Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(3): 200824, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39035202

RESUMEN

Limited therapeutic options are available for patients with breast cancer brain metastases (BCBM), and thus there is an urgent need for novel treatment approaches. We previously engineered an effective oncolytic herpes simplex virus 1 (oHSV) expressing a full-length anti-CD47 monoclonal antibody (mAb) with a human IgG1 scaffold (OV-αCD47-G1) that was used to treat both ovarian cancer and glioblastoma. Here, we demonstrate that the combination of OV-αCD47-G1 and temozolomide (TMZ) improve outcomes in preclinical models of BCBM. The combination of TMZ with OV-αCD47-G1 synergistically increased macrophage phagocytosis against breast tumor cells and led to greater activation of NK cell cytotoxicity. In addition, the combination of OV-αCD47-G1 with TMZ significantly prolonged the survival of tumor-bearing mice when compared with TMZ or OV-αCD47-G1 alone. Combination treatment with the mouse counterpart of OV-αCD47-G1, termed OV-A4-IgG2b, also enhanced mouse macrophage phagocytosis, NK cell cytotoxicity, and survival in an immunocompetent model of mice bearing BCBM compared with TMZ or OV-A4-IgG2b alone. Collectively, these results suggest that OV-αCD47-G1 combined with TMZ should be explored in patients with BCBM.

2.
J Neurotrauma ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38874230

RESUMEN

Traumatic brain injury (TBI)-induced intracerebral hematoma is a major driver of secondary injury pathology such as neuroinflammation, cerebral edema, neurotoxicity, and blood-brain barrier dysfunction, which contribute to neuronal loss, motor deficits, and cognitive impairment. Cluster of differentiation 47 (CD47) is an antiphagocytic cell surface protein inhibiting hematoma clearance. This study was designed to evaluate the safety and efficacy of blockade of CD47 via intravenous (i.v.) administration of anti-CD47 antibodies following penetrating ballistic-like brain injury (PBBI) with significant traumatic intracerebral hemorrhage (tICH). The pharmacokinetic (PK) profile of the anti-CD47 antibody elicited that antibody concentration decayed over 7 days post-administration. Blood tests and necropsy analysis indicated no severe adverse events following treatment. Cerebral hemoglobin levels were significantly increased after injury, however, anti-CD47 antibody administration at 0.1 mg/kg resulted in a significant reduction in cerebral hemoglobin levels at 72 h post-administration, indicating augmentation of hematoma clearance. Immunohistochemistry assessment of glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) demonstrated a significant reduction of GFAP levels in the lesion core and peri-lesional area. Based on these analyses, the optimal dose was identified as 0.1 mg/kg. Lesion volume showed a reduction following treatment. Rotarod testing revealed significant motor deficits in all injured groups but no significant therapeutic benefits. Spatial learning performance revealed significant deficits in all injured groups, which were significantly improved by the last testing day. Anti-CD47 antibody treated rats showed significantly improved attention deficits, but not retention scores. These results provide preliminary evidence that blockade of CD47 using i.v. administration of anti-CD47 antibodies may serve as a potential therapeutic for TBI with ICH.

3.
Front Immunol ; 15: 1348852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464520

RESUMEN

CD47 is a cell-surface ligand that is overexpressed in various malignancies and that binds to SIRPα on macrophages to promote tumor cell evasion of phagocytosis. Blocking the CD47-SIRPα axis can increase the phagocytosis of macrophages to exert antitumor effects. CD47-based immunotherapy is a current research focus. The combination of anti-CD47 antibodies with other drugs has shown encouraging response rates in patients with hematological tumors, but side effects also occur. Bispecific antibodies and SIRPα/Fc fusion proteins appear to balance the efficacy and safety of treatment. We review the latest clinical research advances and discuss the opportunities and challenges associated with CD47-based immunotherapy for hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Antígeno CD47/metabolismo , Fagocitosis , Macrófagos , Neoplasias/terapia , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo
4.
J Control Release ; 359: 224-233, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37290721

RESUMEN

Infiltrative glioma growth makes surgical excision incomplete, and the residual tumor cells proliferate rapidly. Residual glioma cells evade phagocytosis by macrophages through upregulating anti-phagocytosis molecule CD47, which binds to the signal regulatory protein alpha (SIRPα) of macrophages. Specifically, blocking the CD47-SIRPα pathway is a potential strategy for post-resection glioma treatment. In addition, the anti-CD47 antibody (α-CD47) in combination with temozolomide (TMZ) caused an enhanced pro-phagocytic effect due to the TMZ not only destroying DNA but also inducing endoplasmic reticulum stress response of glioma cells. However, the obstruction of the blood-brain barrier makes systemic combination therapy not ideal for post-resection glioma treatment. Herein, we designed a temperature-sensitive hydrogel system based on a moldable thermosensitive hydroxypropyl chitin (HPCH) copolymer to encapsulate both α-CD47 and TMZ as α-CD47&TMZ@Gel for in situ postoperative cavity administration. Through the in vitro and in vivo evaluations, α-CD47&TMZ@Gel significantly inhibited glioma recurrence post-resection through enhancement of pro-phagocytosis of macrophages, recruitment, and activation of CD8+ T cells and NK cells.


Asunto(s)
Glioblastoma , Glioma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Glioblastoma/metabolismo , Temozolomida/uso terapéutico , Linfocitos T CD8-positivos/patología , Receptores Inmunológicos , Glioma/tratamiento farmacológico
5.
Front Med ; 17(1): 105-118, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36414917

RESUMEN

The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of "eat me" signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Acrilamidas/farmacología , Receptores ErbB/metabolismo , Línea Celular Tumoral , Antígeno CD47/metabolismo , Antígeno CD47/uso terapéutico
6.
Frontiers of Medicine ; (4): 105-118, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-971622

RESUMEN

The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of "eat me" signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.


Asunto(s)
Humanos , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Acrilamidas/farmacología , Receptores ErbB/metabolismo , Línea Celular Tumoral , Antígeno CD47/uso terapéutico
7.
Leuk Res ; 122: 106949, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36113267

RESUMEN

Multiple myeloma (MM) remains an incurable hematologic malignancy due to its frequent drug resistance and relapse. Cluster of Differentiation 47 (CD47) is reported to be highly expressed on MM cells, suggesting that the blockade of CD47 signaling pathway could be a potential therapeutic candidate for MM. In this study, we developed a bortezomib-resistant myeloma patient-derived xenograft (PDX) from an extramedullary pleural effusion myeloma patient sample. Notably, anti-CD47 antibody treatments significantly inhibited tumor growth not only in MM cell line-derived models, including MM.1S and NCI-H929, but also in the bortezomib-resistant MM PDX model. Flow cytometric data showed that anti-CD47 therapy promoted the polarization of tumor-associated macrophages from an M2- to an M1-like phenotype. In addition, anti-CD47 therapy decreased the expression of pro-angiogenic factors, increased the expression of anti-angiogenic factors, and improved tumor vascular function, suggesting that anti-CD47 therapy induces tumor vascular normalization. Taken together, these data show that anti-CD47 antibody therapy reconditions the tumor immune microenvironment and inhibits the tumor growth of bortezomib-resistant myeloma PDX. Our findings suggest that CD47 is a potential new target to treat bortezomib-resistant MM.


Asunto(s)
Mieloma Múltiple , Animales , Humanos , Bortezomib/farmacología , Bortezomib/uso terapéutico , Mieloma Múltiple/patología , Xenoinjertos , Recurrencia Local de Neoplasia , Microambiente Tumoral , Modelos Animales de Enfermedad , Línea Celular Tumoral , Resistencia a Antineoplásicos , Apoptosis
8.
Front Immunol ; 13: 899068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795660

RESUMEN

Immunotherapies targeting the "don't eat me" myeloid checkpoint constituted by CD47 SIRPα interaction have promising clinical potential but are limited by toxicities associated with the destruction of non-tumor cells. These dose-limiting toxicities demonstrate the need to highlight the mechanisms of anti-CD47-SIRPα therapy effects on non-tumor CD47-bearing cells. Given the increased incidence of lymphopenia in patients receiving anti-CD47 antibodies and the strong ADCC (antibody-dependent cellular cytotoxicity) effector function of polymorphonuclear cells (PMNs), we investigated the behavior of primary PMNs cocultured with primary T cells in the presence of anti-CD47 mAbs. PMNs killed T cells in a CD47-mAb-dependent manner and at a remarkably potent PMN to T cell ratio of 1:1. The observed cytotoxicity was produced by a novel combination of both trogocytosis and a strong respiratory burst induced by classical ADCC and CD47-SIRPα checkpoint blockade. The complex effect of the CD47 blocking mAb could be recapitulated by combining its individual mechanistic elements: ADCC, SIRPα blockade, and ROS induction. Although previous studies had concluded that disruption of SIRPα signaling in PMNs was limited to trogocytosis-specific cytotoxicity, our results suggest that SIRPα also tightly controls activation of NADPH oxidase, a function demonstrated during differentiation of immature PMNs but not so far in mature PMNs. Together, our results highlight the need to integrate PMNs in the development of molecules targeting the CD47-SIRPα immune checkpoint and to design agents able to enhance myeloid cell function while limiting adverse effects on healthy cells able to participate in the anti-tumor immune response.


Asunto(s)
Antígenos de Diferenciación , Antígeno CD47 , NADPH Oxidasas , Neoplasias , Receptores Inmunológicos , Linfocitos T , Trogocitosis , Anticuerpos Monoclonales/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Diferenciación/inmunología , Antígeno CD47/inmunología , Activación Enzimática , Humanos , Recuento de Linfocitos , NADPH Oxidasas/inmunología , NADPH Oxidasas/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Receptores Inmunológicos/inmunología , Linfocitos T/inmunología , Trogocitosis/inmunología
9.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682627

RESUMEN

The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Nucleofosmina , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
10.
Hematol Oncol ; 40(4): 596-608, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35477179

RESUMEN

CD47 expressed on cancer cells enables macrophage immune evasion. Blocking CD47 using anti-CD47 monoclonal antibodies (mAbs) is a promising strategy. The anti-CD47 mAb TJC4 has anti-tumor activity but lacks hematological toxicity. Venetoclax, a B-cell lymphoma 2 (BCL-2) inhibitor for B-cell malignancy, induces phosphatidylserine (PS) extracellular exposure, representing an "eat-me" signal for macrophages. The present study aimed to explore whether TJC4-Venetoclax combined therapy exerts synergistic anti-cancer properties in B-cell lymphoma. In vitro, flow cytometry and microscopy assessed whether TJC4 monotherapy or combination treatment could promote macrophage-mediated phagocytosis of tumor cells. Induced PS exposure on the cell membrane was measured using flow cytometry with Annexin V-FITC staining. In vivo, Venetoclax and TJC4's synergistic anti-tumor effects were evaluated. B cell lymphoma cell lines express high levels of CD47 and patients with diffuse large B cell lymphoma expressing CD47 have a worse clinical prognosis. TJC4 eliminates tumor cells via macrophage-mediated phagocytosis. In vitro and in vivo, the TJC4-Venetoclax combination increased phagocytosis significantly compared with either agent alone, showing synergistic phagocytosis, and displayed synergistic anti-cancer properties in B-cell lymphoma. Our results support the TJC4-Venetoclax combination as a promising therapy, and suppressing BCL-2 and CD47 simultaneously could represent a novel therapeutic paradigm for B-cell lymphoma.


Asunto(s)
Antineoplásicos , Linfoma de Células B Grandes Difuso , Anticuerpos Monoclonales , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Humanos , Factores Inmunológicos , Inmunoterapia/métodos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Fosfatidilserinas , Proteínas Proto-Oncogénicas c-bcl-2 , Sulfonamidas
11.
Mol Pharm ; 19(5): 1273-1293, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35436123

RESUMEN

Cancer is still a major disease that is currently difficult for humans to overcome. When the expression of the cluster of differentiation 47 (CD47) is upregulated, tumor cells interact with the macrophage inhibitory receptor signal regulatory protein α (SIRPα) to transmit the "Don't eat me" signal, thereby avoiding phagocytosis by the macrophages. Therefore, when the CD47-SIRPα axis is inhibited, the macrophages' phagocytic function can be restored and can also exert antitumor effects. This Review mainly introduces recent advances in tumor therapy targeted on the CD47-SIRPα axis, including the antibody and fusion protein, small molecule, gene therapy, cell therapy, and drug delivery system, to inhibit the function of CD47 expressed on tumor cells and promote tumor phagocytosis by macrophages. In addition, this Review also summarizes the current approaches to avoid anemia, a common side effect of CD47-SIRPα inhibitions, and provides ideas for clinical transformation.


Asunto(s)
Antígeno CD47 , Neoplasias , Antígenos de Diferenciación/metabolismo , Antígenos de Diferenciación/farmacología , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Fagocitosis , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
12.
Adv Mater ; 34(9): e2106994, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34921573

RESUMEN

Fluorescent probes capable of precise detection of atherosclerosis (AS) at an early stage and fast assessment of anti-AS drugs in animal level are particularly valuable. Herein, a highly bright aggregation-induced emission (AIE) nanoprobe is introduced by regulating the substituent of rhodanine for early detection of atherosclerotic plaque and screening of anti-AS drugs in a precise, sensitive, and rapid manner. With dicyanomethylene-substituted rhodanine as the electron-withdrawing unit, the AIE luminogen named TPE-T-RCN shows the highest molar extinction coefficient, the largest photoluminescence quantum yield, and the most redshifted absorption/emission spectra simultaneously as compared to the control compounds. The nanoprobes are obtained with an amphiphilic copolymer as the matrix encapsulating TPE-T-RCN molecules, which are further surface functionalized with anti-CD47 antibody for specifically binding to CD47 overexpressed in AS plaques. Such nanoprobes allow efficient recognition of AS plaques at different stages in apolipoprotein E-deficient (apoE-/- ) mice, especially for the recognition of early-stage AS plaques prior to micro-computed tomography (CT) and magnetic resonance imaging (MRI). These features impel to apply the nanoprobes in monitoring the therapeutic effects of anti-AS drugs, providing a powerful tool for anti-AS drug screening. Their potential use in targeted imaging of human carotid plaque is further demonstrated.


Asunto(s)
Aterosclerosis , Nanopartículas , Rodanina , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Colorantes Fluorescentes/química , Ratones , Nanopartículas/química , Microtomografía por Rayos X
13.
Brain Res Bull ; 174: 359-365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34252444

RESUMEN

OBJECTIVE: The secondary injury caused by RBC autolysis after intracerebral hemorrhage (ICH) can be reduced by increasing the efficiency of microglia (MG)/macrophages (Mø) phagocytizing red blood cells (RBCs). CD47 is an important regulator of MG/Mø phagocytosis. This study aims to clarify whether anti-CD47 antibody administrated into the cisterna magna after ICH can transfer to the hematoma site, promote MG/Mø gathering to phagocytize RBCs and ultimately reduce cell death. METHODS: Forty male Wistar rats were divided into sham, ICH, low-dosage (group A, 0.3 µg), medium-dosage (group B, 0.9 µg) and high-dosage (group C, 1.8 µg) anti-CD47 antibody groups. For the rats in group A, B and C, anti-CD47 antibody solution was administrated into the cisterna magna at 10 min after ICH. Brain tissue was harvested 3 days after the operation. Western blotting was performed to detect the expression of Caspase-3 and Bcl-2. Immunofluorescence was performed to detect the CD68 expression. TUNEL was performed to detect the cell death. RESULTS: The hematoma of the ICH rats was located in the basal ganglia, with a good homogeneity of hematoma volume. Low-dosage anti-CD47 antibody in group A had no effects on the perihematomal CD68 (P = 0.338), Caspase-3 (P = 0.769), Bcl-2 (P = 0.176) expression and cell death (P = 0.698), compared with the ICH group. CD68 and Bcl-2 expression increased and Caspase-3 expression decreased significantly in group B (P < 0.001 for all) and group C (P < 0.001 for all). The increase of CD68 expression in group C was greater than that in group B (P < 0.01) by a large margin, while there was no difference for Bcl-2 (P = 0.908) and Caspase-3 (P = 0.913) expression between the 2 groups. Compared with the ICH group, medium-dosage of anti-CD47 antibody in group B significantly reduced the number of TUNEL-positive cells (P < 0.005), but not for group C (P = 0.311). CONCLUSION: The results suggested that anti-CD47 antibody administration into the cisterna magna in proper dosage (0.9 µg) can effectively reach the hematoma, induce more MG/Møs to gather around the hematoma, and reduce cell death in perihematomal brain tissue. The results of this study has provided a basic theory for improving the efficiency of MG/Mø phagocytizing RBCs and hematoma clearance after ICH by administrating anti-CD47 antibody via the cisterna magna.


Asunto(s)
Anticuerpos Bloqueadores/uso terapéutico , Antígeno CD47/inmunología , Muerte Celular/efectos de los fármacos , Hemorragia Cerebral Traumática/tratamiento farmacológico , Hemorragia Cerebral/tratamiento farmacológico , Cisterna Magna , Animales , Anticuerpos Bloqueadores/administración & dosificación , Antígenos CD/biosíntesis , Antígenos de Diferenciación Mielomonocítica/biosíntesis , Ganglios Basales/patología , Caspasa 3/metabolismo , Relación Dosis-Respuesta a Droga , Hematoma , Masculino , Microinyecciones , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Ratas , Ratas Wistar
14.
Nanomicro Lett ; 13(1): 141, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-34138357

RESUMEN

The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.

15.
Am J Transl Res ; 12(9): 5908-5923, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042468

RESUMEN

In this study, we investigated whether CD47 antibody could attenuate isoproterenol (ISO)-induced cardiac hypertrophy in mice and H9C2 cells. Cardiac hypertrophy was induced by intraperitoneal (i.p.) injection of ISO (60 mg.kg-1.d-1 in 100 µl of sterile normal saline) daily for 14 days, and cell hypertrophy was induced by ISO (10-5 mol/l) for 48 h. The injury was confirmed by increased levels of lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB), increased heart-to-body weight (HW/BW) ratio and visible cardiac fibrosis. Apoptosis was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining. Autophagic flux in H9c2 cells was monitored by TEM and mRFP-GFP-LC3 virus transfection. The expression levels of Cleaved caspase-3, Cleaved caspase-9 and autophagy-related proteins were detected by Western blotting. CD47 antibody significantly limited ISO-induced increases in LDH, CK-MB, HW/BW ratio and attenuated cardiac fibrosis, oxidative stress, and apoptosis in the heart; CD47 antibody promoted autophagy flow and decreased cell apoptosis in cardiac tissues. Moreover, autophagy inhibitor chloroquine (CQ) reversed the effect of CD47 antibody treatment. In conclusion, CD47 antibody reduced ISO-induced cardiac hypertrophy by improving autophagy flux and rescuing autophagic clearance.

16.
Proc Natl Acad Sci U S A ; 114(18): 4757-4762, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28424250

RESUMEN

Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun-mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions.


Asunto(s)
Fibrosis Pulmonar Idiopática , Mielofibrosis Primaria , Proteínas Proto-Oncogénicas c-jun , Esclerodermia Sistémica , Factor de Transcripción AP-1 , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
17.
Oncotarget ; 7(50): 83040-83050, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-27863402

RESUMEN

CD47/SIRPα interaction serves as an immune checkpoint for macrophage-mediated phagocytosis. Mouse anti-CD47 blocking antibodies had demonstrated potent efficacy in the treatment of both leukemic and solid tumors in preclinical experimentations, and therefore had moved forward rapidly into clinical trials. However, a fully human blocking antibody, which meets clinical purpose better, has not been reported for CD47 up to date. In this study, we reported the isolation of a fully human anti-CD47 blocking antibody, ZF1, from a phage display library. ZF1 displayed high specificity and affinity for CD47 protein, which were comparable to those for humanized anti-CD47 blocking antibody B6H12. Importantly, ZF1 treatment could induce robust, or even stronger than B6H12, phagocytosis of leukemic cancer cells by macrophage in vitro, and protect BALB/c nude mice from cancer killing by engrafted leukemic cells (CCRF and U937) to a similar extent as B6H12 did. Thus, these data provide primary early pre-clinical support for the development of ZF1 as a fully human blocking antibody to treat human leukemia by targeting CD47 molecule.


Asunto(s)
Anticuerpos/farmacología , Antineoplásicos Inmunológicos/farmacología , Antígeno CD47/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Antineoplásicos Inmunológicos/farmacocinética , Antígeno CD47/inmunología , Técnicas de Visualización de Superficie Celular , Técnicas de Cocultivo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Fagocitosis/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Factores de Tiempo , Células U937 , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA