helianthus annuus L.). Selenium (Se) is a fundamental micronutrient that has been recognized for its ability to enhance plant resilience in the face of various environmental stresses. The FH-770 sunflower variety was cultivated in pots subjected to three stress levels (100% FC, 75% FC, and 50% FC) and four Se application rates (0 ppm, 30 ppm, 60 ppm, and 90 ppm). This research aimed to investigate the effect of exogenously applied Se on morpho-physiological and biochemical attributes of sunflower to improve the drought tolerance. Foliar Se application significantly lowered H2O2 (hydrogen peroxide; ROS) (20.89%) accumulation that markedly improved glycine betaine (GB) (74.46%) and total soluble protein (Pro) (68.63%), improved the accumulation of ascorbic acid (AA) (25.51%), total phenolics (TP) (39.34%), flavonoids (Flv) (73.16%), and anthocyanin (Ant) (83.73%), and improved the activity of antioxidant system superoxide dismutase (SOD) (157.63%), peroxidase (POD) (100.20%), and catalase (CAT) (49.87%), which ultimately improved sunflower growth by 36.65% during drought stress. Supplemental Se significantly increased shoot Se content (93.86%) and improved calcium (Ca2+), potassium (K+), and sodium (Na+) ions in roots by 36.16%, 42.68%, and 63.40%, respectively. Selenium supplements at lower concentrations (60 and 90 ppm) promoted the growth, development, and biochemical attributes of sunflowers in controlled and water-deficient circumstances. However, selenium treatment improved photosynthetic efficiency, plant growth, enzymatic activities, osmoregulation, biochemical characteristics, and nutrient balance. The mechanisms and molecular processes through which Se induces these modifications need further investigation to be properly identified.

7.
Ecotoxicol Environ Saf ; 284: 116921, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182284

RESUMEN

Calcium ions (Ca2+), essential as second messengers in all cells, play a pivotal role as micronutrients in insects. However, few studies have explored the effects of both insufficient and excessive Ca2+ intake on life history performance and population parameters. This study examines the impact of varying Ca2+ intake levels-insufficient (0 mg/kg), appropriate (100 mg/kg), and excessive (250 mg/kg)-on the life history performance and population parameters of Spodoptera litura using two-sex life tables. Insufficient and excessive Ca2+ intakes significantly extended the preadult development period and decreased the preadult survival rates of S. litura, compared to those on an appropriate Ca2+ intake. The population parameters (Intrinsic rate of increase (r), Finite rate of increase (λ), and Net reproductive rate (R0)) of S. litura on a 100 mg/kg diet (r = 0.1364, λ = 1.1462, R0 = 390) were significantly higher than those on a 0 mg/kg diet (r = 0.1091, λ = 1.1153, R0 = 130.52). Additionally, untargeted metabolomics analysis revealed that inappropriate Ca2+ levels (either insufficient or excessive) triggered significant up-regulation of 71.1 % and 92.8 % of the metabolites in the hemolymph, respectively, compared to the appropriate Ca2+ intake. Notably, disruptions in metabolite balance affected critical components such as melatonin and melanin within the tryptophan and tyrosine metabolism pathways. These findings underscore that both insufficient and excessive Ca2+ intakes adversely affect the life history performance and disrupt hemolymph metabolic balance in S. litura.

8.
J Ethnopharmacol ; 335: 118605, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047882

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Galangin, a bioactive compound extracted from Alpinia officinarum Hance (Zingiberaceae), a plant with significant ethnopharmacological importance, has been used for thousands of years as a spice, condiment, and medicinal agent for various conditions, including gastrointestinal disorders. Although there is evidence suggesting its potential to improve gastric ulcers, the molecular mechanisms underlying its anti-ulcer properties are not fully understood. OBJECTIVE: of the Study: This study aimed to investigate the effects of galangin on ethanol-induced acute gastric mucosal injury (AGMI) in mice and elucidate its molecular mechanisms. MATERIALS AND METHODS: Sixty BALB/c mice were randomly assigned into two main groups: a normal control group (n = 10) and an ethanol-induced group (n = 50). After establishing the AGMI model in mice using a combination of 40% ethanol and anhydrous ethanol, the ethanol-induced group was further subdivided into five subgroups (n = 10): an omeprazole control group (20 mg/kg), an untreated ethanol group, and three treatment groups receiving high-dose (50 mg/kg) or low-dose (25 mg/kg) galangin or capsazepine (CPZ, 2 mg/kg). The protective effects of galangin were evaluated through mucosal injury indices, hematoxylin and eosin staining, and quantification of inflammatory markers (IL-1ß, IL-6, IL-8, and TNF-α). Oxidative stress levels and matrix metalloproteinase activity were measured using specific assay kits. Molecular docking was conducted to assess the binding affinity of galangin to key proteins within the transient receptor potential vanilloid 1 (TRPV1) pathway. Real-time fluorescence quantitative PCR (qPCR) was used to determine mRNA expression levels of TRPV1, calmodulin (CaM), substance P (SP), and CGRP in gastric tissues. Protein expression levels of TRPV1, nerve growth factor (NGF), tropomyosin receptor kinase A (TRKA), transforming growth factor beta (TGF-ß), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) were assessed through Western blot analysis. In cellular experiments, Culture of Human Gastric Epithelial Cells (GES-1) were treated with various concentrations of galangin after 7% ethanol induction. Cell proliferation, apoptosis, and migration were evaluated using Hoechst 33258 staining and transwell migration assays. TRPV1 protein expression was detected using immunofluorescence, and the expression levels of Bcl-2, BCL2-Associated X (BAX), and Caspase-3 were quantified by qPCR. Additionally, specific probe kits were used to measure intracellular calcium ions (Ca2+) and mitochondrial membrane potential. RESULTS: The findings indicate that galangin significantly improved mucosal pathology by reducing ulcer indices and inflammatory levels, while enhancing superoxide dismutase (SOD) activity and decreasing malondialdehyde (MDA) concentration. Galangin also reduced matrix metalloproteinase-2 (MMP-2), m metalloproteinase-9 (MMP-9) levels, promoting mucosal repair. At the cellular level, galangin decreased intracellular calcium ion concentration and mitigated the decline in mitochondrial membrane potential, enhance the restoration of mucosal cells, increased migration and proliferation, and reduced apoptosis. Molecularly, galangin demonstrated favorable binding to TRPV1, NGF, TRKA, TGF-ß, COX-2, and NF-κB, and reversed the elevated expression of these proteins. Additionally, galangin downregulated the mRNA expression of TRPV1, CaM, SP, CGRP, BAX, and Caspase-3 in gastric tissues/cells, while upregulating Bcl-2 mRNA expression. CONCLUSION: Galangin mitigates AGMI by inhibiting the overactivation of the TRPV1 pathway, thereby blocking aberrant signal transduction. This study suggests that galangin has therapeutic potential against ethanol-induced AGMI and may be a viable alternative for the treatment of alcohol-induced gastric mucosal injuries.


Asunto(s)
Etanol , Flavonoides , Mucosa Gástrica , Ratones Endogámicos BALB C , Transducción de Señal , Úlcera Gástrica , Canales Catiónicos TRPV , Animales , Flavonoides/farmacología , Canales Catiónicos TRPV/metabolismo , Mucosa Gástrica/efectos de los fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Mucosa Gástrica/lesiones , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/metabolismo , Simulación del Acoplamiento Molecular , Antiulcerosos/farmacología , Línea Celular , Estrés Oxidativo/efectos de los fármacos , Humanos , Apoptosis/efectos de los fármacos
9.
Anal Chim Acta ; 1316: 342870, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969414

RESUMEN

A plasmonic tilted fiber Bragg grating (TFBG)-based sensor for the detection of calcium ion (Ca2+) was proposed and demonstrated experimentally. Hydrogel material was synthesized by utilizing hydrogen bond recombination between cellulose nanocrystals (CNC) and polyvinyl alcohol (PVA). Sodium alginate (SA) was incorporated into this hydrogel material, resulting in a composite membrane with specific binding properties for Ca2+. The membrane was applied as a coating on the surface of a gold-coated TFBG. The CNC/PVA-SA modified gold on the TFBG surface enhanced the localized refractive index changes caused by variations of Ca2+ concentrations. The experimental results demonstrated an impressive limit of detection (LOD) of approximately 0.025 fM, which is five orders of magnitude better than the current LODs of similar Ca2+ sensors. And the proposed Ca2+ sensor exhibited a wide dynamic range of 10-16 M to 10-6 M.

10.
Environ Sci Pollut Res Int ; 31(33): 45495-45506, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967844

RESUMEN

The reverse osmosis (RO) technique has been extensively employed in the advanced treatment of industrial water and wastewater. However, this process results in the production of a significant quantity of reverse osmosis concentrate (ROC), which contains high levels of salinity and organic contaminants, thereby posing serious environmental problems. This study reported a two-stage precipitation process utilizing quicklime (CaO) and caustic soda (NaOH) in conjunction with air blowing (carbonation) for the removal of Ca2+ and Mg2+ from real brackish water ROC of factory. In stage I, the CaO precipitation-carbonation process was employed to eliminate the majority of Ca2+ from the ROC, while leaving Mg2+ virtually unaffected, yielding high-purity CaCO3 precipitates. In stage II, the NaOH precipitation method was utilized to eliminate the remaining Ca2+ and Mg2+ from the ROC. It was demonstrated that under optimal conditions, the removal rates of Ca2+ and Mg2+ exceeded 97%. Finally, the characterization of precipitates demonstrated the generation of high-purity CaCO3 precipitates in stage I, as well as the formation of CaCO3 and Mg(OH)2 precipitates in stage II. The results confirmed the feasibility of employing the two-stage precipitation with carbonation process to economically treat ROC and enable its reuse, offering valuable insights for the treatment of industrial wastewater.


Asunto(s)
Calcio , Magnesio , Ósmosis , Magnesio/química , Calcio/química , Purificación del Agua/métodos , Precipitación Química , Aguas Residuales/química , Iones , Contaminantes Químicos del Agua/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-38980482

RESUMEN

Water softening is a treatment process required to remove calcium (Ca(II)) and magnesium (Mg(II)) cations from water streams. Nanocomposites can provide solutions for such multiple challenges and have high performance and low application costs. In this work, a multimetallic cobalt, nickel, and copper 2-aminoterephthalic acid metal-organic framework ((Co/Ni/Cu-NH2BDC) MOF) was synthesized by a simple solvothermal technique. This MOF was supported on an Egyptian natural zeolite ore and was used for the adsorption of Ca(II) ions for water-softening applications. The adsorbent was characterized using Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), N2 adsorption-desorption isotherms, and zeta potential measurements. The adsorption isotherm data for the prepared adsorbent toward Ca(II) were best fit using the Redlich-Peterson model and showed a maximum adsorption capacity of 88.1 mg/g. The adsorption kinetics revealed an equilibrium time of 10 min, which was best fit using the Avrami model. The intermolecular interactions of Ca(II) ions with zeolite and MOF were investigated by Monte Carlo simulations, molecular dynamics simulations, and FTIR and XRD analyses. The adsorption sites in the zeolite structure were oxygen atoms, while those in the MOF structure were amine nitrogen atoms. The Ca(II) ions are coordinated with the solvent molecules in both structures. Finally, the in vitro cytotoxicity of this nanocomposite was assessed, revealing viability levels of 74.57 ± 2.1% and 21 ± 2.79% for Vero and African green monkey kidney and human liver (HepG2) cells, respectively. Cytotoxicity assays help assess the environmental impact of these materials, ensuring that they do not harm aquatic organisms or disrupt ecosystems. Thus, this study demonstrated the valorization of MOF/zeolite as a valuable and industry-ready adsorbent that can appropriate Ca(II) contaminants from aqueous streams.

12.
J Food Sci Technol ; 61(7): 1363-1373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910920

RESUMEN

Consumers seek healthy and sustainable products, whereas the food industry faces the challenge of processing by-products management. The application of fruit pomace as an additive could be a solution addressing the needs of both consumers and producers. The research objective has been to assess the effect of dried blackcurrant pomace powder (BP) and calcium ions in varied concentration on the physicochemical properties of multicomponent freeze-dried snacks as compared to the influence of low-methoxyl pectin (LMP). The snacks were prepared using varied content of BP (1, 3, 5%) and calcium lactate (0, 0.01, 0.05%). Water content and activity, hygroscopic properties, structure, texture, colour, polyphenols content (TPC), and antioxidant activity were analysed. The addition of BP resulted in lowering water activity and porosity. The microstructure of the snacks consisted of a large number of small and unevenly distributed pores. Consequently, the reduction of hygroscopic properties with the growing amount of BP was observed. Applied additives strengthened the structure and caused changes in compression curves indicating enhanced hardness and crispiness. The effect given by 5% of BP was comparable to that obtained with 0.5% of LMP. Additionally, blackcurrant pomace infusion increased TPC and enhanced antioxidant activity but it also caused significant changes in the colour of the snacks. Overall, obtained results have shown that dried blackcurrant pomace powder (BP) can be successfully applied as a food additive supporting stability, texture, and bioactive compounds content, thus fortifying the physicochemical properties of freeze-dried fruit and vegetable snacks.

13.
Heliyon ; 10(11): e31664, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828353

RESUMEN

Osteosarcoma is widely believed to be an osteogenic differentiation disorder. In recent years, to further understand this disease, a lot resources were poured into the potential link between differentiation defects and tumorigenesis. Long-term monitoring of the differentiation progress of osteosarcoma cells is of great importance. In order to better promote the research, we have developed a novel fluorescent probe called PTB-EDTA, which exhibits remarkable bio-compatibility and demonstrates high selectivity towards osteosarcoma cells. Not only is the PTB-EDTA is capable of live cell imaging while conventional histology requires to kill the cells, its fluorescence is also enhanced as the osteogenic differentiation proceeding. These properties make PTB-EDTA a promising tool for monitoring osteosarcoma cells.

14.
Cell Biochem Biophys ; 82(2): 1367-1379, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38743137

RESUMEN

Free Calcium ions in the cytosol are essential for many physiological and physical functions. The free calcium ions are commonly regarded as a second messenger, are an essential part of brain communication. Numerous physiological activities, such as calcium buffering and calcium ion channel flow, etc. influence the cytosolic calcium concentration. In light of the above, the primary goal of this study is to develop a model of calcium distribution in neuron cells when a Voltage-Gated Calcium Channel and Sodium Calcium Exchanger are present. As we know, decreased buffer levels and increased calcium activity in the Voltage-Gated Calcium Channel and Sodium Calcium Exchanger lead to Alzheimer's disease. Due to these changes, the calcium diffusion in that location becomes disrupted and impacted by Alzheimer's disease. The model has been constructed by considering key factors like buffers and ER fluxes when Voltage-Gated Calcium Channels and Sodium Calcium Exchangers are present. Based on the physiological conditions of the parameters, appropriate boundary conditions have been constructed in the fuzzy environment. This model is considered a fuzzy boundary value problem with the source term and initial boundary conditions are modeled by triangular fuzzy functions. In this, paper we observed the approximate solution of the mathematical model which was investigated by the fuzzy undetermined coefficient method. The solution has been performed through MATLAB and numerical results have been computed using simulation. The observation made that the proper operation of the Voltage-Gated Calcium Channel and Sodium Calcium Exchanger is critical for maintaining the delicate equilibrium of calcium ions, which regulates vital cellular activities. Dysregulation of Voltage-Gated Calcium Channel and Sodium Calcium Exchanger activity has been linked to neurodegenerative illnesses like Alzheimer's disease.


Asunto(s)
Canales de Calcio , Calcio , Retículo Endoplásmico , Neuronas , Intercambiador de Sodio-Calcio , Calcio/metabolismo , Neuronas/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Canales de Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Tampones (Química) , Humanos , Lógica Difusa , Modelos Biológicos
15.
Oncol Lett ; 28(1): 315, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38807670

RESUMEN

Artesunate (ART), an antimalarial drug, has a broad spectrum of antitumour effects in cancer types such as esophageal and gastric cancer. However, evidence demonstrating the role of ART in cervical cancer cells is limited. In the present study, the inhibitory effect of ART on the growth of cervical cancer cells through the modulation of the cell cycle and apoptosis was investigated. The growth-inhibitory effect of ART on a cervical cancer cell line (SiHa) was detected using a Cell Counting Kit-8 assay after treatment with ART for 24 h, after which the half-maximal inhibitory concentration (IC50) was calculated. Using flow cytometry assays, apoptosis, the cell cycle, the levels of reactive oxygen species (ROS) and calcium (Ca2+) ions, as well as the mitochondrial membrane potential were evaluated in SiHa cells following treatment with ART for 24 and 48 h. The mRNA expression levels of Bcl2, Bcl-xl, (myeloid cell leukaemia 1) Mcl-1, Bcl2-like protein 11 (BIM), (Bcl2-related ovarian killer protein) Bok, Bax and (Bcl2 homologous antagonist/killer) Bak in SiHa cells were detected using reverse transcription-quantitative PCR. ART inhibited the growth of SiHa cells in a dose-dependent manner. The IC50 of ART in SiHa cells was 26.32 µg/ml. According to the IC50 value, 15, 30 and 100 µg/ml ART were selected for further experiments, and normal saline (0 µg/ml ART) was used as the control group. The results indicated that treatment with 15, 30 and 100 µg/ml ART for 24 and 48 h induced apoptosis, increased the levels of ROS, the levels of Ca2+ and the mRNA expression levels of BIM, Bok, Bax and Bak, but decreased the cell proliferation indices, the mitochondrial membrane potential and the mRNA expression levels of Bcl2, Bcl-xl and Mcl-1 in a dose- and time-dependent manner. In conclusion, ART inhibited the growth of SiHa cells and induced apoptosis via a mechanism associated with the regulation of Bcl2 family member expression, which was associated with the increase of the levels of ROS and Ca2+ and the reduction of the mitochondrial membrane potential.

16.
Biosystems ; 240: 105227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718915

RESUMEN

Hepatocyte lipid and glucose metabolism is regulated not only by major hormones like insulin and glucagon but also by many other factors, including calcium ions. Recently, mitochondria-associated membrane (MAM) dysfunction combined with incorrect IP3-receptor regulation has been shown to result in abnormal calcium signaling in hepatocytes. This dysfunction could further lead to hepatic metabolism pathology. However, the exact contribution of MAM dysfunction, incorrect IP3-receptor regulation and insulin resistance to the calcium-insulin-glucagon interplay is not understood yet. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network with a detailed focus on the model construction details besides the biological aspect. In this work, we analyze the role of abnormal calcium signaling and insulin dysfunction in hepatocytes by proposing a model of hepatocyte metabolic regulatory network. We focus on the model construction details, model validation, and predictions. We describe the dynamic regulation of signaling processes by sigmoid Hill function. In particular, we study the effect of both the Hill function slope and the distance between Hill function extremes on metabolic processes in hepatocytes as a model of nonspecific insulin dysfunction. We also address the significant time difference between characteristic time of glucose hepatic processing and a typical calcium oscillation period in hepatocytes. Our modeling results show that calcium signaling dysfunction results in an abnormal increase in postprandial glucose levels, an abnormal glucose decrease in fasting, and a decreased amount of stored glycogen. An insulin dysfunction of glucose phosphorylation, glucose dephosphorylation, and glycogen breakdown also cause a noticeable effect. We also get some insight into the so-called hepatic insulin resistance paradox, confirming the hypothesis regarding indirect insulin action on hepatocytes via dysfunctional adipocyte lipolysis.


Asunto(s)
Señalización del Calcio , Calcio , Glucosa , Hepatocitos , Metabolismo de los Lípidos , Modelos Biológicos , Hepatocitos/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Metabolismo de los Lípidos/fisiología , Señalización del Calcio/fisiología , Humanos , Insulina/metabolismo , Animales , Resistencia a la Insulina/fisiología , Redes y Vías Metabólicas
17.
Plant Physiol Biochem ; 210: 108602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608506

RESUMEN

Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.


Asunto(s)
Calcio , Suelo , Calcio/metabolismo , Productos Agrícolas , Fertilizantes , Concentración de Iones de Hidrógeno , Fenómenos Fisiológicos de las Plantas , Suelo/química
18.
Food Chem ; 446: 138883, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430774

RESUMEN

The type 3 resistant starch (RS3) is beneficial for blood glucose management. A high quality RS3 was provided and its formation mechanism after calcium ion (Ca2+) treatment was investigated in this study. The metabolomics, structure and digestion properties were evaluated. Metabolomics was performed by untargeted UHPLC-Q-TOF/MS, and a total of 11 significantly different metabolites was found. The NMR, ATR-FTIR, and XRD results showed that the degree of double helix decreased from 5.34 to 1.07, crystallinity decreased from 33.58 % to 19.88 %, and the amorphous region increased from 69.76 % to 78.33 %. Large particle polymers were observed by SEM on the granule surface of starch with Ca2+ treatment. Digestion test showed that Ca2+ increased the RS3 from 9.70 % to 22.26 %. The result indicated that Ca2+ induced the formation of chelates between Ca2+ and -OH, promoted the RS3 content and regulated carbohydrate metabolism. The study provided theoretical basis for producing low-glycemic black bean foods.


Asunto(s)
Calcio , Almidón Resistente , Almidón/química , Alimentos , Iones , Digestión
19.
Int Ophthalmol ; 44(1): 89, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366000

RESUMEN

PURPOSE: To investigate the effect of calcium ions on promoting the penetrability of riboflavin into the corneal stroma by iontophoresis and to analyse the possible mechanism. METHODS: Forty rabbits were divided into five groups randomly: 0.1% riboflavin-balanced salt solution (BSS) by iontophoresis group, 0.1% riboflavin-saline solution by iontophoresis group, 0.1% riboflavin-zinc gluconate solution by iontophoresis group, 0.1% riboflavin-calcium gluconate solution by iontophoresis group and classical riboflavin instillation after corneal de-epithelialization as the control group. The riboflavin concentrations in corneal stroma were determined and compared by high-performance liquid chromatography (HPLC) after removing epithelium and endothelium. RESULTS: Iontophoretic delivery of a 0.1% riboflavin-calcium gluconate solution was the closest to the effect of classical de-epithelialization. The other solvents were unsufficient at enhancing the permeability of the riboflavin. CONCLUSION: Calcium ions can promote the penetrability of riboflavin into the corneal stroma by iontophoresis.


Asunto(s)
Sustancia Propia , Epitelio Corneal , Animales , Conejos , Iontoforesis/métodos , Calcio , Gluconato de Calcio , Fármacos Fotosensibilizantes/uso terapéutico , Reactivos de Enlaces Cruzados , Riboflavina , Córnea , Iones
20.
Plant J ; 118(5): 1358-1371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38341799

RESUMEN

Watercore is a common physiological disease of Rosaceae plants, such as apples (Malus domestica), usually occurring during fruit ripening. Apple fruit with watercore symptoms is prone to browning and rotting, thus losing commercial viability. Sorbitol and calcium ions are considered key factors affecting watercore occurrence in apples. However, the mechanism by which they affect the occurrence of watercore remains unclear. Here, we identified that the transcription factor MdWRKY9 directly binds to the promoter of MdSOT2, positively regulates the transcription of MdSOT2, increases sorbitol content in fruit, and promotes watercore occurrence. Additionally, MdCRF4 can directly bind to MdWRKY9 and MdSOT2 promoters, positively regulating their expression. Since calcium ions can induce the ubiquitination and degradation of the transcription factor MdCRF4, they can inhibit the transcription of MdWRKY9 and MdSOT2 by degrading MdCRF4, thereby reducing the sorbitol content in fruit and inhibiting the occurrence of fruit watercore disease. Our data sheds light on how calcium ions mitigate watercore in fruit, providing molecular-level insights to enhance fruit quality artificially.


Asunto(s)
Calcio , Frutas , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Sorbitol , Factores de Transcripción , Malus/genética , Malus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Calcio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sorbitol/metabolismo , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA